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Abstract We provide strong Lp-rates of approximation of nonsmooth integral-type function-
als of Markov processes by integral sums. Our approach is, in a sense, process insensitive and
is based on a modification of some well-developed estimates from the theory of continuous
additive functionals of Markov processes.
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1 Introduction

Let Xt , t ≥ 0, be an R
d -valued Markov process. We study an integral functional

IT (h) =
∫ T

0
h(Xt) dt

of this process. The most natural numerical scheme to approximate such a functional
is the sequence of integral sums

IT ,n(h) = T

n

n−1∑
k=0

h(X(kT )/n), n ≥ 1,
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and the main objective of this paper is to study approximation rates within this scheme.
The function h, in general, is not assumed to be smooth, and therefore the mapping

{
xt , t ∈ [0, T ]} �→

∫ T

0
h(xt ) dt

may fail to be Lipschitz continuous (and even simply continuous) on a natural func-
tional space of the trajectories of X (e.g., C(0, T ) or D(0, T )). This makes it im-
possible to carry out the error analysis with a classical technique (see, e.g., [5]). The
typical case of interest here is h = 1A, with IT (h) being respectively the occupation
time of X at the set A up to the time moment T .

In the paper, we establish strong Lp-approximation rates, that is, the bounds for

E
∣∣IT (h) − IT ,n(h)

∣∣p.

Our research is strongly motivated by the recent paper [7], where such a problem was
studied in a particularly important case where X is a one-dimensional diffusion, and
we refer the reader to [7] for more motivation and background on the subject. The
technique developed in [7], involving both the Malliavin calculus tools and the Gaus-
sian bounds for the transition probability density, relies substantially on the structure
of the process, and hence it seems not easy to extend this approach to other classes
of processes, for example, multidimensional diffusions or solutions to Lévy driven
SDEs.

We would like to explain in this note that, in order to get the required approxima-
tion rates, one can modify some well-developed estimates from the theory of continu-
ous additive functionals of Markov processes. An advantage of such approach is that
the assumptions on the process are formulated only in terms of its transition proba-
bility density and therefore are quite flexible. The basis for the approach is given by
the fact that the weak approximation rates for

EIT (h) − EIT,n(h)

are available as a consequence of a bound for the derivative w.r.t. t of the transition
probability density; see [4], Theorem 2.5, and Proposition 2.1 below. To explain the
principal idea of the approach, let us assume for a while that h is nonnegative and
bounded. Then the integral functional IT (h) is a W -functional of the process X; see
[1], Chapter 6. It is well known that the properties of a W -functional are mainly
controlled by its characteristic, that is, the expectation

ExIT (h).

In particular, the convergence of characteristics implies the L2-convergence of the
respective functionals. The core of our approach is that we extend the Dynkin’s tech-
nique for a study of convergence of W -functionals and give approximation rates
for integral functionals IT (h) by difference functionals IT ,n(h), based on the weak
approximation rates for their expectations. We remark that now we are beyond the
scopes of the original Dynkin’s theory because IT (h) may fail to be a W -functional
(we do not assume h to be nonnegative), and IT ,n(h) definitely fails to be a W -
functional. In addition, Dynkin’s theory addresses L2-bounds, whereas, in general,
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we are interested in Lp-bounds. This brings some extra difficulties, which however
are not really substantial, and we resolve them in a way similar to the one used in the
classical Khas’minskii lemma; see, for example, Lemma 2.1 in [8].

2 Main results

2.1 Notation, assumptions, and auxiliaries

In what follows, Px denotes the law of the Markov process with X0 = x, and Ex de-
notes the expectation w.r.t. this law. The natural filtration of the process X is denoted
by {Ft , t ≥ 0}. The process X is assumed to possess a transition probability density,
denoted below by pt (x, y). By C we denote a generic constant; the value of C may
vary from place to place. Both the absolute value of a real number and the Euclidean
norm in R

d are denoted by | · |.
Our standing assumption on the process X under investigation is the following.

X. The transition probability density pt(x, y) is differentiable w.r.t. t and satisfies

pt(x, y) ≤ CT t−d/αQ
(
t−1/α(x − y)

)
, t ≤ T , (1)∣∣∂tpt (x, y)

∣∣ ≤ CT t−1−d/αQ
(
t−1/α(x − y)

)
, t ≤ T , (2)

with some fixed α ∈ (0, 2] and distribution density Q.

The assumption X is motivated by the following class of processes of particular
interest.

