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1 Introduction

Theory of large deviations in mathematical statistics and statistics of stochastic pro-
cesses deals with the asymptotic behaviour of tails of distribution functions of para-
metric and nonparametric statistical estimators. Concerning parametric estimators it
is necessary to refer to the monograph of Ibragimov and Has’minskii [6] where the
exponential convergence rate of probabilities of large deviations for maximum likeli-
hood estimator was obtained. This result led to the appearance of a large number of
publications on the subject of large deviations of statistical estimators.

Further we will speak about least squares estimators (l.s.e.’s) for parameters of
a nonlinear regression model. In the paper of Ivanov [8] a statement was proved on
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the power decreasing rate for probabilities of large deviations of l.s.e. for a scalar
parameter in the nonlinear regression model with i.i.d. observation errors having mo-
ments of finite order. Prakasa Rao [13] obtained a similar result with the exponential
decreasing rate in the Gaussian nonlinear regression.

In the paper of Sieders and Dzhaparidze [15] a general Theorem 2.1 on proba-
bilities of large deviations for M-estimators based on a data set of any structure was
proved that generalizes the mentioned result in [6] with an application to l.s.e. for
parameters of the nonlinear regression with pre-Gaussian and sub-Gaussian i.i.d. ob-
servation errors (Theorems 3.1 and 3.2 in [15]). Some results in this direction are
obtained by Ivanov [9].

The results on probabilities of large deviations of an l.s.e. in a nonlinear regres-
sion model with correlated observations can be found in the works of Ivanov and
Leonenko [11], Prakasa Rao [14], Hu [4], Yang and Hu [16], Huang et al. [5].

Upper exponential bounds for probabilities of large deviations of an l.s.e. for a
parameter of the nonlinear regression in discrete-time models with a jointly strictly
sub-Gaussian (j.s.s.-G.) random noise were obtained in Ivanov [10]. In the present
paper we extend some results of [10] to continuous-time observation models.

Consider a regression model

X(t) = a(t, θ) + ε(t), t ≥ 0, (1)

where a(t, τ ), (t, τ ) ∈ R+ × Θc, is a continuous function, a true parameter value
θ = (θ1, . . . , θq)′ belongs to an open bounded convex set Θ ⊂ R

q and a random
noise ε = {ε(t), t ∈ R} satisfies the following condition.

N1. ε is a mean-square and almost sure (a.s.) continuous stochastic process de-
fined on the probability space (Ω, F, P ), Eε(t) = 0, t ∈ R.

We shall write
∫ = ∫ T

0 .

Definition 1. Any random vector θT = (θ1T , . . . , θqT )′ ∈ Θc having the property

QT (θT ) = inf
τ∈Θc

QT (τ), QT (τ) =
∫ [

X(t) − a(t, τ )
]2

dt.

is said to be the l.s.e. for an unknown parameter θ , obtained by the observations
{X(t), t ∈ [0, T ]}.

Under assumptions introduced above there exists at least one such random vector
θT [12].

In the asymptotic theory of nonlinear regression in the problem of normal approx-
imation of the distribution of an l.s.e., the difference θT − θ is normed by diagonal
matrix [11]

dT (θ) = diag
(
diT (θ), i = 1, q

)
, d2

iT (θ) =
∫ (

∂

∂θi

a(t, θ)

)2

dt.

Further it is supposed that the function a(t, ·) ∈ C1(Θ) for any t ≥ 0.
The paper is organized in the following way. In Section 2 an upper exponential

bound is obtained for large deviations of dT (θ)(θT − θ) in the regression model (1)
with a j.s.s.-G. random noise ε. In Section 3 the results of Section 2 are applied to a
stationary j.s.s.-G. noise ε. Section 4 contains examples of regression functions a and
noise ε satisfying the conditions of our theorems.
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2 Large deviations in models with a jointly strictly sub-Gaussian noise

Definition 2. A random vector ξ = (ξ1, . . . , ξn)
′ ∈ R

n is called strictly sub-
Gaussian (s.s.-G.) if for any Δ = (Δ1, . . . , Δn)

′ ∈ R
n

E exp
{〈ξ,Δ〉} ≤ exp

{
1

2
〈BΔ,Δ〉

}
,

where 〈ξ,Δ〉 = ∑n
i=1 ξiΔi , B = (B(i, j))ni,j=1 is the covariance matrix of ξ , that is

B(i, j) = Eξiξj , i, j = 1, n, 〈BΔ,Δ〉 = ∑n
i,j=1 B(i, j)ΔiΔj .

