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Abstract We study the frequency process f1 of the block of 1 for a Ξ -coalescent Π with
dust. If Π stays infinite, f1 is a jump-hold process which can be expressed as a sum of broken
parts from a stick-breaking procedure with uncorrelated, but in general non-independent, stick
lengths with common mean. For Dirac-Λ-coalescents with Λ = δp , p ∈ [ 1

2 , 1), f1 is not
Markovian, whereas its jump chain is Markovian. For simple Λ-coalescents the distribution
of f1 at its first jump, the asymptotic frequency of the minimal clade of 1, is expressed via
conditionally independent shifted geometric distributions.

Keywords Ξ -coalescent, coalescent with dust, Poisson point process, minimal clade,
exchangeability
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1 Introduction and results

Independently introduced in [33] and [30], Ξ -coalescents are exchangeable Marko-
vian processes Π = (Πt )t≥0 on the set of partitions of N := {1, 2, . . .} whose transi-
tions are due to mergers of partition blocks. The distribution of Π is characterised by
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a finite measure Ξ on the infinite simplex

Δ := {
x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0, |x| ≤ 1

}
,

where |x| := ∑
i∈N xi . We exclude Ξ = 0, since it leads to a coalescent without

coalescence events. Ξ -coalescents allow that disjoint subsets of blocks merge into
distinct new blocks, hence they are also called coalescents with simultaneous multiple
mergers. If Ξ is concentrated on [0, 1] × {0} × {0} × · · · , only a single set of blocks
is allowed to merge. Such a coalescent is a Λ-coalescent, see [32]. In this case, Λ

is a finite measure on [0, 1], the restriction of Ξ on the first coordinate of Δ. The
restriction Π(n) of Π on [n] := {1, . . . , n} is called the Ξ -n-coalescent. Denote the
blocks of Πt by (Bi(t))i∈N, where i is the least element of the block (we set Bi(t) = ∅
if i is not a least element of a block). Clearly, 1 ∈ B1(t). We call B1(t) the block of 1
at time t . Due to the exchangeability of the Ξ -coalescent, Kingman’s correspondence
ensures that, for every t ≥ 0, the asymptotic frequencies

fi(t) := lim
n→∞

|Bi(t) ∩ [n]|
n

, i ∈ N, (1)

exist almost surely, where |A| denotes the cardinality of the set A.
The family of Ξ -coalescents is a diverse class of processes with very different

properties, see e.g. the review [15] for Λ-coalescents. We will focus on Ξ -coalescents
with dust, i.e. Ξ fulfils (see [33])

μ−1 :=
∫

Δ

|x|ν0(dx) < ∞, (2)

where ν0(dx) = Ξ(dx)/(x, x) with (x, x) := ∑
i∈N x2

i for x = (x1, x2, . . .) ∈ Δ.
These coalescents are characterised by a non-zero probability that, at any time t , there
is a positive fraction of N, the dust, that has not yet merged. Note that i ∈ N is part
of the dust at time t if and only if {i} is a block at time t , which is called a singleton
block. The asymptotic frequency of the dust component is St := 1 − ∑

i∈N fi(t).
Having dust is equivalent to P(St > 0) > 0 for all t > 0. We are interested in Ξ -
coalescents which stay infinite, i.e. which almost surely have an infinite number of
blocks for each t > 0. We will put some further emphasis on simple Λ-coalescents
satisfying

μ−2 :=
∫

[0,1]
x−2Λ(dx) < ∞. (3)

This class includes Dirac coalescents with Λ = δp, the Dirac measure in p ∈ (0, 1].
Consider the frequency process f1 := (f1(t))t≥0 of the block of 1. For Λ-coalescents,
Pitman characterises f1 as follows (reproduced from [32], adjusted to our notation).

Proposition 1. [32, Proposition 30] No matter what Λ, the process f1 is an in-
creasing pure jump process with càdlàg paths, f1(0) = 0 and limt→∞ f1(t) = 1.
If μ−1 = ∞ then almost surely f1(t) > 0 for all t > 0 and limt↘0 f1(t) = 0. If
μ−1 < ∞ then f1 starts by holding at zero until an exponential time with rate μ−1,
when it enters (0, 1] by a jump, and proceeds thereafter by a succession of holds and
jumps, with holding rates bounded above by μ−1.
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Moreover, in [32, Section 3.9], a general formula for the moments of f1(t) for
fixed t > 0 is provided.

For two particular coalescents without dust, further properties of f1 are known.
For Kingman’s n-coalescent (Λ = δ0), the complete distribution of block sizes is
explicitly known, see [24, Theorem 1], from which one can derive some properties of
the block of 1 due to exchangeability. For the Bolthausen–Sznitman coalescent (Λ the
uniform distribution on [0, 1]) the block of 1 can be characterised as in [32, Corollary
16]. For instance, f1 is Markovian for the Bolthausen–Sznitman coalescent.

Different specific aspects of the block of 1 have been analysed for different Λ/Ξ -
n-coalescents including their asymptotics for n → ∞.

• External branch length: The waiting time for the first jump of the block of 1 in
the n-coalescent, see e.g. [6–8, 13, 22, 28].

• Minimal clade size: The size Mn of the block of 1 for the n-coalescent at its first
jump. For Kingman’s n-coalescent and for Λ beta-distributed with parameters
(2−α, α) with α ∈ (1, 2), Xn converges in distribution for n → ∞, see [6] and
[34]. For the Bolthausen–Sznitman n-coalescent, log(Mn)/ log(n) converges in
distribution [14]. These results do not cover Λ/Ξ -coalescents with dust.

• The number of blocks involved in the first merger of the block of 1, see [34].
The results cover Λ-coalescents with dust.

• The number of blocks involved in the last merger of the block of 1, see [1, 2,
19, 17, 23, 29].

• The small-time behaviour of the block of 1, see [5, 34].

Due to the exchangeability of the Ξ -coalescent, any result for the distribution of the
block of 1 holds true for the block containing any other i ∈ N. We want to further
describe f1 for Ξ -coalescents with dust. For any finite measure Ξ on Δ which fulfils
(2), we introduce

γ := Ξ(Δ)

μ−1
. (4)

We see that γ ∈ (0, 1], since

0 < Ξ(Δ) =
∫

Δ

(x, x)ν0(dx) ≤
∫

Δ

|x|ν0(dx) = μ−1 < ∞.

Define Δf := ⋃
k∈N{x ∈ Δ : x1 + · · · + xk = 1}. We extend Proposition 1 for

Ξ -coalescents with dust which stay infinite, i.e. have almost surely infinitely many
blocks for each t ≥ 0 (equivalent to Ξ(Δf ) = 0, see Lemma 4). While the extension
to Ξ -coalescents and the explicit waiting time distributions are a direct follow-up
from Pitman’s proof, we provide a more detailed description of the jump heights
of f1. Proposition 1 ensures that the jumps of f1 are separated by (almost surely)
positive waiting times, we denote the value of f1 at its kth jump with f1[k] for k ∈ N.