Example 2.1. Let X be a symmetric α-stable process with α ∈ (0, 2]; in the case
α = 2 this is just a Brownian motion. Then

pt(x, y) = t−d/αg(α)
(
t−1/α(x − y)

)
with g(α) being the distribution density of X1. Respectively, (2) holds with Q = Qα ,

Qα(x) =
{

c1e
−c2|x|2 , α = 2,
c

1+|x|d+α , α ∈ (0, 2),

where c2 < (2EX2
1)

−1 and c1, c should be chosen such that
∫
Rd Q(x) dx = 1.

Observe that, in a sense, this bound is “stable under perturbations of the process
X.” Namely, if X is a uniformly elliptic diffusion with Hölder continuous coefficients,
then (2) with Q = Q2 and properly chosen c2 is provided by the classical parametrix
method; see [3]. An analogue of the parametrix method for α-stable generators with
state-dependent coefficients yields the bound (2) with Q = Qα′ , α′ < α, for α-stable
driven processes X; see [2] and [6].

Our principal assumption on the function h is the following.

H1. The function h satisfies

sup
x

|h(x)|
V (|x|) < ∞,

where V : R+ → [1,+∞) is a fixed function such that
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•
∫
Rd V (T |x|)Q(x) dx < ∞, T ≥ 0;

• V (r1) ≤ V (r2), r1 ≤ r2;

• V is submultiplicative, that is,

V (r1 + r2) ≤ V (r1)V (r2), r1, r2 ∈ R
+.

Observe that for a bounded h, condition H1 holds trivially with V ≡ 1. On the other
hand, in particular cases, one can weaken the assumptions on h by using nontrivial
“weight functions” V . For instance, if Q = Qα from the above example, then one
can take

V (r) =
{

eCr , α = 2,

(1 + r)β, α ∈ (0, 2),
r ∈ R

+,

with arbitrary C and β ∈ (0, α). We denote

‖h‖V = sup
x

|h(x)|
V (|x|) .

The following auxiliary statement is crucial for the whole approach. Its proof is com-
pletely analogous to the proof of (a part of) Theorem 2.5 [4], but in order to make the
exposition self-sufficient, we give it here.

Proposition 2.1. Let X and H1 hold. Then

∣∣ExIT (h) − ExIT,n(h)
∣∣ ≤

(
log n

n

)
CT,Q,V ‖h‖V V

(|x|)
with

CT,Q,V = T max

{
CT

(∫
Rd

Q(y)V
(
T 1/α|y|) dy

)
, 1

}
.

Proof. Write

ExIT (h) − ExIT,n(h) =
∫ T/n

0

∫
Rd

pt (x, y)h(y) dydt − T

n
h(x)

+
n∑

k=2

∫ kT /n

(k−1)T /n

∫
Rd

(
pt (x, y) − p(k−1)T /n(x, y)

)
h(y) dydt.

We have, by the bound for pt(x, y) in (1) and properties of V ,∣∣∣∣
∫ T/n

0

∫
Rd

pt (x, y)h(y) dydt

∣∣∣∣ ≤ CT ‖h‖V

∫ T/n

0
t−d/α

∫
Rd

Q
(
t−1/α(x − y)

)
V (|y|) dydt

= CT ‖h‖V

∫ T/n

0

∫
Rd

Q(z)V
(|x + t1/αz|) dzdt

≤ n−1T CT ‖h‖V V
(|x|) ∫

Rd

Q(z)V
(
T 1/α|z|) dz. (3)

Next,

n∑
k=2

∫ kT /n

(k−1)T /n

∫
Rd

(
pt(x, y) − p(k−1)T /n(x, y)

)
h(y) dydt =

∫
Rd

Kn,T (x, y)h(y) dy
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with

Kn,T (x, y) =
n∑

k=2

∫ kT /n

(k−1)T /n

∫ t

(k−1)T /n

∂sps(x, y) dsdt

=
n∑

k=2

∫ kT /n

(k−1)T /n

(
kT

n
− s

)
∂sps(x, y) ds.

