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Abstract This paper deals with a homoskedastic errors-in-variables linear regression model
and properties of the total least squares (TLS) estimator. We partly revise the consistency re-
sults for the TLS estimator previously obtained by the author [18]. We present complete and
comprehensive proofs of consistency theorems. A theoretical foundation for construction of
the TLS estimator and its relation to the generalized eigenvalue problem is explained. Partic-
ularly, the uniqueness of the estimate is proved. The Frobenius norm in the definition of the
estimator can be substituted by the spectral norm, or by any other unitarily invariant norm; then
the consistency results are still valid.

Keywords Errors in variables, functional model, linear regression, measurement error
model, multivariate regression, total least squares, strong consistency
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1 Introduction

We consider a functional linear error-in-variables model. Let {a? , 1 > 1} be a se-
quence of unobserved nonrandom r-dimensional vectors. The elements of the vectors
are true explanatory variables or (in other terminology) true regressors. We observe
m n-dimensional random vectors ay, ..., a,;; and m d-dimensional random vectors
by, ..., by. They are thought to be true vectors a? and X, g a?, respectively, plus ad-
ditive errors:

b, = X(—)r a? + E,’,

a; = a? + a;,

ey
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where @; and b; are random measurement errors in the regressor and in the response.
A nonrandom matrix X is estimated based on observations a;, b;,i =1, ..., m.

This problem is related to finding an approximate solution to incompatible lin-
ear equations (“overdetermined” linear equation, because the number of equations
exceeds the number of variables)

where A = [aj,...,ay]" isan m x n matrix and B = [by, ..., by]" isanm x d
matrix. Here X is an unknown n x d matrix.

In the linear error-in-variables regression model (1), the Total Least Squares (TLS)
estimator in widely used. It is a multivariate equivalent to the orthogonal regression
estimator. We are looking for conditions that provide consistency or strong con-
sistency of the estimator. It is assumed (for granted) that the measurement errors
Ci = (Z' ),i =1,2,..., are independent and have the same covariance matrix X. It
may be [singular. In particular, some of regressors may be observed without errors. (If
the matrix X' is nonsingular, the proofs can be simplified.) An intercept can be intro-
duced into (1) by augmenting the model and inserting a constant error-free regressor.

Sufficient conditions for consistency of the estimator are presented in Gleser [5],
Gallo [4], Kukush and Van Huffel [10]. In [18], the consistency results are obtained
under less restrictive conditions than in [10]. In particular, there is no requirement
that

2 T
)‘min(AO AO)
— as m — oo,
)\max(Ao Ao)
where Ay = [a?, e, a,?l]T is the matrix A without measurement errors. Hereafter,

Amin and Amax denotes the minimum and maximum eigenvalues of a matrix if all the
eigenvalues are real numbers. The matrix A(—)r A is symmetric (and positive semidef-
inite). Hence, its eigenvalues are real (and nonnegative).

The model where some variables are explanatory and the other are response is
called explicit. The alternative is the implicit model, where all the variables are treated
equally. In the implicit model, the n-dimensional linear subspace in R"* is fitted to
an observed set of points. Some n-dimensional subspaces can be represented in a
form {(a, b) € R"*? : b = X Ta} for some n x d matrix X; such subspaces are called
generic. The other subspaces are called non-generic. The true points lie on a generic
subspace {(a,b) : b = XOT a}. A consistently estimated subspace must be generic
with high probability. We state our results for the explicit model, but use the ideas of
the implicit model in the definition of the estimator, as well as in proofs.

We allow errors in different variables to correlate. Our problem is a minor gener-
alization of the mixed LS-TLS problem, which is studied in [20, Section 3.5]. In the
latter problem, some explanatory variables are observed without errors; the other ex-
planatory variables and all the response variables are observed with errors. The errors
have the same variance and are uncorrelated. The basic LS model (where the explana-
tory variables are error-free, and the response variables are error-ridden) and the basic
TLS model (where all the variables are observed with error, and the errors are uncor-
related) are marginal cases of the mixed LS-TLS problem. By a linear transformation
of variables our model can be transformed into either a mixed LS-TLS or basic LS or
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basic TLS problem. (We do not handle the case where there are more error-free vari-
ables than explanatory variables.) Such a transformation does not always preserve
the sets of generic and non-generic subspaces. The mixed LS-TLS problem can be
transformed into the basic TLS problem as it is shown in [6].