Theorem 1. In any Ξ -coalescent Π with dust and Ξ(Δf ) = 0, the asymptotic
frequency process f1 := (f1(t))t≥0 of the block of 1, defined by Eq. (1), is an in-
creasing pure jump process with càdlàg paths, f1(0) = 0 and limt→∞ f1(t) = 1,
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but f1(t) < 1 for t > 0 almost surely. The waiting times between almost surely in-
finitely many jumps are distributed as independent Exp(μ−1) random variables. Its
jump chain (f1[k])k∈N can be expressed via stick-breaking

f1[k] =
k∑

i=1

Xi

i−1∏
j=1

(1 − Xj), (5)

where (Xj )j∈N are pairwise uncorrelated, Xj > 0 almost surely and E(Xj ) = γ for
all j ∈ N. In particular, E(f1[k]) = 1 − (1 − γ )k . In general, (Xj )j∈N are neither
independent nor identically distributed.

Remark 1. From Theorem 1, the dependence between f1 and its jump times is readily
seen as follows. Recall [32, Eq. (51)] that E(f1(t)) = 1 − e−t for any Λ-coalescent
with Λ([0, 1]) = 1. If we would have independence, integrating E(f1(t)) over the
waiting time distribution Exp(μ−1) for the first jump of f1 would yield E(f1[1]) =
(1 + μ−1)

−1, in contradiction to E(f1[1]) = 1/μ−1 by Theorem 1.

Dirac coalescents (Λ = δp for some p ∈ (0, 1]) are a family of Λ-coalescents
with dust. They have been introduced as simplified models for populations in species
with skewed offspring distributions (reproduction sweepstakes), see [9]. Their jump
chains (discrete time Dirac coalescents) can also arise as large population size limits
in conditional branching process models [21, Theorem 2.5].

We further characterise f1 as follows, including an explicit formula for its distri-
bution at its first jump.

Proposition 2. Let Λ = δp, p ∈ [ 1
2 , 1) and q := 1 − p. f1 takes values in the set

Mp :=
{∑

i∈N
bipqi−1 : bi ∈ {0, 1}, 1 ≤

∑
i∈N

bi < ∞
}
. (6)

For x = ∑
i∈N bipqi−1 ∈ Mp, we have

P
(
f1[1] = x

) = pqj−1
∏

i∈J\{j}
P(Y + i ∈ J )

∏
i∈[j−1]\J

P (Y + i /∈ J ) > 0, (7)

where Y
d= Geo(p), J := {i ∈ N|bi = 1} and j := max J . The process f1 is not

Markovian whereas its jump chain (f1[k])k∈N is Markovian.

Remarks 2.

• The law of f1[1] is a discrete measure on [0, 1] for Dirac coalescents. Surpris-
ingly different properties arise for different values of p. For instance, M2/3 =
{∑i∈Nbi3−i : bi ∈ {0, 2}, 1 ≤ ∑

i∈Nbi < ∞} is a subset of the ternary Cantor
set which is nowhere dense in [0, 1], whereas M1/2, the set of all x ∈ [0, 1]
with finite 2-adic expansion, is dense in [0, 1].

• We omitted f1[1] for the star-shaped coalescent (Λ = δ1), since it just jumps

from 0 to 1 at time T
d= Exp(1).
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• Recall that f1 is Markovian for the Bolthausen–Sznitman coalescent in contrast
to f1 for the Dirac coalescents specified above.

Our key motivation was to provide a more detailed description of the jump chain
of f1, especially properties of the value f1[1] at the first jump which is the asymptotic
frequency of the minimal clade. Theorem 1 provides a first-order limit result for all
Ξ -coalescents with dust.

Corollary 1. Let Π be a Ξ -coalescent with dust and Π(n) its restriction on [n]. Let
Mn be the minimal clade size, i.e. the size of the block of 1 at its first merger in Π(n).
Then, Mn/n → f1[1] almost surely, f1[1] > 0 almost surely and E(f1[1]) = γ .

Compared to the known results listed above for the minimal clade size for dust-
free coalescents, the minimal clade size is much larger asymptotically for n → ∞
(O(n) compared to o(n)).

The law of f1[1] in (7) follows from the following more general description of
f1[1] for simple Λ-coalescents. We introduce, for a finite measure Λ on [0, 1] with
μ−1 = ∫ 1

0 x−1Λ(dx) < ∞,

α := μ−1

μ−2
=

∫ 1
0 x−1Λ(dx)∫ 1
0 x−2Λ(dx)

. (8)

We have α ∈ [0, 1] since x−1 ≤ x−2 on (0, 1] (if μ−1 < ∞, we have Λ({0}) = 0).
Additionally, α > 0 if and only if μ−2 < ∞, so if Λ characterises a simple coalescent
(recall that μ−2 ≥ μ−1 > 0 since we exclude Λ = 0).

Proposition 3. Let Λ fulfil (3). Then,

f1[1] =
C∑

i=1

B
(C)
i Pi

∏
j∈[i−1]

(1 − Pj ) =
∑
i∈N

Pi

∏
j∈[i−1]

(1 − Pj )
∑
k≥i

B
(k)
i 1{C=k}, (9)

where (Pi)i∈N are i.i.d. with Pi
d= μ−1

−2x
−2Λ(dx). We have

P
(
C = k|(Pi)i∈N

) = Pk

∏
j∈[k−1]

(1 − Pj ), C is Geo(α)-distributed.

Given (Pi)i∈N, C and (B
(k)
i )k∈N,i∈[k] are independent and (B

(k)
i )k∈N,i∈[k] is defined

as

P
((

B
(j)
1 , . . . , B

(j)
j

) = b|(Pi)i∈N
)

=
∏

i∈J\{j}
P

(
I (i) ∈ J |(Pi)i∈N

) ∏
i∈[j−1]\J

P
(
I (i) /∈ J |(Pi)i∈N

)
almost surely,

(10)

where b = (b1, . . . , bj ) ∈ {0, 1}j−1 ×{1}, J := {i ∈ [j ]|bi = 1} and, for each i ∈ N,

I (i) := min{j ≥ i + 1 : B
(j)
i = 1}. We have

(i) P(I (i) = i + k|(Pi)i∈N) = Pi+k

∏i+k−1
l=i+1 (1 − Pl) almost surely for k ∈ N.

(ii) For any i ∈ N, I (i) − i is Geo(α)-distributed on N. Given (Pi)i∈N, (I (i))i∈N
are independent.
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Remarks 3.

• The distribution of C is known from [16, Proposition 3.1].