Then ∣∣Kn,T (x, y)
∣∣ ≤ T

n

∫ T

T/n

∣∣∂sps(x, y)
∣∣ ds,

and therefore, using the bound for ∂tpt (x, y) in (2), we obtain, similarly to (3),∣∣∣∣
∫
Rd

Kn,T (x, y)h(y) dy

∣∣∣∣ ≤ T

n
CT ‖h‖V

∫ T

T/n

s−1
∫
Rd

s−d/αQ
(
s−1/α(x − y)

)
V

(|y|) dyds

≤ T

n
CT ‖h‖V V

(|x|)(∫
Rd

Q(y)V
(
T 1/α|y|) dy

) ∫ T

T/n

s−1 ds

= T

n
(log n)CT ‖h‖V V

(|x|)(∫
Rd

Q(y)V
(
T 1/α|y|) dy

)
,

which completes the proof.

2.2 Approximation rate in terms of ‖h‖V

Our main estimate, in a shortest and most transparent form, is presented in the fol-
lowing theorem, which concerns the case where the only assumption on h is that the
weighted sup-norm ‖h‖V is finite.

Theorem 2.1. Let X and H1 hold. Then for every p ≥ 2 such that∫
Rd

V p
(
T 1/α|x|)Q(x) dx < ∞,

we have

Ex

∣∣IT (h) − IT ,n(h)
∣∣p ≤ C

(
log n

n

)p/2

‖h‖p
V V p

(|x|)
with constant C depending on T ,Q, V, p only.

Proof. Denote, for t ∈ [kT /n, (k + 1)T /n),

ηn(t) = kT

n
, ζn(t) = (k + 1)T

n
,

and write the difference It (h) − It,n(h) in the integral form:

Jt,n(h) := It (h) − It,n(h) =
∫ t

0
�n(s)ds, �n(s) := h(Xs) − h(Xηn(s)).

Hence, this difference is an absolutely continuous function of t , and using the Newton–
Leibnitz formula twice, we get

∣∣JT,n(h)
∣∣p = p(p − 1)

∫ T

0

∣∣Js,n(h)
∣∣p−2

�n(s)

(∫ T

s

�n(t) dt

)
ds.
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We then write∣∣JT,n(h)
∣∣p = p(p−1)

(
H 1

T ,n,p(h)+H 2
T ,n,p(h)

) ≤ p(p−1)
(
H̃ 1

T ,n,p(h)+H 2
T ,n,p(h)

)
,

where

H 1
T ,n,p(h) =

∫ T

0

∣∣Js,n(h)
∣∣p−2

�n(s)

(∫ ζn(s)

s

�n(t) dt

)
ds,

H̃ 1
T ,n,p(h) =

∫ T

0

∣∣Js,n(h)
∣∣p−2∣∣�n(s)

∣∣∣∣∣∣
∫ ζn(s)

s

�n(t) dt

∣∣∣∣ds,

H 2
T ,n,p(h) =

∫ T

0

∣∣Js,n(h)
∣∣p−2

�n(s)

(∫ T

ζn(s)

�n(t) dt

)
ds.

Let us estimate separately the expectations of H̃ 1
T ,n,p(h) and H 2

T ,n,p(h). By the Hölder
inequality,

ExH̃
1
T ,n,p(h) ≤

(
Ex

∫ T

0

∣∣Js,n(h)
∣∣p ds

)1−2/p

×
(

Ex

∫ T

0

∣∣�n(s)
∣∣p/2

∣∣∣∣
∫ ζn(s)

s

�n(t) dt

∣∣∣∣
p/2

ds

)2/p

.

Again by the Hölder inequality,

Ex

∫ T

0

∣∣�n(s)
∣∣p/2

∣∣∣∣
∫ ζn(s)

s

�n(t) dt

∣∣∣∣
p/2

ds

≤
(

T

n

)p/2−1 ∫ T

0

∫ ζn(s)

s

Ex

∣∣�n(s)
∣∣p/2∣∣�n(t)

∣∣p/2
dtds.

Because t ∈ [s, ζn(s)], we have ηn(t) = ηn(s), and, consequently,

Ex

∣∣�n(s)
∣∣p/2∣∣�n(t)

∣∣p/2

= Ex

∣∣h(Xs) − h(Xηn(s))
∣∣p/2∣∣h(Xt ) − h(Xηn(s))

∣∣p/2

≤ (
Ex

∣∣h(Xs) − h(Xηn(s))
∣∣p)1/2(

Ex

∣∣h(Xt ) − h(Xηn(s))
∣∣p)1/2

≤ ‖h‖p
V 2p−1(Ex

(
V p

(|Xs |
) + V p

(|Xηn(s)|
)))1/2

× (
Ex

(
V p

(|Xt |
) + V p

(|Xηn(s)|
)))1/2

. (4)