The Weighted TLS and Structured TLS estimators are generalizations of the TLS
estimator for the cases where the error covariance matrices do not coincide for differ-
ent observations or where the errors for different observations are dependent; more
precisely, the independence condition is replaced with the condition on the “structure
of the errors”. The consistency of these estimators is proved in Kukush and Van Huf-
fel [10] and Kukush et al. [9]. Relaxing conditions for consistency of the Weighted
TLS and Structured TLS estimators is an interesting topic for a future research. For
generalizations of the TLS problem, see the monograph [13] and the review [12].

In the present paper, for a multivariate regression model with multiple response
variables we consider two versions of the TLS estimator. In these estimators, different
norms of the weighted residual matrix are minimized. (These estimators coincide
for the univariate regression model.) The common way to construct the estimator is
to minimize the Frobenius norm. The estimator that minimizes the Frobenius norm
also minimizes the spectral norm. Any estimator that minimizes the spectral norm
is consistent under conditions of our consistency theorems (see Theorems 3.5-3.7 in
Section 3). We also provide a sufficient condition for uniqueness of the estimator that
minimizes the Frobenius norm.

In this paper, for the results on consistency of the TLS estimator which are stated
in paper [18], we provide complete and comprehensive proofs and present all nec-
essary auxiliary and complementary results. For convenience of the reader we first
present the sketch of proof. Detailed proofs are postponed to the appendix. Moreover,
the paper contains new results on the relation between the TLS estimator and the
generalized eigenvalue problem.

The structure of the paper is as follows. In Section 2 we introduce the model and
define the TLS estimator. The consistency theorems for different moment conditions
on the errors and for different senses of consistency are stated in Section 3, and their
proofs are sketched in Section 5. Section 4 states the existence and uniqueness of
the TLS estimator. Auxiliary theoretical constructions and theorems are presented
in Section 6. Section 7 explains the relationship between the TLS estimator and the
generalized eigenvalue problem. The results in Section 7 are used in construction of
the TLS estimator and in the proof of its uniqueness. Detailed proofs are moved to
the appendix (Section 8).

Notations

At first, we list the general notation. For v = (x¢)}_, being a vector, ||v] =,/ ZZ:] x,%
is the 2-norm of v.

For M = (xi‘j)g”:]’]’,:l being an m X n matrix, ||M|| = maxy-o ””Mv'ﬁ” = Omax(M)

is the spectral norm of M; |M||p = /> /L, Z'/'.:l xizj is the Frobenius norm of M;

Omax(M) = o1(M) = 02(M) > -+ > Ominim,n)(M) > 0 are the singular values
of M, arranged in descending order; span{M) is the column space of M; rk M is the
rank of M. For a square n x n matrix M, def M = n — rk M is rank deficiency of
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M;twM = "7 | x;; is the trace of M; xp (L) = det(M — Al) is the characteristic
polynomial of M. If M is an n x n matrix with real eigenvalues (e.g., if M is Hermitian
or if M admits a decomposition M = AB, where A and B are Hermitian matrices,
and either A or B is positive semidefinite), Ayin(M) = A(M) < (M) < --- <
An(M) = Amax (M) are eigenvalues of M arranged in ascending order.

For V| and V, being linear subspaces of R" of equal dimension dim V| = dim V5,
| sin Z(V1, Vo)l = || Pv,— Py, | = || Py, ({ — Py,)|| is the greatest sine of the canonical
angles between Vj and V. See Section 6.2 for more general definitions.