Note that we obtain from Definition 2 the definition of an s.s.-G. random variable
(r.v.) ξ taking n = 1.

Definition 3. {ξ(t), t ∈ R} is said to be jointly strictly sub-Gaussian (j.s.s.-G.) sto-
chastic process, if for any n ≥ 1, and any t1, . . . , tn ∈ R the random vector ξn =
(ξ(t1), . . . , ξ(tn))

′ is s.s.-G.

These definitions and a more detailed information on sub-Gaussian r.v.’s, vec-
tors and stochastic processes can be found in the monograph [1] by Buldygin and
Kozachenko.

Concerning the random noise ε in the model (1) we introduce the following as-
sumption.

N2(i) ε is a j.s.s.-G. stochastic process with the covariance function B(t, s) =
Eε(t)ε(s), t, s ∈ R.

(ii) For any T > 0, Δ(·) ∈ L2([0, T ])
〈BΔ,Δ〉T =

∫ ∫
B(t, s)Δ(t)Δ(s)dtds ≤ d0‖Δ‖2

T (2)

for some constant d0 > 0, ‖Δ‖T = (
∫

Δ2(t)dt)
1
2 .

For a fixed T the exact bound in (2) is

〈BΔ,Δ〉T ≤ ‖B‖T ‖Δ‖2
T ,

where ‖B‖T is the norm of a self-adjoint positive semidefinite operator B in
L2([0, T ]). Note that ‖B‖T is a nondecreasing function of T > 0, so there exists

lim
T →∞ ‖B‖T ≤ d0 < ∞,

if (2) is fulfilled.

Example 2.1. Assume the covariance function B(t, s) is such that

1) b2
1 =

∞∫
0

∞∫
0

B2(t, s)dtds < ∞ or 2) b2 = sup
t∈R+

∞∫
0

∣∣B(t, s)
∣∣ds < ∞.

Then using condition 1) and the Fubini theorem we get

〈BΔ,Δ〉T =
∫ (∫

B(t, s)Δ(s)ds

)
Δ(t)dt

≤
(∫ (∫

B(t, s)Δ(s)ds

)2

dt

) 1
2 ‖Δ‖T ≤ b1‖Δ‖2

T ,
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and we can take d0 = b1. On the other hand,

〈BΔ,Δ〉T ≤
∫ ∫ ∣∣B(t, s)

∣∣Δ2(t)dtds ≤ b2‖Δ‖2
T ,

and we can take d0 = b2.

Let Δ(t), t ∈ R+, be a continuous function. Then condition N1 implies the
existence of the integral

I (T ) =
∫

Δ(t)ε(t)dt, (3)

determined for almost all paths of the process ε(t), t ∈ [0, T ], as the Riemann inte-
gral. Consider partitions r(n)

0 = t
(n)
0 < t

(n)
1 < · · · < t(n)

n = T

of the interval [0, T ] such that max1≤k≤n(t
(n)
k − t

(n)
k−1) → 0, as n → ∞, and the

corresponding integral sums

In(T ) =
n∑

k=1

u
(n)
k ε

(
t
(n)
k

)
, u

(n)
k = Δ

(
t
(n)
k

)(
t
(n)
k − t

(n)
k−1

)
, k = 1, n.

Then
In(T ) → I (T ) a.s., as n → ∞. (4)

It is obvious also that

EI 2
n (T ) → EI 2(T ) = 〈BΔ,Δ〉T , as n → ∞. (5)

Lemma 1. Under conditions N1, N2 integral (3) is an s.s.-G. r.v., for any T > 0.

Proof. From Definition 3 it follows that the process ε(t), t ∈ [0, T ], is j.s.s.-G., if for
any n ≥ 1, and t1, . . . , tn ∈ [0, T ], u1, . . . , un ∈ R, λ ∈ R,

E exp

{
λ

n∑
k=1

ukε(tk)

}
≤ exp

{
1

2
λ2

n∑
i,j=1

B(ti, tj )uiuj

}
.

Taking tk = t
(n)
k , uk = u

(n)
k , k = 1, n, we obtain

E exp
{
λIn(T )

} ≤ exp

{
1

2
λ2EI 2

n (T )

}
.