• The distribution of f1[1] for Dirac coalescents with p > 1
2 has a structure

somewhat similar to the Cantor distribution, see e.g. [26] and [18]. The Can-
tor distribution is the law of

∑
i∈N Bipqi−1 for p ∈ (0, 1), where (Bi)i∈N

are i.i.d. Bernoulli variables with success probability 1
2 , whereas in our case

(Bi)i∈N are dependent Bernoulli variables with success probabilities P(Bi =
1) = P(

∑
k≥i B

(k)
i 1{C=k} = 1) = pqi−1 + ∑

k>i p2qk−1 = pqi−1(1 + q),
see Eq. (9). The Cantor distribution is a shifted infinite Bernoulli convolution.
Infinite Bernoulli convolutions are the set of distributions of

∑
i∈N ωi(−1)Bi

with ωi ∈ R for i ∈ N satisfying
∑

i∈N ω2
i < ∞, see [31, Section 2]. They

have been an active field of research since the 1930’s, e.g. see [10, 35] and the
survey [31].

Our main tool for the proofs is Schweinsberg’s Poisson construction of the Ξ -
coalescent. The article is organised as follows. We recall (properties of) the Poisson
construction in Section 2. Section 3 characterises staying infinite for Ξ -coalescents
with dust. These prerequisites are then used to prove the results for Ξ -coalescents
with dust in Section 4 and for simple Λ-coalescents in Section 5.

2 Poisson construction of a Ξ -coalescent and the block of 1

We recall the construction of a Ξ -n-coalescent Π from [33]. We are only interested
in constructing a Ξ -coalescent with dust, which implies Ξ({0}) = 0, see Eq. (2).

Let P be a Poisson point process on A = [0,∞) × N
∞
0 with intensity measure

ν = dt ⊗
∫

Δ

⊗n∈NP (x)ν0(dx), (11)

where, for x ∈ Δ, P (x) is a probability measure on N0 with P (x)({k}) = xk and
P (x)({0}) = 1 − |x| (Kingman’s paintbox) and ν0 is defined as in Eq. (2). For n ∈ N,
the restriction Π(n) of Π to [n] can be constructed by starting at t = 0 with each
i ∈ [n] in its own block. Then, for each subsequent time (T =)t with a Poisson point
(T , (Ki)i∈N), merge all present blocks i (at most n) with identical ki > 0, where i is
the least element of the block (there are only finitely many points of P that lead to
a merger of blocks in [n]). Π is then pathwise defined by its restrictions (Π(n))n∈N.
From now on we will assume without loss of generality that the Ξ -coalescent with
dust is constructed via the Poisson process P .

The block of 1 can only merge at Poisson points P = (T , (Ki)i∈N) with K1 > 0.
We take a closer look at these Poisson points. We introduce exchangeable(Q) indi-
cators following [32, p.1884]: These are exchangeable Bernoulli variables which are
conditionally i.i.d. given a random variable X with distribution Q on [0, 1] which
gives their success probability. Alternatively, we denote these as exchangeable(X)
indicators if we can specify X.

Lemma 1. For any finite measure Ξ on Δ fulfilling (2), P splits into two independent
Poisson processes
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P1 := {(
T , (Ki)i∈N

) ∈ P : K1 > 0
}

and P2 := {(
T , (Ki)i∈N

) ∈ P : K1 = 0
}
.

P1 has almost surely finitely many points on any set [0, t] × N
∞
0 , thus we can order

P1 = ((
Tj ,

(
K

(j)
i

)
i∈N

))
j∈N,

where Tj < Tj+1 almost surely for j ∈ N.
(Tj )j∈N is a homogeneous Poisson process on [0,∞) with intensity μ−1.

((K
(j)
i )i∈N)j∈N is an i.i.d. sequence in j and (1{K(1)

1 =K
(1)
i })i≥2 are exchange-

able(Q) indicators with

Q := 1

μ−1

∫
Δ

∑
i∈N

xiδxi
ν0(dx),

which is a probability measure on [0, 1]. For X
d= Q, we have X > 0 almost surely

and E(X) = γ .

Proof. P1 and P2 are obtained by restricting P on the disjoint subsets A1 := [0,∞)×
N×N

∞
0 and A2 := [0,∞)×{0}×N

∞
0 of A. Thus, P1 and P2 are independent Poisson

processes (restriction theorem [25, p.17]) with intensity measures ν1 = ν(· ∩A1) and
ν2 = ν(· ∩ A2). For any Borel set B ⊆ [0,∞) and λ being the Lebesgue measure,

ν1
(
B × N

∞
0

) = λ(B)

∫
Δ

P (x)(N)︸ ︷︷ ︸
=|x|

∏
i≥2

P (x)(N0)︸ ︷︷ ︸
=1

ν0(dx) = λ(B)μ−1. (12)

Thus, on any bounded set B, P1 has almost surely finitely many points, which can
be ordered as described. Projecting P1 on the first coordinate t of A yields a Poisson
process with intensity measure μ−1dt (mapping theorem [25, p.18]).

Now, we project the points of P1 on the coordinate of (K
(j)
i )i∈N. Recall the

construction of a Poisson process as a collection of i.i.d. variables with distribution
(μ(C))−1μ on sets of finite mass C of the intensity measure μ, e.g. [25, p.23]. It
shows that we can treat the collection of (Tj , (K

(j)
i )i∈N) with, for instance, Ti ∈

[k, k + 1) for k ∈ N as a random number of i.i.d. random variables with distribution
(1 · μ−1)

−1ν1. Since ν1 has a product structure on A1, we have that ((K
(j)
i )i∈N)j∈N

are i.i.d. in j and have distribution, for m ∈ N,

P
((

K
(1)
i = li

)
i∈[m]

) = 1

μ−1

∫
Δ

∏
i∈[m]

P (x)(li)ν0(dx) = 1

μ−1

∫
Δ

∏
i∈[m]

xli ν0(dx)

(13)
for l1 ∈ N and l2, . . . , lm ∈ N0. Consider (1{K(1)

1 =K
(1)
i })i≥2. To show that they are

exchangeable(Q) indicators, [32, Eq. (27)] has to be fulfilled, i.e. we need to show

P({i ∈ [m] : K
(1)
i = K

(1)
1 } = M) = E(X|M|−1(1 − X)m−|M|) for X

d= Q and any
M ⊆ [m] with 1 ∈ M . Using Eq. (13) we compute

P
({

i ∈ [m] : K
(1)
i = K

(1)
1

} = M
) =

∑
j∈N

P
({

i ∈ [m] : K
(1)
i = j

} = M,K
(1)
1 = j

)
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= 1

μ−1

∫
Δ

∑
j∈N

x
|M|
j (1 − xj )

m−|M|ν0(dx)

= E
(
X|M|−1(1 − X)m−|M|).

Clearly, P(X > 0) = 1 since Ξ({0}) = 0 and E(X) = μ−1
−1

∫
Δ
(x, x)ν0(dx) =

γ .

Remarks 4.

• The properties of the exchangeable(Q) indicators remind of [32, Lemma 21,
Theorem 4] and [33, Proposition 6]. Restricting P to points with K1 = K2 > 0
we can reproduce their results analogously to the proof of Lemma 1.