By the properties of V and the bound (1) we have

ExV
p
(|Xr |

) =
∫
Rd

pr(x, y)V p
(|y|) dy

≤ CT r−d/α

∫
Rd

Q
(
r−1/α(x − y)

)
V p

(|y|) dy

≤ CT V p
(|x|)(∫

Rd

Q(y)V p
(
T 1/α|y|) dy

)
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for any r ∈ (0, T ]. Using this bound with r = t, s, ηn(s) and recalling that |ζn(s) −
s| ≤ 1/n, we get

ExH̃
1
T ,n,p(h) ≤ C

(
Ex

∫ T

0

∣∣Js,n(h)
∣∣p ds

)1−2/p(
1

n

)
‖h‖2

V V 2(|x|)
with constant C depending on T ,Q, V, p only.

Next, observe that, for every s, the variables

�n(s), |Js,n(h)|p−2�n(s)

are Fζn(s)-measurable. Hence,

ExH
2
T ,n,p(h) = Ex

(∫ T

0

∣∣Js,n(h)
∣∣p−2

�n(s)Ex

(∫ T

ζn(s)

�n(t) dt
∣∣Fζn(s)

)
ds

)

≤ Ex

(∫ T

0

∣∣Js,n(h)
∣∣p−2∣∣�n(s)

∣∣∣∣∣∣Ex

(∫ T

ζn(s)

�n(t) dt
∣∣Fζn(s)

)∣∣∣∣ds

)
.

By Proposition 2.1 and the Markov property of X we have∣∣∣∣Ex

(∫ T

ζn(s)

�n(t) dt
∣∣Fζn(s)

)∣∣∣∣ ≤ C

(
log n

n

)
‖h‖V V

(|Xζn(s)|
)
.

Hence, again, using the Hölder inequality we get

ExH
2
T ,n,p(h) ≤ C

(
log n

n

)
‖h‖V

(
Ex

∫ T

0

∣∣Js,n(h)
∣∣p ds

)1−2/p

×
(

Ex

∫ T

0

∣∣�n(s)
∣∣p/2

V p/2(|Xζn(s)|
)
ds

)2/p

.

Similarly to (4), we have

Ex

∣∣�n(s)
∣∣p/2

V p/2(|Xζn(s)|
) ≤ CV p

(|x|)‖h‖p/2
V .

Hence, the above bounds for ExH̃
1
T ,n,p(h) and ExH

2
T ,n,p(h) finally yield

Ex

∣∣JT,n(h)
∣∣p ≤ C

(
Ex

∫ T

0

∣∣Js,n(h)
∣∣p ds

)1−2/p(
log n

n

)
‖h‖2

V V 2(|x|) (5)

with a constant C depending on T ,Q, V, p only. It can be seen easily that in this
inequality one can write arbitrary t ≤ T instead of T , with the same constant C.
Taking the integral over t , we get

Ex

∫ T

0

∣∣Jt,n(h)
∣∣p dt ≤ CT

(
Ex

∫ T

0

∣∣Js,n(h)
∣∣p ds

)1−2/p(
log n

n

)
‖h‖2

V V 2(|x|).
Because ‖h‖V < ∞ and V p satisfies the integrability condition from the condition
of the theorem, the left-hand side expression in the last inequality is finite. Hence,
resolving this inequality, we get

Ex

∫ T

0

∣∣Js,n(h)
∣∣p ds ≤ (CT )p/2

(
log n

n

)p/2

‖h‖p
V V p

(|x|),
which, together with (5), gives the required statement.
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2.3 An improved approximation rate for a Hölder continuous h

In this section, we consider the case where h has the following additional regularity
property.

H2. The function is Hölder continuous with index γ ∈ (0, 1], that is,

‖h‖γ := sup
x �=y

|h(x) − h(y)|
|x − y|γ < ∞.

An additional regularity of h allows one to improve the accuracy of the previous
estimates. Namely, the following statement holds.

Theorem 2.2. Assume that X, H1, and H2 hold. Then, for every p ≥ 2 such that∫
Rd

|x|γpQ(x) dx < ∞

and ∫
Rd

V p/2(T 1/α|x|)Q(x) dx < ∞,

we have

Ex

∣∣IT (h)−IT ,n(h)
∣∣p ≤ C

(
log n

n

)p/2

n−(γp)/(2α)‖h‖p/2
γ

(‖h‖p/2
γ +‖h‖p/2

V V p/2(|x|))
with constant C depending on T ,Q, V, p, γ only.