Due to (4) and (5) by the Fatou lemma (see, for example, [3])

E exp
{
λI (T )

} = E lim
n→∞ exp

{
λIn(T )

} ≤ lim inf
n→∞ E exp

{
λIn(T )

}

≤ lim
n→∞ exp

{
1

2
λ2EI 2

n (T )

}
= exp

{
1

2
λ2EI 2(T )

}
.
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The following statement on the exponential bound for distribution tails of inte-
grals (3) plays an important role in subsequent proofs.

Lemma 2. Under conditions N1 and N2 for any T > 0, x > 0,

P
{
I (T ) ≥ x

} ≤ GT (x), P
{
I (T ) ≤ −x

} ≤ GT (x),

P
{∣∣I (T )

∣∣ ≥ x
} ≤ 2GT (x),

(6)

where

GT (x) = exp

{
− x2

2d0‖Δ‖2
T

}
.

Proof. The proof is obvious (see, for example, [1]). For any x > 0, λ > 0 by the
Chebyshev–Markov inequality, (2), and Lemma 1

P
{
I (T ) ≥ x

} ≤ exp{−λx} exp

{
1

2
λ2〈BΔ,Δ〉T

}
≤ exp

{
1

2
λ2d0‖Δ‖2

T − λx

}
. (7)

Minimization of the right-hand side of (7) in λ gives the first inequality in (6). The
proof of the second inequality is similar. The third inequality follows from the previ-
ous ones.

We need some notation to formulate conditions on the regression function a(t, θ)

using the approach of the paper [15] (see also [9, 11]). Write

UT (θ) = dT (θ)
(
Θc − θ

)
, ΓT,θ,R = UT (θ) ∩ {u : R ≤ ‖u‖ ≤ R + 1},

u = (u1, . . . , uq)′ ∈ R
q . Denote by G the family of all functions g = gT (R),

T > 0, R > 0, having the following properties:
1) for fixed T , gT (R) ↑ ∞, as R → ∞;
2) for any r > 0,

Rr exp
{−gT (R)

} → 0, as R, T → ∞.

Let γ (R) be polynomials of R (possibly different) with coefficients that do not de-
pend on values T , θ, u, v. Set also

Δ(t, u) = a
(
t, θ + d−1

T (θ)u
) − a(t, θ), t ∈ [0, T ],

ΦT (u, v) =
∫ (

Δ(t, u) − Δ(t, v)
)2

dt, u, v ∈ UT (θ).

Assume the existence of a function g ∈ G, constants δ ∈ (0, 1
2 ), κ > 0, ρ ∈ (0, 1]

and polynomials γ (R) such that for sufficiently large T , R (we will write T > T0,
R > R0) the following conditions are fulfilled.

R1(i) For any u, v ∈ ΓT,θ,R such that ‖u − v‖ ≤ κ

ΦT (u, v) ≤ γ (R)‖u − v‖2ρ; (8)

(ii) for any u ∈ ΓT,θ,R ΦT (u, 0) ≤ γ (R).
R2. For any u ∈ ΓT,θ,R

ΦT (u, 0) ≥ 2d0δ
−2gT (R). (9)
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Theorem 1. If conditions N1, N2, R1 and R2 are fulfilled, then there exist constants
B0, b0 > 0 such that for T > T0, R > R0

P
{∥∥dT (θ)(θT − θ)

∥∥ ≥ R
} ≤ B0 exp

{−b0gT (R)
}
, (10)

where for any β > 0 the constant B0 can be chosen so that

b0 ≥ ρ

ρ + q
− β. (11)

Proof. Set

I (T , u) =
∫

Δ(t, u)ε(t)dt, ζT (u) = I (T , u) − 1

2
ΦT (u, 0).

To prove the theorem it is sufficient to check the fulfilment of assumptions (M1) and
(M2) of the Theorem 2.1 in [15], reformulated in the manner similar to that used in
the proof of Theorem 3.1, ibid.:

(M1) for any m > 0 and u, v ∈ ΓT,θ,R such that ‖u − v‖ ≤ κ,

E
∣∣ζT (u) − ζT (v)

∣∣m ≤ γ (R)‖u − v‖ρm; (12)

(M2)

P

{
ζT (u) − ζT (0) ≥ −

(
1

2
− δ

)
ΦT (u, 0)

}
≤ exp

{−gT (R)
}
. (13)