• Q can be seen as the expected value of the random probability measure Qx :=
|x|−1 ∑

i∈N xiδxi
for x ∈ Δ with x drawn from μ−1

−1|x|ν0(dx). In the Poisson
construction, this means we draw a "paintbox" x ∈ Δ and then record in which
box the ball of 1 falls, if we only allow it to fall in boxes 1, 2, . . ..

• Consider a simple Λ-coalescent. Projecting P2 on its first component, so
(T , (Ki)i∈N) 
→ T , yields a homogeneous Poisson process with intensity μ−2−
μ−1 < ∞. To see this, proceed analogously as for P1. Then, Eq. (12) for ν2
reads the same except for replacing P (x)(N) by P (x)({0}) = 1 − |x|.

For a Λ-coalescent (with Λ({0}) = 0) the Poisson construction simplifies, since
Ξ only has mass on {x ∈ Δ : x2 = x3 = · · · = 0} and thus P can be seen as a Poisson
process on [0,∞) × {0, 1}∞ with intensity measure dt ⊗ ∫

[0,1] ⊗n∈NP (x)x−2Λ(dx),

where P (x) is the Bernoulli distribution with success probability x ∈ (0, 1].
When constructing simple Λ-coalescents, even the process P itself has almost

surely finitely many points (Tj , (K
(j)
i )i∈N) on any set [0, t] × {0, 1}∞ (which we

can again order in the first coordinate). As described in [32, Example 19] and analo-
gously to Lemma 1, we can construct each (potential) merger at point (Tj , (K

(j)
i )j∈N)

of a simple Λ-coalescent as follows (while between jumps, we wait independent
Exp(μ−2) times). First choose Pi ∈ (0, 1] from μ−1

−2x
−2Λ(dx), we have E(Pi) =

μ−1
−2

∫
[0,1] x

−1Λ(dx) = α. Then, throw independent coins (K
(j)
i )i∈N with probability

Pi for ‘heads’ (=1) for each block present and merge all blocks whose coins came up
‘heads’. Again, (Pi)i∈N are i.i.d. and the ‘coins’ K

(j)
i are exchangeable(Pi) indica-

tors. Analogously to above, we thus have

Lemma 2. Let Λ be a finite measure on [0, 1] fulfilling (3). For the Poisson process
P = (Tj , (K

(j)
i )i∈N)j∈N, ((K

(j)
i )i∈N)j∈N is an i.i.d. sequence (in j ) of sequences of

exchangeable(Pj ) indicators, where (Pj )j∈N are i.i.d. with P1
d= μ−1

−2x
−2Λ(dx). In

particular, E(Pi) = α.

Since many proofs will build on the properties of different sets of exchangeable
indicators, we collect some well-known properties in the following

Lemma 3. Let (Ki)i∈N be exchangeable(X) indicators.

a) We have limn→∞ 1
n

∑n
i=1 Ki = X almost surely. X is almost surely unique.

b) If (Ki)i∈N is independent of a σ -field F , X is, too.
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c) Let (Li)i∈N be exchangeable(Y ) indicators, independent of (Ki)i∈N. Then,
(KiLi)i∈N are exchangeable(XY ) indicators and X, Y are independent.

Proof. These properties essentially follow from the de Finetti representation of an
infinite series of exchangeable variables as conditionally i.i.d. variables. The lemma
is a collection of well-known properties as e.g. described in [3, Sections 2 and 3],
arguments of which we use in the following.

An infinite exchangeable sequence is conditionally i.i.d. given an almost surely
unique random measure α. This measure is the weak limit of the empirical measures,
in our case, n−1 ∑n

i=1 δKi
, which has limit X′δ1+(1−X′)δ0 for some random variable

X′ with values in [0, 1]. Given α, the indicators are α-distributed. However, since X

gives the success probability of each Bernoulli coin, we have X = X′ almost surely,
so X is almost surely unique. The rest of a) is just the strong law of large numbers
e.g. from [3, 2.24] (E(K1) ≤ 1), the limit is X′. Part b) follows from measure theory
since the limit is measurable in the σ -field spanned by the summed variables. For c),
we again check Pitman’s condition [32, Eq. 27]. Let M ⊆ [m]. We have that X, Y are
independent from b). With P(Ki = Li = 1|X, Y) = XY almost surely,

P
({

i ∈ [m] : KiLi = 1
} = M

) = E
(
P

({
i ∈ [m] : KiLi = 1

} = M|X, Y
))

= E
(
(XY)|M|(1 − XY)m−|M|),

since given X, Y , both (Ki)i∈N and (Li)i∈N are independent. This shows c).

3 When does a Ξ -coalescent with dust stay infinite?

A crucial assumption for our results is that the Ξ -coalescent Π has almost surely
infinitely many blocks that may merge in the mergers where 1 participates in. The
property

P(Πt has infinitely many blocks ∀ t > 0) = 1

is called staying infinite, while P(Πt has finitely many blocks ∀ t > 0) = 1 is the
property of coming down from infinity. These properties have been thoroughly dis-
cussed for Ξ -coalescents, see e.g. [33, 27] and [20].

We recall the condition for Ξ -coalescents with dust to stay infinite.

Lemma 4. Let Δf := {x ∈ Δ : x1 + · · · + xk = 1 for some k ∈ N} and Ξ be a
finite measure on Δ fulfilling Eq. (2). The Ξ -coalescent stays infinite if and only if
Ξ(Δf ) = 0. If Ξ(Δf ) > 0, then the Ξ -coalescent has infinitely many blocks until
the first jump of f1 almost surely and the Ξ -coalescent neither comes down from
infinity nor stays infinite.

Proof. Let Δ∗ := {x ∈ Δ : |x| = 1}. All Ξ -coalescents considered are constructed
via the Poisson construction with Poisson point process P .

First, assume Ξ(Δ∗) = 0. We recall the (well-known) property that for a Ξ -
coalescent with dust Ξ(Δ∗) = 0 is equivalent to P(St > 0 ∀t) = 1, where St is
the asymptotic frequency of the dust component. We use the remark on [12, p.1091]:
For Ξ -coalescents with dust, (− log St )t≥0 is a subordinator. The subordinator jumps
to ∞ (corresponds to St = 0) if and only if for its Laplace exponent Φ, we have
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limη↘0 Φ(η) > 0. For a Ξ -coalescent with dust we have limη↘0 Φ(η) = ∫
Δ∗ ν0(dx).

Hence, Ξ(Δ∗) = 0 almost surely guarantees infinitely many singleton blocks for all
t ≥ 0, so the corresponding Ξ coalescent stays infinite.

Now assume Ξ(Δ∗) > 0. The subordinator (− log St )t≥0 jumps from finite
values (St > 0) to ∞ (St = 0) after an exponential time with rate ν0(Δ

∗). This
shows that the Ξ -coalescent does not come down from infinity. Assume further that
Ξ(Δf ) = 0. Then, [33, Lemma 31] shows that the Ξ -coalescent either comes down
from infinity or stays infinite, so it stays infinite.