Proof. The method of the proof remains the same as that of Theorem 2.1; hence, we
use the same notation. The only new point is that, instead of the bound

Ex

∣∣�n(s)
∣∣p ≤ ‖h‖p

V Ex

(
V

(|Xs |
) + V

(|Xηn(s)|
))p

,

now a more precise inequality is available, based on the Hölder continuity of h.
Namely, we have

Ex

∣∣�n(s)
∣∣p = Ex

∣∣h(Xs) − h(Xηn(s))
∣∣p

≤ ‖h‖p
γ Ex

∣∣Xs − Xηn(s)

∣∣γp ≤ C‖h‖p
γ

∣∣s − ηn(s)
∣∣γp/α

, (6)

where C depends on T ,Q, p, γ only.
The last inequality holds due to the following representation. By the Markov prop-

erty of X, for r < s, we have

Ex |Xs − Xr |γp = Exf (Xr),

where

f (z) =
∫
Rd

ps−r (z, y)|y − z|γp dy

≤ CT

∫
Rd

(s − r)−d/αQ
(
(s − r)−1/α(z − y)

)|z − y|γp dy

= CT (s − r)γp/α

∫
Rd

Q(y)|y|γp dy.
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Thus, for t ∈ [s, ζn(s)], we have

Ex

∣∣�n(s)
∣∣p/2∣∣�n(t)

∣∣p/2

= Ex

∣∣h(Xs) − h(Xηn(s))
∣∣p/2∣∣h(Xt ) − h(Xηn(s))

∣∣p/2

≤ (
Ex

∣∣h(Xs) − h(Xηn(s))
∣∣p)1/2(

Ex

∣∣h(Xt ) − h(Xηn(s))
∣∣p)1/2

≤ C‖h‖p
γ

∣∣s − ηn(s)
∣∣γp/(2α)∣∣t − ηn(s)

∣∣γp/(2α)

≤ CT ‖h‖p
γ n−(γp)/α

and

ExH̃
1
T ,n,p(h) ≤ C

(
Ex

∫ T

0

∣∣Js,n(h)
∣∣p ds

)1−2/p(
1

n

)1+2γ /α

‖h‖2
γ

with constant C depending on T ,Q, p, γ only.
Next, using (6) and (4), we have

Ex

∣∣�n(s)
∣∣p/2

V p/2(|Xζn(s)|
) ≤ C‖h‖p/2

γ n−(γp)/(2α)V p/2(|x|)
and

ExH
2
T ,n,p(h) ≤ C

(
Ex

∫ T

0

∣∣Js,n(h)
∣∣p ds

)1−2/p(
log n

n

)
n−γ /α‖h‖V ‖h‖γ V

(|x|).
Hence, the previous bounds for ExH̃

1
T ,n,p(h) and ExH

2
T ,n,p(h) finally yield

Ex

∣∣JT,n(h)
∣∣p

≤ C

(
Ex

∫ T

0

∣∣Js,n(h)
∣∣p ds

)1−2/p(
log n

n

)
n−γ /α‖h‖γ

(‖h‖γ + ‖h‖V V
(|x|))

(7)

with constant C depending on T ,Q, V, p, γ only. Using the same procedure as that
provided at the end of the proof of Theorem 2.1, we simply have

Ex

∫ T

0

∣∣Js,n(h)
∣∣p ds

≤ (CT )p/2
(

log n

n

)p/2

n−(γp)/(2α)‖h‖p/2
γ

(‖h‖p/2
γ + ‖h‖p/2

V V p/2(|x|)),
which, together with (7), completes the proof.

2.4 Discussion
The results of Theorem 2.1 and Theorem 2.2 should be compared with Theorem 2.3
in [7], where, in our notation, the following bounds were obtained:

Ex

∣∣IT (h) − IT ,n(h)
∣∣p ≤

{
Cn−p(1+γ )/2, γ ∈ (0, 1),

C(log n)pn−p(1+γ )/2, γ = 1.

In Theorem 2.3 of [7], h satisfies our conditions H1 and H2 with V (|x|) = eC|x|,
and X is a one-dimensional diffusion with coefficients that satisfy some smoothness
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condition (assumption (H)); in particular, X holds with α = 2. In this case, our bound

C(log n)pn−p/2−(pγ )/4,

given in Theorem 2.2, is somewhat worse. On the other hand, this bound is of an
independent interest because of a wider class of processes X it applies to.
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