From the first inequality in (6) of Lemma 2 for Δ(t) = Δ(t, u), x = δΦT (u, 0),
condition R2, taking into account that ζT (0) = 0 in our particular case, we obtain

P

{
ζT (u) − ζT (0) ≥ −

(
1

2
− δ

)
ΦT (u, 0)

}
= P

{
I (T , u) ≥ δΦT (u, 0)

}

≤ exp
{−δ2(2d0)

−1ΦT (u, 0)
}

≤ exp
{−gT (R)

}
,

i.e. (13) is true.
On the other hand,

E
∣∣ζT (u) − ζT (v)

∣∣m
≤ max

(
1, 2m−1) · (E∣∣I (T , u) − I (T , v)

∣∣m + 2−m
∣∣ΦT (u, 0) − ΦT (v, 0)

∣∣m)
,

(14)∣∣ΦT (u, 0) − ΦT (v, 0)
∣∣

≤
∫ ∣∣Δ(t, u) − Δ(t, v)

∣∣ · ∣∣Δ(t, u) + Δ(t, v)
∣∣dt

≤ Φ
1
2
T (u, v) · (

Φ
1
2
T (u, 0) + Φ

1
2
T (v, 0)

)
≤ 2

(
γ (R)

) 1
2 ‖u − v‖ρ

(
γ (R)

) 1
2

≤ (
γ (R) + γ (R)

)‖u − v‖ρ = γ (R)‖u − v‖ρ
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according to R1 (polynomials γ (R) are different in the last two lines). Thus we obtain
the bound ∣∣ΦT (u, 0) − ΦT (v, 0)

∣∣m ≤ γ (R)‖u − v‖ρm. (15)

By the formula for the moments of nonnegative r.v. (see, for example, [2] and
compare with [4]) and the third inequality of Lemma 2 being applied to Δ(t) =
Δ(t, u) − Δ(t, v), t ∈ [0, T ], it holds

E
∣∣I (T ; u, v)

∣∣m = m

∞∫
0

xm−1P
{∣∣I (T ; u, v)

∣∣ ≥ x
}
dx

≤ 2m

∞∫
0

xm−1 exp

{
− x2

2d0ΦT (u, v)

}
dx

= √
2πmd

m
2

0 Φ
m
2

T (u, v)E|Z|m−1,

(16)

where I (T ; u, v) = I (T , u) − I (T , v), Z is a standard Gaussian r.v.,

E|Z|m−1 = π− 1
2 2

m−1
2 Γ

(
m

2

)
, m > 0. (17)

Relations (16), (17), and (8) lead to the bound

E
∣∣I (T ; u, v)

∣∣m ≤ 2
m
2 mΓ

(
m

2

)
d

m
2

0 Φ
m
2

T (u, v) ≤ γ (R)‖u − v‖ρm. (18)

From (14), (15), and (18) it follows (12).

Suppose there exist a diagonal matrix sT = diag(siT , i = 1, q) with elements
that do not depend on τ ∈ Θ , and constants 0 < ci < ci < ∞, i = 1, q, such that
uniformly in τ ∈ Θ for T > T0

ci < s−1
iT diT (τ ) < ci, i = 1, q. (19)

Then instead of the matrix dT (θ) (at least in the framework of the topic of this paper)
it is possible to consider, without loss of generality, the normalizing matrix sT .

The next condition is more restrictive than R1 and R2, however it is simpler due
to requirement (19).

R3. There exist numbers 0 < c0 < c1 < ∞ such that for any u, v ∈ UT (θ) =
sT (Θc − θ) and T > T0,

c0‖u − v‖2 ≤ ΦT (u, v) ≤ c1‖u − v‖2. (20)

It goes without saying that in the expression for ΦT (u, v) in (20) we use the
matrix s−1

T instead of d−1
T (θ).

A condition of the type (20) has been introduced in [8] and used in [13, 15, 4] and
other works. The next theorem generalizes Theorem 3.2 from [15].
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Theorem 2. Under conditions N1, N2 and R3 there exist constants B, b > 0 such
that for T > T0, R > R0

P
{∥∥sT (θT − θ)

∥∥ ≥ R
} ≤ B exp

{−bR2}, (21)

moreover for any β > 0 the constant B can be chosen so that

b ≥ c0

8d0(1 + q)
− β. (22)

Proof. We will show that R3 implies conditions R1 and R2. Inequality (8) of the
condition R1(i) follows from the right-hand side of inequality (20), if we take ρ = 1,
γ (R) = c1. Inequality of the condition R1(ii) follows as well from the right-hand
side of (20), if we take v = 0, γ (R) = c1(R + 1)2.