Finally, assume Ξ(Δf ) > 0. Split P into independent Poisson processes P ′
1 :=

{(T , (Ki)i∈N) ∈ P : κ ∈ Δf } and P ′
2 := {(T , (Ki)i∈N) ∈ P : κ /∈ Δf }, where

κ := (limn→∞ n−1 ∑
i∈[n] 1{Ki=j})j∈N (again restriction theorem [25, p.17], Lemma

3 shows κ exists almost surely). Their intensity measures are defined as in Eq. (11),
but using ν′

1(·) := ν0(· ∩ Δf ) and ν′
2 := ν0 − ν′

1 instead of ν0. Since ν′
1(Δf ) ≤

μ−1 < ∞, for any t > 0 there are almost surely finitely many P ∈ P ′
1 with T < t .

Consider such P = (T , (Ki)i∈N) with T smallest. Observe that until T , we can
construct the Ξ -coalescent using only the points of P ′

2, which is the construction of
a Ξ ′-coalescent with Ξ ′(dx) := (x, x)ν′

2(dx). Since
∫
Δ

|x|ν′
2(dx) < μ−1 < ∞

and Ξ ′(Δf ) = 0, the proof steps above show that the Ξ -coalescent has infinitely
many blocks until T . Now consider the merger at time T . The form of ν′

1 ensures that
(Ki)i∈N can only take finitely many values, and Lemma 3a) ensures that infinitely
many Ki’s show each value. Thus, all blocks present before time T are merged at T

into a finite number of blocks (given by which Ki’s show the same number). This
shows that if Ξ(Δf ) > 0, the Ξ -coalescent stays neither infinite nor comes down
from infinity. Additionally, this shows that either the block of 1 already merged at
least once before T or it merges at T , thus there are infinitely many blocks before the
first merger of 1.

4 The block of 1 in Ξ -coalescents with dust – proofs and remarks

Proof of Theorem 1. As in Lemma 1, split the Poisson point process P used to con-
struct the Ξ -coalescent in P1 and P2. We also use the notation from Lemma 1 and its
proof. The block of 1 in the Ξ -n-coalescent for any n ∈ N can only merge at times
t for which there exists a Poisson point (T , (Ki)i∈N) ∈ P1. Lemma 1 states that the
set of times T forms a homogeneous Poisson process with rate μ−1. This shows that
potential jump times are separated by countably many independent Exp(μ−1) ran-
dom variables. Kingman’s correspondence yields that f1 exists almost surely at each
potential jump time. To see this, observe that even though the partition of N induced
by the Poisson construction is not exchangeable, the partition on N \ {1} is, and the
asymptotic frequencies of the former and the latter coincide. Since f1 is by defini-
tion constant between these jump points, f1 has càdlàg paths almost surely. Since any
blocks change by mergers, f1 is increasing.

The value of f1 at 0 follows by definition. Since Π stays infinite (see Lemma
4), at each P ∈ P1 infinitely many blocks can potentially merge. Lemma 1 shows
that the indicators of whether blocks present immediately before P merge with the
block of 1 are exchangeable(X) indicators with X > 0 almost surely. Then, Lemma 3
ensures that a positive fraction of them almost surely does, causing f1 to jump (since
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a positive fraction of merging blocks has positive frequency). Thus, every Poisson
point leads to a merger almost surely, which shows that f1 jumps at all potential jump
times described above. Since, for all t , either St > 0 or non-dust blocks not including
1 exist (having asymptotical frequency > 0), f1(t) < 1 for all t ≥ 0.

We consider the jump chain of f1. Set X1 := f1[1]. Since f1[k] ∈ (0, 1) for all
k ∈ N and f1 increases, f1[k + 1] = f1[k] + (1 − f1[k])Xk+1 for Xk+1 ∈ (0, 1).
Iterating this yields f1[k] = ∑k

i=1 Xi

∏i−1
j=1(1 − Xj) for k ≥ 2. The properties of

(Xk)k∈N follow from the Poisson construction and Lemma 1. Consider the blocks
present at time Tk−, where the kth Poisson point of P1 is Pk = (Tk, (K

(k)
i )i∈N). The

block with least element i merges with the block of 1 if K
(k)
i = K

(k)
1 . Consider the kth

Poisson point at time Tk . Xk gives the fraction of the asymptotic frequency of non-
singleton blocks and singleton blocks at time Tk−, i.e. the fraction of 1 − f1(Tk−),
that is merged with the block of 1 at Tk . Denote L

(k−)
i := 1{{i} is a block at Tk−}.

Then, recording the asymptotic frequencies of merged non-singleton and singleton
blocks,

Xk = 1

1 − f1(Tk−)

(∑
i≥2

1{K(k)
1 =K

(k)
i }fi(Tk−) + lim

n→∞
1

n

n∑
i=2

1{K(k)
1 =K

(k)
i }L

(k−)
i

)
.

Since by construction, ΠTk− \ {1} is an exchangeable partition of N \ {1}, (L
(k−)
i )i∈N

are exchangeable(St−) indicators with St− = 1−∑∞
i=1 fi(Tk−). Recall that Lemma 1

tells us that (1{K(k)
1 =K

(k)
i })i≥2 are exchangeable(X′) indicators with X′ d= Q. (K(k)

i )i∈N
is independent from (Πt )t<Tk

, since the Poisson points of P1 are i.i.d., so Lemma 3
c) and a) show

Xk
a.s.=

∑
i≥2

1{K(k)
1 =K

(k)
i }

fi(Tk−)

1 − f1(Tk−)
+ X′ 1 − ∑∞

i=1 fi(Tk−)

1 − f1(Tk−)
. (14)

The independence of (K
(k)
i )i∈N from (Πt )t<Tk

is also crucial for the next two equa-

tions. Compute, with P(K
(k)
1 = K

(k)
i ) = E(X′) = γ for i ∈ N,

E(Xk) =
∑
i≥2

P
(
K

(k)
1 = K

(k)
i

)
E

(
fi(Tk−)

1 − f1(Tk−)

)
+ E

(
X′)E

(
1 − ∑∞

i=1 fi(Tk−)

1 − f1(Tk−)

)

= γE

(
1 − f1(Tk−)

1 − f1(Tk−)

)
= γ.

Analogously, for l < k, Xl only depends on Poisson points P1, . . . , Pl , so

E(XkXl) = E

(∑
i≥2

1{K(k)
1 =K

(k)
i }

fi(Tk−)

1 − f1(Tk−)
Xl + X′ 1 − ∑∞

i=1 fi(Tk−)

1 − f1(Tk−)
Xl

)

= γE

(
1 − f1(Tk−)

1 − f1(Tk−)
Xl

)
= γ 2,
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showing that Xk,Xl are uncorrelated. An analogous computation shows that
E(

∏
i∈{l1,...,lm} Xli ) = ∏

i∈{l1,...,lm} E(Xli ) for distinct l1, . . . , lm ∈ N. With this,

E
(
f1[k]) =

k∑
i=1

E(Xi)

i−1∏
j=1

(
1 − E(Xj )

) =
k∑

i=1

γ (1 − γ )i−1 = 1 − (1 − γ )k.