Now, list the model-specific notations. The notations (except for the matrix X)
come from [9]. The notations are listed here only for reference; they are introduced
elsewhere in this paper — in Sections | and 2.

n is the number of regressors, i.e., the number of explanatory variables for each
observation; d is the number of response variables for each observation; m is the
number of observations, i.e., the sample size.

@’ @) Xo T . , , .

Co=(Ag, Bp) = --ovvrrnnnn = .. ] isthe matrix of true variables. It is
@)™ (@) Xo (e’

an m X (n+d) nonrandom matrix. The left-hand block Ag of size m x n consists

of true explanatory variables, and the right-hand block By of size m x d consists

of true response variables.

~ ~ o~ al bl 5.T 81,1 o Blatd ) . .
C=(A, B)= = = ..o is the matrix of errors. It
NT b;nr ~T Sm.1 v Omontd

Cm

isanm X (n + d) random matrix.

~ alT th
=(A, B)=Co+C = ajl..};T

m

) is the matrix of observations. Itis an m x (n +

d) random matrix.

XY is a covariance matrix of errors for one observation. For every i, it is assumed that
Ec¢; =0and E¢; E;'— = X. The matrix X' is symmetric, positive semidefinite,
nonrandom, and of size (n + d) x (n + d). It is assumed known when we
construct the TLS estimator.

Xo is the matrix of true regression parameters. It is a nonrandom n X d matrix and is
a parameter of interest.

ngt = ()_(‘}) is an augmented matrix of regression coefficients. It is a nonrandom

(n + d) x d matrix.
X is the TLS estimator of the matrix X 0-

Xext is a matrix whose column space sRan(Xext) is considered an estimator of the
subgpace span(X, eXt) The matrix Xy is of size (n + d) x d. For fixed m and
2, Xext 18 a Borel measurable function of the matrix C.

While in consistency theorems m tends to 0o, all matrices in this list except X, Xpand
Xext sﬂently depend on m. For example, in equatlons ‘limy, - 00 Amin (A Ag) = +00”
and “X — X almost surely” the matrices Ag and X depend on m.
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2 The model and the estimator

2.1 Statistical model

It is assumed that the matrices Ag and By satisfy the relation

Ag - Xo = By . 2)

mxn nxd mxd
They are observed with measurement errors Aand B , that is
A=Ag+A, B=By+B.

The matrix X is a parameter of interest.

Rewrite the relation in an implicit form. Let the m x (n + d) block matrices
Co, C, C € R"*(+d pbe constructed by binding “respective versions” of matrices A
and B:

Co = [Ao Bol, C =[A B], C =[A B].

Denote X%, = (_XI(Z] ). Then

ext —

Co - X% = 0. 3)

ext d
mx@m+d) (n+d)yxd "M%

The entries of the matrix C are denoted 8;j; the rows are ¢;:
~ +d ~ +d
C= (5ij),r-":1'}=1, Ci = (5ij)?=1-

Throughout the paper the following three conditions are assumed to be true:

The rows ¢; of the matrix C are mutually independent random vectors.  (4)
EC =0,and EG,¢] := (E8;8)/1 11 = X foralli=1,... m. 5)
k(X X%) =d. (6)
Example 2.1 (simple univariate linear regression with intercept). Fori =1,...,m
xi =& +6i;
yi = Bo+ Bi&i +&i,
where the measurement errors §;, &;,i = 1, ..., m, — all the 2m variables — are un-
correlated, E§; = 0, ]E(Si2 = 062, Eg; =0, and Eeiz = 022. A sequence {(x;, y;), | =
1,...,m} is observed. The parameters By and B are to be estimated.
This example is taken from [I, Section 1.1]. But the notation in Example 2.1
and elsewhere in the paper is different. Our notation is a? = (1, si)T, b? = n,

ai = (Lx)", b = v, 81 =0,82=238,83=¢, X = diag(0,0f,2), and
Xo = (Bo. BT
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Remark 2.1. For some matrices X, (0) is satisfied for any n x d matrix Xy. If the
matrix X in nonsingular, then condition (6) is satisfied. If the errors in the explana-
tory variables and in the response are uncorrelated, i.e., if the matrix X' has a block-