To check the fulfilment of condition R2 we should rewrite the left-hand side of
(20) for v = 0:

ΦT (u, 0) ≥ c0‖u‖2 ≥ 2d0δ
−2

(
1

2
δ2d−1

0 c0R
2
)

,

i.e., in the inequality (9) one can take gT (R) = 1
2δ2d−1

0 c0R
2. In this case for the

exponent in (10) we have

−b0gT (R) = −
(

1

2
δ2b0d

−1
0 c0

)
R2.

Now, since ρ = 1 in (11), for any β > 0 in (21) we can take

b = bδ = 1

2
δ2b0d

−1
0 c0 ≥ δ2c0

2d0(1 + q)
− β.

By R3 and N1, N2, inequality (9) with gT (R) = 1
2δ2d−1

0 c0R
2 holds for any δ ∈

(0, 1
2 ). We get inequality (22) as δ → 1

2 .

3 Large deviations in the case of a stationary jointly strictly sub-Gaussian noise

We impose an additional restriction on the noise process ε.
N3. The stochastic process ε is stationary with the covariance function B(t) =

Eε(0)ε(t), t ∈ R, and the bounded spectral density f (λ), λ ∈ R:

f0 = sup
λ∈R

f (λ) < ∞.

Under assumption N3 the following corollaries of the theorems proved in Section
2 are true.

Corollary 1. If conditions N1, N2(i), N3, R1 and R2 are fulfilled, then the statement
of Theorem 1 is true with d0 = 2πf0.
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Proof. We just need to show that condition N2(ii) is fulfilled. Indeed, by the
Plancherel identity,

〈BΔ,Δ〉T =
∞∫

−∞
f (λ)

∣∣∣∣
∫

eiλtΔ(t)dt

∣∣∣∣
2

dλ ≤ 2πf0‖Δ‖2
T .

Corollary 2. Under conditions N1, N2(i), N3 and R3 the statement of Theorem 2 is
true with inequality (22) rewritten in the form

b ≥ c0

16πf0(1 + q)
− β. (23)

Our next assumption is a particularization of the requirements N2 and N3.
N4(i). The random noise ε is of the form

ε(t) =
t∫

−∞
ψ(t − s)dξ(s) =

∞∫
0

ψ(s)dξ(t − s), (24)

where ξ = {ξ(t), t ∈ R} is a mean-square continuous j.s.s.-G. stochastic process
with orthogonal increments, Eξ(t) = 0,

E
∣∣ξ(t + s) − ξ(t)

∣∣2 = s, t ∈ R, s > 0;
ψ(t) = 0 as t < 0 and

∞∫
0

ψ2(t)dt < ∞.

The stochastic integral in (24) is understood as a mean-square Stieltjes integral
[3]. The process ξ is an integrated white noise, ε can be considered as a stationary
process at the output of a physically realizable filter with the covariance function (see
ibid.)

B(t) =
∞∫

0

ψ(t + u)ψ(u)du

and the spectral density

f (λ) = ∣∣h(iλ)
∣∣2

, h(iλ) = (2π)−
1
2

∞∫
0

ψ(t)e−iλt dt.

N4(ii). f0 = supλ∈R |h(iλ)|2 < ∞.
Obviously N4(ii) holds, if

∫ ∞
0 |ψ(t)|dt < ∞.

Lemma 3. If condition N4(i) holds, then ε in (24) is a j.s.s.-G. process.
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Proof. Let n ≥ 1 be a fixed number and t1, . . . , tn, Δ1, . . . , Δn be arbitrary real
numbers. It is necessary to prove that

E exp

{ n∑
k=1

Δkε(tk)

}
≤ exp

{
1

2

n∑
i,j=1

B(ti − tj )ΔiΔj

}
. (25)

Formula (24) can be rewritten in the form

ε(t) =
∞∫

−∞
ψ(t − s)dξ(s), ψ(t) = 0, as t < 0.

Denote ψk(s) = ψ(tk − s), k = 1, n. Then

ε(tk) =
∞∫

−∞
ψk(s)dξ(s), k = 1, n.