To prove limt→∞ f1(t) = 1 almost surely, observe that f1 is bounded and increasing,
thus limt→∞ f1(t) exists. Monotone convergence and limt→∞ E(f1(t)) =
limk→∞ E(f1[k]) = 1 show the desired. Note that (Xk)k∈N is in general neither
independent nor identically distributed, see Section 6.

Proof of Corollary 1. By the Poisson construction the block of 1 for Π(n) can only
merge at times given by Poisson points in P1. Consider (T1, (K

(1)
i )i∈N) ∈ P1. While

T1 is the time of the first jump of f1 (see the proof of Theorem 1), there does not nec-
essarily need to be a merger of {1} in the n-coalescent Π(n), if we have K

(1)
1 �= K

(1)
i

for the least elements i of all other blocks of Π(n) immediately before T1. How-
ever, Lemma 1 shows that (1{K(1)

1 =K
(1)
i })i≥2 are exchangeable indicators. The mean

n−1 ∑n
i=2 1{K(1)

1 =K
(1)
i }, as argued in the proof of Theorem 1, converges to an almost

surely positive random variable for n → ∞. As shown in Lemma 4, any Ξ -coalescent
with dust has infinitely many blocks almost surely before T1. Thus, there exists N , a
random variable on N, so that 1 is also merging at time T1 in Π(n) for n ≥ N almost
surely. This yields limn→∞ n−1Mn = limn→∞ n−1|B1(T1) ∩ [n]| = f1(T1) = f1[1]
almost surely. All further claims follow from Theorem 1.

Remark 5. Let Q(n) be the number of blocks merged at the first collision of the
block of 1 in a Λ-n-coalescent with dust. [34, 1.4] shows that n−1Q(n) converges in
distribution. We argue that this convergence also holds in Lp for all p > 0 and, for
simple Λ-n-coalescents, almost surely.

The proof of Corollary 1 shows that (T1, (K
(1)
i )i∈N) ∈ P1 causes the first merger

in the n-coalescent for n large enough (almost surely, but since n−1Q(n) ∈ [0, 1] for
all n, convergence in Lp is not affected by the null set excluded). Split Q(n) into Q

(n)
0 ,

the number of non-singleton blocks and Q
(n)
1 , the number of singleton blocks merged

at T1. For the limit, we can ignore the non-singleton blocks merged. To see this, recall
Q

(n)
0 ≤ Kn, where Kn is the total number of mergers for the Λ-n-coalescent, since

a non-singleton block has to be the result of a merger. [12, Lemma 4.1] tells us that
n−1Kn → 0 in L1 for n → ∞ for Ξ -coalescents with dust. This shows that the L1-
limit of n−1Q(n) is the same as of the one of n−1Q

(n)
1 . n−1Q

(n)
1 already appeared in

the part of the proof of Theorem 1 leading to Eq. (14), its limit almost surely exists and

equals X′ 1−∑∞
i=1 fi(T1−)

1−f1(T1−)
. Since n−1Q

(n)
1 is bounded in [0, 1], it also converges in Lp,

p > 0. So n−1Q(n) converges in L1. Since it is bounded in [0, 1] it also converges
in Lp, p > 0. For simple Ξ -n-coalescents, [11, Lemma 4.2] shows n−1Kn → 0
almost surely, so in this case the steps above ensure also almost sure convergence of
n−1Q(n).
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5 The block of 1 in simple Λ-coalescents – proofs and remarks

Proof of Proposition 3. Let P := (Pi)i∈N be the coin probabilities coming from
the Poisson process used to construct the simple Λ-coalescent Π as described in
Section 2. As shown in the proof of Theorem 1, the Poisson point belonging to PC

where 1 first throws ‘heads’ in the Poisson construction is the Poisson point where
f1 jumps for the first time. We have P(C = k|P) = Pk

∏k−1
i=1 (1 − Pi). Integrating

the condition and using the independence of (Pi)i∈N as well as E(P1) = α (see
Lemma 2), we see that C is geometrically distributed with parameter α.

To describe f1[1] at the Cth merger (Poisson point), recall that the restriction
Π−1 of Π to N \ {1} has the same asymptotic frequencies as Π . Thus, we can see
f1[1] as the asymptotic frequency of the newly formed block of Π−1 at the time of
the Poisson point PC . This follows since Π−1 has infinitely many blocks before (see
Lemma 4) and then, as in the proof of Theorem 1, there will be a newly formed block
of Π−1 at the Cth Poisson point (and the unrestricted block in Π includes 1).

We consider Π−1 at the kth Poisson point with coin probability Pk . For {i} ∈
N \ {1} to remain a (singleton) block and not be merged for the first k − 1 mergers
and then to be merged at the kth, we need

∏
j∈[k−1](1 − K

(j)
i ) = 1 and K

(k)
i = 1.

(1{∏j∈[k−1](1−K
(j)
i )=1,K

(k)
i =1})i∈N are exchangeable(Pk

∏
j∈[k−1](1 − Pj )) indicators.

Let

Sk =
{
i ∈ N \ {1} :

∏
j∈[k−1]

(
1 − K

(j)
i

) = 1,K
(k)
i = 1

}

be the set of i ∈ N \ {1} whose first merger is the kth overall merger. We call Sk

the kth singleton set (of Π−1). From the strong law of large numbers for exchange-
able indicators, see Lemma 3a), we directly have that Sk has asymptotic frequency
Pk

∏
j∈[k−1](1 − Pj ) almost surely.

Now, consider the asymptotic frequency f ∗[k] of the newly formed block at the
kth merger of Π−1. By construction, there is only one newly formed block at each
merger. Sk is a part of the newly formed block. Any other present block with more
than two elements (non-singleton block) is merged if and only if its indicator K

(k)
i =

1 (we order by least elements). For k = 1, the newly formed block is S1. For k = 2,
it is either S2 or S1 ∪ S2, if the coin of the the block S1 formed in the first merger
comes up ‘heads’.

Applied successively, this shows that the newly formed block at the kth merger
consists of a union of a subset of the singleton sets (Sk′)k′<k and the set Sk . For its
asymptotic frequency, we have

f ∗[k] =
k∑

i=1

B
(k)
i Pi

∏
j∈[i−1]

(1 − Pj ) > 0, (15)

where the B
(k)
i , i ∈ [k], are non-independent Bernoulli variables which are 1 if the

ith singleton set Si is a part of the newly formed block at the kth merger of Π−1.
If Λ({1}) > 0, Pk = 1 is possible. In this case, at the kth Poisson point all

remaining singletons form Sk and all blocks present at merger k − 1 merge with Sk .