diagonal form
(%X O
= ( 0 Ebh>

(where X, = IEZz,-ZziT and X, = IEII;,-I;Z.T ) with nonsingular matrix Xy, then condi-
tion (6) is satisfied. For example, in the basic mixed LS-TLS problem X is diagonal,
X'pp 1s nonsingular, and so (6) holds true. If the null-space of the matrix X~ (which
equals span(X)1 because X is symmetric) lies inside the subspace spanned by the
first n (of n + d) standard basis vectors, then condition (6) is also satisfied. On the
other hand, if rk X' < d, then condition (6) is not satisfied.

2.2 Total least squares (TLS) estimator
First, find the m x (n + d) matrix A for which the constrained minimum is attained

1A (22T p — min;
A(I — Px) =0; 7
k(C — A) <n.

Hereafter X7 is the Moore—Penrose pseudoinverse matrix of the matrix ¥, Py is an
orthogonal projector onto the column space of ¥, Py = X X7,

Now, show that the minimum in (7) is attained. The constraint tk(C — A) < n is
satisfied if and only if all the minors of C — A of order n+ 1 vanish. Thus the set of all
A that satisfy the constraints (the constraint set) is defined by @ +1),22"r;(":d¥), @ +1
algebraic equations; and so it is closed. The constraint set is nonempty almost surely
because it contains C. The functional |A X || is a pseudonorm on Rmx(ntd) pyt jt
is a norm on the linear subspace {A : A (I — XT) = 0}, where it induces a natural
subspace topology. The constraint set is closed on the subspace (with the norm), and
whenever it is nonempty (i.e., almost surely), it has a minimal-norm element.

Notice that under condition (6) the constrain set is non-empty always and not just
almost surely. This follows from Proposition 7.9.

For the matrix A that is a solution to minimization problem (7), consider the
rowspace span((C — A)T) of the matrix C — A. Its dimension does not exceed 7.
Its orthogonal basis can be completed to the orthogonal basis in R”*¢, and the com-
plement consists of n + d — rtk(C — A) > d vectors. Choose d vectors from the
complement, which are linearly independent, and bind them (as column-vectors) into
(n + d) x d matrix X, ext- The matrix X, ext Satisfies the equation

(€ = A)Xex =0. ®)

If the lower d x d block of the matrix X, ext 1S @ nonsingular matrix, by linear transfor-
mation of columns (i.e., by right-multiplying by some nonsingular matrix) the matrix
Xext can be transformed to the form

X

-1)°
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where [ is d x d identity matrix. The matrix X satisfies the equation

~

(€ —A) ( _XI> = 0. ©)

(Otherwise, if the lower block of the matrix X, ext 18 singular, then our estimation fails.
Note that whether the lower block of the matrix Xey is singular might depend not only
on the observations C, but also on the choice of the matrix A where the minimum in
(7) in attained and the d vectors that make matrix X, ext- We will show that the lower
block of the matrix S(\ext is nonsingular with high probability regardless of the choice
of A and )?ext.)

Columns of the matrix Xey should span the eigenspace (generalized invariant
space) of the matrix pencil (CTC, ¥) which corresponds to the d smallest general-
ized eigenvalues. That the columns of the matrix X, ext Span the generalized invariant
space corresponding to finite generalized eigenvalues is written in the matrix notation
as follows:

IMERY*? : CTCXext = X XexiM.

Possible problems that may arise in the course of solving the minimization prob-
lem (7) are discussed in [18]. We should mention that our two-step definition (7)
& (9) of the TLS estimator is slightly different from the conventional definition in
[20, Sections 2.3.2 and 3.2] or in [10]. In these papers, the problem from which the
estimator X is found is equivalent to the following:

1A (22T p — min;
A (I — Ps) =0;

b (10)
(€~ n) (_XI) ~0,

where the optimization is performed for A and X that satisfy the constraints in (10).
If our estimation defined with (7) and (9) succeeds, then the minimum values in (7)
and (10) coincide, and the minimum in (10) is attained for (A, X ) that is the solution
to (7) & (9). Conversely, if our estimation succeeds for at least one choice of A and
)?ext, then all the solutions to (10) can be obtained with different choices of A and
Xext. However, strange things may happen if our estimation always fails.