Let a sequence of simple functions

ψ
(m)
k (s) =

r(k,m)∑
l=1

c
(m)
kl χ

π
(m)
kl

(s), m ≥ 1,

where π
(m)
kl = [α(m)

kl , β
(m)
kl ), k = 1, n, l = 1, r(k,m), χA(s) is indicator of a set A,

approximate the function ψk(s) in L2(R):

∞∫
−∞

∣∣ψk(s) − ψ
(m)
k (s)

∣∣2
ds → 0, as m → ∞.

Then the sequences of random variables

ε
(m)
k =

r(k,m)∑
l=1

c
(m)
kl

(
ξ
(
β

(m)
kl

) − ξ
(
α

(m)
kl

)) =
∞∫

−∞
ψ

(m)
k (s)dξ(s)

mean-square converge to ε(tk) in L2(Ω):

E
∣∣ε(tk) − ε

(m)
k

∣∣2 → 0, k = 1, n, as m → ∞. (26)

For any fixed m, the random vector with coordinates ε
(m)
k , k = 1, n is s.s.-G.

Indeed,
m∑

k=1

Δkε
(m)
k =

m∑
k=1

Δk

r(k,m)∑
l=1

c
(m)
kl

(
ξ
(
β

(m)
kl

) − ξ
(
α

(m)
kl

))

=
n′(m)∑
k′=1

u
(m)

k′ ξ
(
η

(m)

k′
)
,
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where u
(m)

k′ are real numbers and η
(m)

k′ are different real numbers. By condition N4(i)

the random vector with coordinates ξ(η
(m)

k′ ), k′ = 1, n′(m), is s.s.-G., and therefore,

E exp

{ m∑
k=1

Δkε
(m)
k

}
= E exp

{n′(m)∑
k′=1

u
(m)

k′ ξ
(
η

(m)

k′
)}

≤ exp

{
1

2
E

(n′(m)∑
k′=1

u
(m)

k′ ξ
(
η

(m)

k′
))2}

= exp

{
1

2

( m∑
k=1

Δkε
(m)
k

)2}
.

(27)

From (26) it follows that ε
(m)
k

P→ εtk , k = 1, n, as m → ∞, and thus there exists

some subsequence of indexes m′ → ∞, independent of k, such that ε
(m′)
k → εtk a.s.,

k = 1, n, as m′ → ∞.
Finally, by the Fatou lemma and (27)

E exp

{ n∑
k=1

Δkε(tk)

}
= E lim

m′→∞
exp

{ n∑
k=1

Δkε
(m′)
k

}

≤ lim inf
m′→∞

E exp

{ n∑
k=1

Δkε
(m′)
k

}

≤ lim
m′→∞

exp

{
1

2
E

( n∑
k=1

Δkε
(m′)
k

)2}

= exp

{
1

2
E

( n∑
k=1

Δkε(tk)

)2}

= exp

{
1

2

n∑
i,j=1

B(ti − tj )ΔiΔj

}
.

So, we have obtained (25).

Corollary 3. If conditions N1, N4(i), N4(ii), R1 and R2 are fulfilled, then the con-
clusion of Theorem 1 is true with d0 = 2πf0.

Corollary 4. If conditions N1, N4(i), N4(ii) and R3 are fulfilled, then the conclusion
of Theorem 2 is true with a constant b satisfying (23).

Assume
lim inf
T →∞ T − 1

2 siT > 0, i = 1, q. (28)

Corollary 5. Under conditions of Theorem 2 or Corollaries 2, 4, and (28) for any
ρ > 0, ν ∈ [0, 1

2 ), and T > T0

P
{∥∥T − 1

2 sT (θT − θ)
∥∥ ≥ ρT −ν

} ≤ B exp
{−bρT 1−2ν

}
. (29)
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Proof. To show (29) it is sufficient to take R = ρT
1
2 −ν in (21).

For ν = 0 we arrive at a quite strong result on the weak consistency of l.s.e.
Similarly, in the conditions of Corollary 5 the following result on probabilities of
moderate deviations for l.s.e. holds: for any h > 0, T > T0

P
{∥∥sT (θT − θ)

∥∥ ≥ h ln
1
2 T

} ≤ BT −bh2
.

Obviously, Gaussian stochastic processes ε are j.s.s.-G. ones, and all the previous
results are valid for them.

4 Two examples

In this section, we consider an example of a regression function satisfying the condi-
tion R3 and an example of the j.s.s.-G. process ξ from expression (24) in condition
N4(i).