420 F. Freund, M. Möhle

There are no mergers at Poisson points Pl , l > k, so we do not consider Eq. (15) for
l > k.

We have f1[1] = f ∗[C]. Given P , (f ∗[k])k∈N is independent of C. Thus, Eq. (9)
is implied by Eq. (15).

Assume Λ({1}) = 0. For (B
(k)
i )k∈N,i∈[k], we have B

(k)
k = 1 for all k ∈ N since

the kth singleton set is formed at the kth Poisson point and is a part of the newly
formed block. The coins thrown at the kth Poisson point to decide whether other
singleton sets Si , Sj with i, j < k are also parts of the newly formed block are either
independent given P when they are in different blocks, or identical when they are in
the same block. The set Si uses the coin of the block newly formed at the ith merger.
Let I (i) be the Poisson point at which this block merges again (and Si with it). At
the I (i)th Poisson point and for all further Poisson points indexed with j ≥ I (i),
we have B

(j)
i = B

(j)

I (i), since the singleton sets Si and SI (i) are in the same block for
mergers j ≥ I (i).

The property (i) of I (i) in the proposition follow directly from its definition as
the minimum number of coin tosses until the first comes up ‘heads’. The property (ii)
is just integrating (i) and using that (Pi)i∈N are i.i.d. with E(P1) = α (see Lemma
2), the conditional independence is the conditional independence of coin tosses of
distinct blocks from the Poisson construction. To see Eq. (10), observe that Si for
i < j is a part of the newly formed block at the j th merger of the Λ-coalescent
(i ∈ J ) if and only if I (i) ∈ J . If I (i) ∈ J , either we have I (i) = j , so Si is merged
for the first time after it has been formed at the j th merger, or we have that I (i) < j

which means that it has already merged with at least one other singleton set and that,
as parts of the same block, they both again merged at the j th merger. If I (i) /∈ J , the
singleton set Si neither merges at the j th merger for the first time after being formed
nor merges with any other singleton set before that is then merging at the j th merger,
so Si is not a part of the newly merged block at the j th merger.

If Λ({1}) = 0, the arguments hold true for all j ∈ N. If Λ({1}) > 0 this holds
true for all i, j ≤ K := mink∈N{Pk = 1}(< ∞ almost surely), where all singleton
sets merge and f ∗[K] = 1. However, in this case C ≤ K , so we still can establish
Eq. (9).

Remarks 6.

• (I (i))i∈N is useful to construct the asymptotic frequencies of the Λ-coales-
cent. Given P , at the kth merger, there are the singleton sets (Sj )j∈[k] with
almost sure frequencies Pj

∏
i∈[j−1](1 −Pi) which were already formed in the

k collisions, and unmerged singleton blocks with frequency
∏

i∈[k](1 − Pi).
Using (I (i))i∈[k], we can indicate which singleton sets form a block. Si is a
single block if I (i) > k, if I (i) ≤ k it is a part of a block where SI (i) is
also a part of. This can be seen as a discrete version of the construction of the
Λ-coalescent from the process of singletons as described in [15, Section 6.1]

• The variables (I (i))i∈N are useful to express other quantities of the Λ-coa-
lescent. For instance, the number of non-singleton blocks in a simple Λ-coa-
lescent at the kth merger is given by k − ∑

i∈[k−1] 1{I (i)≤k}.

To prove Proposition 2, we need the following result.
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Lemma 5. For p ∈ [ 1
2 , 1), each x ∈ Mp from Eq. (6) has a unique representation

in Mp.

Proof. We adjust the proof of [4, Theorem 7.11]. Assume that x ∈ Mp has two
representations x = ∑

i∈N bipqi−1 = ∑
i∈N b′

ipqi−1 with bi �= b′
i for at least one i.

Let i0 be the smallest integer with bi0 �= b′
i0

. Without restriction, assume bi0 −b′
i0

= 1.
Then,

0 =
∑
i∈N

bipqi−1 −
∑
i∈N

b′
ipqi−1 = pqi0−1 +

∑
i>i0

(
bi − b′

i

)
pqi−1.

Thus, pqi0−1 = ∑
i>i0

(b′
i −bi)pqi−1 <

∑
i>i0

pqi−1 = pqi0 , simplifying to p < q,

in contradiction to the assumption p ≥ 1
2 .

Proof of Proposition 2. From Eq. (15) we see that f1 only takes values in Mp, since
Pk = p for all k ∈ N and C < ∞ almost surely. Recall the definition of the singleton
sets Si and their properties from the proof of Proposition 3. The asymptotic frequency
of Si is pqi−1 almost surely. Lemma 5 ensures that there is a unique representation
f1[l] = x = ∑∞

i=1 bipqi−1 in Mp, let J := {i ∈ N : bi = 1} and j := max J .
This means that f1[l] = x is equivalent to that the block of 1 at its lth jump consists
of the union of all Si with i ∈ J and 1. This also shows that the lth jump of f1 is at
the j th jump of the Dirac coalescent, since if f1 jumps at the kth merger of the Dirac
coalescent, the newly formed block includes Sk .

Since Pi = p for all i ∈ N, we have α = p and Eq. (9) simplifies to f1[1] =∑C
i=1 B

(C)
i pqi−1, where C

d= Geo(p) is independent from (B
(k)
i )k∈N,i∈[k]. The latter

fulfil

P
(
B

(j)
i = bi ∀ i ∈ [j − 1]) =

∏
i∈J\{j}

P(Y + i ∈ J )
∏

i∈[j ]\J
P (Y + i /∈ J ) (16)

with Y
d= Geo(p), since the joint distribution in Proposition 3 again simplifies, we

can ignore the conditioning and I (i) − i
d= Geo(p) for all i ∈ N.

Since f1[1] = x uniquely determines the values of C and (B
(C)
i )i∈[C], we have

P
(
f1[1] = x

) = P(C = j)P
(
B

(j)
1 = b1, . . . , B

(j)
j−1 = bj−1

)
, (17)

which shows Eq. (7) when we insert the distributions expressed in terms of their
geometric distributions.