Besides (7), consider the optimization problem

Amax (AZTAT) = min;
Al - Px)=0; (1)
rk(C — A) <n.

It will be shown that every A that minimizes (7) also minimizes (11).

We can construct the optimization problem that generalizes both (7) and (11). Let
[|M ||y be a unitarily invariant norm on m X (n+d) matrices. Consider the optimization
problem

1A (22 ly — min;
Al - Px)=0; (12)
k(C — A) < n.
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Then every A that minimizes (7) also minimizes (12), and every A that minimizes
(12) also minimizes (11). If || M ||y is the Frobenius norm, then optimization problems
(7) and (12) coincide, and if || M ||y is the spectral norm, then optimization problems
(11) and (12) coincide.

Remark 2.2. A solution to problem (7) or (11) does not change if the matrix X' is
multiplied by a positive scalar factor. Thus, instead of assuming that the matrix X is
known completely, we can assume that X' is known up to a scalar factor.

3 Known consistency results

In this section we briefly revise known consistency results. One of conditions for
the consistency of the TLS estimator is the convergence of %Ag Ay to a nonsingular
matrix. It is required, for example, in [5]. The condition is relaxed in the paper by
Gallo [4].

Theorem 3.1 (Gallo [4], Theorem 2). Letd = 1,

m_l/z)\min(A(—)er) — 00 as m—> 00,
2 AT
)”min(A() AO)

- — 00 as m — o0,
)\max(A() Ao)

and the measurement errors ¢; are identically distributed, with finite fourth moment
- s P
E|&|1* < oo. Then X —> Xo, m — oo.
The theorem can be generalized for the multivariate regression. The condition
that the errors on different observations have the same distribution can be dropped.

Instead, Kukush and Van Huffel [10] assume that the fourth moments of the error
distributions are bounded.

Theorem 3.2 (Kukush and Van Huffel [10], Theorem 4a). Let

sup IEl(S,-j|4 < 00,

i>1
m_l/zkmin(Ang) — 00 as m— 00,
22 (AT Ag)
min 70
- 00 as m— .
)\max(A() Ag)

s P
Then X — Xgas m — oQ.
Here is the strong consistency theorem:

Theorem 3.3 (Kukush and Van Huffel [10], Theorem 4b). Let for some r > 2 and
mo > 1,
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5 (i) <
Amin(A] Ao) ’

m=m
>\ Amax(Ag Ao)\”

> (Gmrett) <w
m=mq )”min(AO Ao)

Then X — Xo as m — oo, almost surely.

In the following consistency theorem the moment condition imposed on the errors
is relaxed.

Theorem 3.4 (Kukush and Van Huffel [10], Theorem 5b). Let for somer, 1 <r <2,

sup E |5,~j|2r < 00,

i>1
m_l/’)\min(A(—)rAO) — 00 as m— oo,
A2 (AJA
LOTO) — 00 as m — oo.
)hmax(A() Ao)

Then)?—P> Xo asm — o0.

Generalizations of Theorems 3.2, 3.3, and 3.4 are obtained in [18]. An essential
improvement is achieved. Namely, it is not required that A;lizn(Ag AQ)Amax (Ag Agp)
converge to 0.

Theorem 3.5 (Shklyar [18], Theorem 4.1, generalization of Theorems 3.2 and 3.4).
Let for somer, 1 <r <2,

sup E|8,~j|2r < 00,
i>1
j=1,...,n+d

m_l/rkmin(Ang) — 00 as m— o0o.

Then X —P> Xoasm — o0.
Theorem 3.6 (Shklyar [18], Theorem 4.2, generalization of Theorem 3.3). Let for

somer > 2 and mg > 1,

sup ]E|8ij|2’ < 00,
i>1

j=1,...,n+d
o0 ﬁ r
) T =
m=my )\min(AO Ao)

Then X — Xo as m — oo, almost surely.