Example 4.1. Suppose
a(t, τ ) = exp

{〈
τ, y(t)

〉}
,

where 〈τ, y(t)〉 = ∑q
i=1 τiyi(t), regressors y(t) = (y1(t), . . . , yq(t))′, t ≥ 0, take

values in a compact set Y ⊂ R
q .

Let us assume

JT =
(

T −1

T∫
0

yi(t)yj (t)dt

)q

i,j=1
→ J = (Jij )

q

i,j=1, as T → ∞, (30)

J is a positive definite matrix. In this case the regression function a(t, τ ) satisfies
condition R3. Indeed, let

H = max
y∈Y, τ∈Θc

exp
{〈y, τ 〉}, L = min

y∈Y, τ∈Θc
exp

{〈y, τ 〉}

Then for any δ > 0 and T > T0

L2(Jii − δ) < T −1d2
iT (θ) < H 2(Jii + δ), i = 1, q,

and according to (19) we can take sT = T
1
2 Iq with the identity matrix Iq of order q.

For a fixed t

exp
{〈

y(t), θ + T − 1
2 u

〉} − exp
{〈

y(t), θ + T − 1
2 v

〉}

= T − 1
2

q∑
i=1

yi(t) exp
{〈

y(t), θ + T − 1
2
(
u + η(v − u)

)〉}
(ui − vi), η ∈ (0, 1),

and therefore for any δ > 0 and T > T0

ΦT (u, v) ≤ H 2
(

T −1
∫ ∥∥y(t)

∥∥2
dt

)
‖u − v‖2 < H 2(Tr J + δ)‖u − v‖2,
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So we obtain the right-hand side of (20) with the constant c1 > H 2 Tr J .
On the other hand, for a fixed t

(
Δ(t, u) − Δ(t, v)

)2

= (
exp

{〈
y(t), θ + T − 1

2 u
〉} − exp

{〈
y(t), θ + T − 1

2 v
〉})2

= exp
{
2
〈
y(t), θ + T − 1

2 v
〉}(

exp
{〈

y(t), T − 1
2 (u − v)

〉} − 1
)2

.

Since (ex − 1)2 ≥ x2, x ≥ 0, and (ex − 1)2 ≥ e2xx2, x < 0, it holds

(
exp

{〈
y(t), T − 1

2 (u − v)
〉} − 1

)2 ≥ LtT
−1〈y(t), u − v

〉2
,

with Lt = min{1, exp{2〈y(t), T − 1
2 (u − v)〉}}, and

(
Δ(t, u) − Δ(t, v)

)2

≥ min
{
exp

{
2
〈
y(t), θ + T − 1

2 v
〉}

, exp
{
2
〈
y(t), θ + T − 1

2 u
〉}}

T −1〈y(t), u − v
〉2

> L2T −1〈y(t), u − v
〉2

.

Thus for any δ > 0 and T > T0

ΦT (u, v) ≥ L2〈JT (u − v), u − v
〉
> L2(λmin(J ) − δ

)‖u − v‖2,

and we have obtained the left-hand side of (20) with the constant c0 < L2λmin(J ),
where λmin(J ) is the least eigenvalue of the positive definite matrix J .

The next fact is a reformulation of Corollary 4 for the regression function a(t, τ )

of our example.

Corollary 3.4′. Under conditions N1, N4(i), N4(ii) and (30) there exist constants B,
b > 0 such that for T > T0, R > R0

P
{∥∥T

1
2 (θT − θ)

∥∥ ≥ R
} ≤ B exp

{−bR2}.
Moreover for any β > 0 the constant B can be chosen so that

b ≥ L2λmin(J )

16πf0(1 + q)
− β.

Example 4.2. Here we offer an example of the j.s.s.-G. stochastic process ξ with
orthogonal increments in the formula (24) using the Ito–Nicio series (see [7] and
references therein).