In order to verify that the jump chain (f1[i])i∈N is Markovian, we show that
f1[1], . . . , f1[l] does not contain more information on f1[l + 1] than f1[l] does.
Without restriction, assume that the lth jump f1[l] of f1 takes place at the kth jump
of the Dirac coalescent. Then, f1[l+1] is constructed from the blocks present after the
kth merger. For each subsequent Poisson point Pk+1, . . ., blocks present are merged
if their respective coins come up ‘heads’ until (and including), at Pk′ , the coin of the
block of 1 comes up ‘heads’ for the first time since Pk . Thus, only information about
the block partition at merger k can change the law of the next jump. f1[l] = x gives
the information which singleton sets S1, . . . ,Sk are parts of the block of 1 at merger
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k of Π and which are not. f1[l] = x contains no information about how the other
singleton sets, Si with bi = 0, are merged into blocks at collisions before k apart
from that it tells us that B

(j)
i = 0 for j ∈ J and i /∈ J , which means that all Si

with i /∈ J did not merge at the j th collisions, j ∈ J . This is due to that any Si with
B

(j)
i = 1 would merge with the newly formed block at merger j and thus would be

in a block with Sj and also in the block of 1 at merger k. However, analogously we
see that knowing f1[1], . . . , f1[l] does not give any additional information about the
block structure at the kth merger, but only how the set of Si which are in the block of 1
at merger k behaved at the earlier mergers J . Thus, (f1[l])l∈N is Markovian. However,
(f1(t))t≥0 is not Markovian. In order to see this consider, for 0 < t0 < t1 < t2,

p(t2, t1, t0) :=P
(
f1(t2) = p + pq2|f1(t1) = p, f1(t0) = 0

)
=P(f1(t2) = p + pq2, f1(t1) = p, f1(t0) = 0)

P (f1(t1) = p, f1(t0) = 0)
.

We will show that p(t2, t1, t0) depends on t0, which shows that f1 is not Markovian.
We can express all events in terms of the independent waiting times for Poisson

points, i.e. the successive differences between the first component T of the Poisson
points (T , (Ki)i∈N) ∈ P . Here, we use the split of the Poisson points into the in-
dependent Poisson point processes P1 and P2 from Lemma 1. The waiting times
between points in P1 are Exp(μ−1)-distributed, the waiting times between points in
P2 are Exp(μ−2 − μ−1)-distributed, see Lemma 1 and Remark 4. We will relabel
τ = μ−1 and ρ = μ−2 − μ−1 for a clearer type face. Let T1, T2, . . . be the waiting
times between points in P1 and T ′

1, T
′

2, . . . be the waiting times between points in P2.

All waiting times are independent one from another. We recall that for T
d= Exp(α),

P(T > a) = e−αa and P(T ∈ (a, a + b]) = e−αa(1 − e−αb) for a, b ≥ 0.
The event {f1(t1) = p, f1(t0) = 0} means that the first jump of f1 adds the

singleton set S1 at a time in (t0, t1]. Thus, there has to be only a single point of P1
with first component T1 ≤ t1 and the smallest time T ′

1 of points of P2 has to be greater
than T1. We compute, conditioning on T1 for the third equation,

P
(
f1(t1) = p, f1(t0) = 0

) = P
(
t0 < T1 ≤ t1 < T1 + T2, T1 < T ′

1

)
=

∫ t1

t0

P(T2 > t1 − x)P
(
T ′

1 > x
)
τe−τxdx

=
∫ t1

t0

e−τ(t1−x)e−ρxτe−τxdx

= τ

ρ
e−τ t1

∫ t1

t0

ρe−ρxdx = τ

ρ
e−τ t1

(
e−ρt0 − e−ρt1

)
.

Analogously, we compute (by conditioning on T1, T2 for the second equality)

P
(
f1(t2) = p + pq2, f1(t1) = p, f1(t0) = 0

)
= P

(
t0 < T1 ≤ t1 < T1 + T2 ≤ t2 < T1 + T2 + T3, T1 < T ′

1 ≤ T1 + T2 < T ′
2

)
=

∫ t1

t0

∫ t2−x

t1−x

P

(
T3 > t2 − x − y, T ′

1 ∈ (
x, x + y], T ′

2 > x + y
)
τ 2e−τxe−τydy dx
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= τ 2
∫ t1

t0

∫ t2−x

t1−x

e−τ(t2−x−y)e−ρx
(
1 − e−ρy

)
e−ρ(x+y)e−τxe−τydy dx

= τ 2

ρ
e−τ t2

[
ρ−1(e−ρt1 − e−ρt2

)(
e−ρt0 − e−ρt1

)) − 1

2

(
e−2ρt1 − e−2ρt2

)
(t1 − t0)

]
.

Taking the ratio shows that

p(t2, t1, t0) = τ

ρ
e−τ(t2−t1)

(
e−ρt1 − e−ρt2

) − τ

2
e−τ(t2−t1)

e−2ρt1 − e−2ρt2

e−ρt0 − e−ρt1︸ ︷︷ ︸
�=0

(t1 − t0)

depends on t0, so f1 is not Markovian.

Remark 7. Our proof of Proposition 2 relies on the unique representation in Mp.
This means that it also holds true for all p ∈ (0, 2−1) where each x ∈ Mp has a
unique representation in Mp, e.g. for all transcendental p. If the representation is not
unique, Eq. (16) is still correct, but the right side of Eq. (17) does not show P(f1[1] =
x). Instead, the latter shows the contribution to P(f1[1] = x) from the paths of
f1 which fulfil C = j, B

(j)

1 = b1, . . . , B
(j)

j−1 = bj−1 (recall that j, b1, . . . , bj−1
depend on the representation of x). Moreover, P(f1[1] = x) then is the sum over
P(C = j)P (B

(j)
1 = b1, . . . , B

(j)
j−1 = bj−1) for the tuples j, b1, . . . , bj−1 coming

from the different representations of x (the sets of paths are disjoint if the parameter
sets (j, b1, . . . , bj−1) differ). Since the proof of our results on the Markov property
of both f1 and its jump chain also rely on the unique representation of x (to read off
which blocks merged when), the proof does not extend if p does not allow a unique
representation of x.

6 Example

We provide a concrete example showing that the random variables (Xk)k∈N from
Theorem 1 are, in general, neither independent nor identically distributed.

Choose Λ = δ 1
2

and consider f1 in the corresponding Λ-coalescent. Recall that
f1[l] = x ∈ M 1

2
already fixes which singleton sets Sk are parts of the block of 1

at its lth merger and which are not. First, assume f1[1] = X1 = 5
8 = 1

2 + 1
23 ∈

M 1
2
, which means that the coin of 1 comes up ‘heads’ for the first time at the third

Poisson point and the block of 1 is S1 ∪ S3, while S2 is a block of its own (an event
happening with probability > 0). Assume further f1[2] = 11

16 = 5
8 + 1

16 . This sets
X2 = (f1[2]−f1[1])/(1 −X1) = 1

6 /∈ M 1
2
. We read off that the coin of the block of

1 also comes up ‘heads’ at the fourth collision, where the block of 1 merges with S4.
We also see that the coin of the only other block S2 comes up ‘tails’. We thus have,
since we throw fair coins, P(X2 = 1

6 |X1 = 5
8 ) = P(f1[2] = 11

16 |f1[1] = 5
8 ) = 1

4 .
Since X1 = f1[1] ∈ M 1

2
for any realisation, X1 and X2 have different distributions.

To see also non-independence, consider f1[1] = X1 = 1
2 (coin of 1 comes up ‘heads’

at first coin toss, block of 1 is S1, occurs with probability 1
2 ). In this case P(X2 =

1
6 |X1 = 1

2 ) = 0, since f1[2] = X1 + (1 − X1)X2 = 7
12 /∈ M 1

2
.
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