In the next theorem strong consistency is obtained for r < 2.
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Theorem 3.7 (Shklyar [18], Theorem 4.3). Let for somer (1 <r <2)and mg > 1,

— 1
L2r
sup  E|§;17 < oo, = <
]—liZIner m=mg )‘min(AO Ao)

Then X — Xo as m — oo, almost surely.

The key point of the proof is the application of our own theorem on perturba-
tion bounds for generalized eigenvectors (Theorems 6.5 and 6.6, see also [18]). The
conditions were relaxed by renormalization of the data.

4 Existence and uniqueness of the estimator

When we speak of sequence {A,,, m > 1} of random events parametrized by sample
size m, we say that a random event occurs with high probability if the probability of
the event tends to 1 as m — oo, and we say that a random event occurs eventually if
almost surely there exists m( such that the random event occurs whenever m > my,
that is ]P(lrinrg iO%f A;;) = 1. (In this definition, A, are random events. Elsewhere in this

paper, A,, are matrices.)

Theorem 4.1. Under the conditions of Theorem 3.5, the following three events oc-
cur with high probability; under the conditions of Theorem 3.6 or 3.7, the following
relations occur eventually.

1. The constrained minimum in (7) is attained. If A satisfies the constraints in (7)
(particularly, if matrix A is a solution to optimization problem (7)), then the
linear equation (8) has a solution Xext that is a full-rank matrix.

2. The optimization problem (7) has a unique solution A.

3. For any A that is a solution to (7), equation (9) (which is a linear equation in
X) has a unique solution.

Theorem 4.2.

1. The constrained minimum in (11) is attained. If A satisfies the constraints in
(11), then the linear equation (8) has a solution Xex that is a full-rank matrix.

2. Under the conditions of Theorem 3.5, the following random event occurs with
high probability: for any A that is a solution to (11), equation (9) has a solution
X. (Equation (9) might have multiple solutions.) The solution is a consistent
estimator of X, i.e., X —> Xo in probability.

3. Under the conditions of Theorem 3.6 or 3.7, the following random event occurs
eventually: for any A that is a solution to (11), equation (9) has a solution X.
The solution is a strongly consistent estimator of Xy, i.e., X — Xo almost
surely.

Remark 4.2-1. Theorem 4.2 can be generalized in the following way: all references to
(11) can be changed into references to (12). Thus, if Frobenius norm in the definition
of the estimator is changed to any unitarily invariant norm, the consistency results are
still valid.
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5 Sketch of the proof of Theorems 3.5-3.7

Denote
N = Cg Cy+ Amin(A] Ag)1.

Under the conditions of any of the consistency theorems in Section 3 there is a con-
vergence )»mm(AO Ay) — oo. Hence the matrix N is nonsingular for m large enough.
The matrix N is used as the denominator in the law of large numbers. Also, it is used
for rescaling the problem: the condition number of N~/ ZC(—)'— CyN ~1/2 equals 2 at
most.

The proofs of consistency theorems differ one from another, but they have the
same structure and common parts. First, the law of large numbers

m
NTV(CTC—Cf Co—mE)NT2 = N7V23 (e — ()T = Z)N"12 = 0
i=1
13)
holds either in probability or almost surely, which depends on the theorem being
proved. The proof varies for different theorems.

The inequalities (54) and (57) imply that whenever convergence (13) occurs, the
sine between vectors X ex and X2 ext (in the univariate regression) or the largest of sines
of canonical values between column spans of matrices X, ext and XY tends to 0 as the
sample size m increases:

ext

[ sin Z(Xexts X030 < | sin Z(NY? Xexe, N2 X)) | — 0. (14)

To prove (14) we use some algebra, the fact that X « (in the univariate model) or the
columns of XY, (in the multivariate model) are the minimum-eigenvalue eigenvectors
of matrix N (see ineq. (52)), and eigenvector perturbation theorems — Lemma 6.5 or
Lemma 6.6.