Consider any orthonormal basis {ϕk, k ≥ 1} in L2(R+) and a sequence {Zk,

k ≥ 1} of independent N(0, 1) r.v.’s. Then

w0(t) =
∞∑

k=1

Zk

t∫
0

ϕk(u)du, t ≥ 0,
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is a standard Wiener process with covariances Ew0(t)w0(s) = min{t, s}. We need
some kind of the Wiener process on the real line R. Let {w1(t), t ≥ 0}, {w2(t), t ≥ 0}
be two independent Wiener processes of the following form:

wi(t) =
∞∑

k=1

Zik

t∫
0

ϕk(u)du, t ≥ 0, i = 1, 2,

and {Zik, k ≥ 1, i = 1, 2} be independent N(0, 1) r.v.’s. Then the required Wiener
process on R can be defined as w(t) = w1(t), t ≥ 0, and w(t) = w2(|t |), t < 0. For
any real t1 < t2 ≤ t3 < t4

E
(
w(t2) − w(t1)

)(
w(t4) − w(t3)

) = 0, (31)

i.e. increments are orthogonal. On the other hand, for any t > s

E
(
w(t) − w(s)

)2 = t − s.

Let {ξik, k ≥ 1, i = 1, 2} be i.i.d. s.s.-G. r.v.’s (and non-Gaussian!) with unit
variance. Some examples of s.s.-G. r.v.’s can be found in [1]. Thus the Bernoulli r.v.
and the r.v. uniformly distributed in [−√

3,
√

3] are s.s.-G. and have unit variances.
Let us introduce the stochastic processes

ξi(t) =
∞∑

k=1

ξik

t∫
0

ϕk(u)du, t ≥ 0, i = 1, 2,

ξ(t) = ξ1(t), t ≥ 0, and ξ(t) = ξ2(|t |), t < 0. Then ξ = {ξ(t), t ∈ R} is a process
with orthogonal increments and is not a Gaussian one.

However, it is a j.s.s.-G. process. To prove this statement consider arbitrary num-
bers t1 < · · · < tn, where the first m numbers, 0 ≤ m ≤ n, are negative and the rest
n − m numbers are positive. Let Δ = (Δ1, . . . , Δn)

′ ∈ R
n be any vector. Then

Σ2 =
N∑

k=1

ξ2k

( m∑
i=1

Δi

|ti |∫
0

ϕk(u)du

)
→

m∑
i=1

Δiξ2
(|ti |) a.s., as N → ∞,

Σ1 =
N∑

k=1

ξ1k

( n∑
i=m+1

Δi

ti∫
0

ϕk(u)du

)
→

n∑
i=m+1

Δiξ1(ti) a.s., as N → ∞.

By the Fatou lemma

E exp

{ n∑
i=1

Δiξ(ti)

}
= E lim

N→∞ exp{Σ2 + Σ1}

≤ lim inf
N→∞

N∏
k=1

E exp

{
ξ2k

( m∑
i=1

Δi

|ti |∫
0

ϕk(u)du

)}
·
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·
N∏

k=1

E exp

{
ξ1k

( n∑
i=m+1

Δi

ti∫
0

ϕk(u)du

)}
≤

≤ lim
N→∞ exp

{
1

2

( N∑
k=1

( m∑
i=1

Δi

|ti |∫
0

ϕk(u)du

)2

+
N∑

k=1

( n∑
i=m+1

Δi

ti∫
0

ϕk(u)du

)2)}

= lim
N→∞ exp

{
1

2

( m∑
i,j=1

( N∑
k=1

|ti |∫
0

ϕk(u)du

|tj |∫
0

ϕk(u)du

)
ΔiΔj

+
n∑

i,j=m+1

( N∑
k=1

ti∫
0

ϕk(u)du

tj∫
0

ϕk(u)du

)
ΔiΔj

)}
.

By Parseval’s identity

lim
N→∞

N∑
k=1

|ti |∫
0

ϕk(u)du

|tj |∫
0

ϕk(u)du

=
∞∑

k=1

∞∫
0

χ[0, |ti |](u)ϕk(u)du

∞∫
0

χ[0, |tj |](u)ϕk(u)du

=
∞∫

0

χ[0, |ti |](u)χ[0, |tj |](u)du = min
{|ti |, |tj |

}
.

Similarly

lim
N→∞

N∑
k=1

ti∫
0

ϕk(u)du

tj∫
0

ϕk(u)du = min{ti , tj }.

It means that

E exp

{ n∑
i=1

Δiξ(ti)

}
≤ exp

{
1

2
〈BΔ, Δ〉

}

with

B =
(

B2 0
0 B1

)
,

where B2 = (min{|ti |, |tj |})mi,j=1, B1 = (min{ti , tj })ni,j=m+1, and the process ξ is
j.s.s.-G.
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