Then, by Theorem 8.3 we conclude that

IX — Xo| — O. (15)

6 Relevant classical results

We use some classical results. However, we state them in a form convenient for our
study and provide the proof for some of them.

6.1 Generalized eigenvectors and eigenvalues

In this paper we deal with real matrices. Most theorems in this section can be general-
ized for matrices with complex entries by requiring that matrices be Hermitian rather
than symmetric, and by complex conjugating where it is necessary.

Theorem 6.1 (Simultaneous diagonalization of a definite matrix pair). Let A and B
be n x n symmetric matrices such that for some a and B the matrix ¢ A + BB is
positive definite. Then there exist a nonsingular matrix T and diagonal matrices A
and M such that

A=(r")ar~',  B=(r"")'Mr .
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If in the decomposition T = [uy,up,...,u,], A = diag(rky,...,A;), M =
diag(u1, ..., Un), then the numbers A; /u; € RU{oo} are called generalized eigenval-
ues, and the columns u; of the matrix T are called the right generalized eigenvectors
of the matrix pencil (A, B) because the following relation holds true:

miAu; = AijBu;.

Theorem 6.1 is well known; see Theorem IV.3.5 in [19, page 318]. The conditions
of Theorem 6.1 can be changed as follows:

Theorem 6.2. Let A and B be symmetric positive semidefinite matrices. Then there
exist a nonsingular matrix T and diagonal matrices A and M such that

A=(r")ar~',  B=(r"")'Mr . (16)

In Theorem 6.1 X; and w; cannot be equal to O for the same i, while in Theorem
6.2 they can. On the other hand, in Theorem 6.1 A; and w; can be any real numbers,
while in Theorem 6.2 A; > 0 and p; > 0. Theorem 6.2 is proved in [15].

Remark 6.2-1. If the matrices A and B are symmetric and positive semidefinite, then
rk(A, B) =rk(A + B), a7

where
rk(A, B) = In]le rk(A + kB)

is the determinantal rank of the matrix pencil (A, B). (For square n x n matrices A
and B, the determinantal rank characterizes if the matrix pencil is regular or singular.
The matrix pencil (A, B) is regular if rk(A, B) = n, and singular if tk(A, B) < n.)
The inequality rk(A, B) > rk(A + B) follows from the definition of the deter-
minantal rank. For all k¥ € R and for all such vectors x that (A + B)x = 0 we have
xTAx + x"Bx = 0, and because of positive semidefiniteness of matrices A and
B,x"Ax > 0and x' Bx > 0. Thus, xTAx = x"Bx = 0. Again, due to positive
semidefiniteness of A and B, Ax = Bx = 0and (A + kB)x = 0. Thus, for all k € R

{x : (A+B)x=0} C {x : (A+kB)x=0},
tk(A + B) > k(A + kB),
rk(A, B) = ml?xrk(A + kB) <1k(A + B),

and (17) is proved.

Remark 6.2-2. Let A and B be positive semidefinite matrices of the same size such
that tk(A + B) = rk(B). The representation (16) might be not unique. But there exists
a representation (16) such that

AM=ui=0 if i=1,...,def(B),
wi >0 if i=def(B)+1,...,n,

T=[ T T |
nxdef(B) nxrk(B)
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(Here if the matrix B is nonsingular, then 77 is n x 0 empty matrix; if B = 0, then 73
is n x 0 matrix. In these marginal cases, Tl—r T> is an empty matrix and is considered
to be zero matrix.) The desired representation can be obtained from [2] for § = 0 (in
de Leeuw’s notation). This representation is constructed as follows. Let the columns
of matrix 77 make the orthogonal normalized basis of Ker(B) = {v : Bv = 0}.
There exists n x rk(B) matrix F such that B = FF . Let the columns of matrix L
be the orthogonal normalized eigenvectors of the matrix FTA(F™)T. Then set T =
(F )T L. Note that the notation S, F and L is borrowed from [2], and is used only
once. Elsewhere in the paper, the matrix F* will have a different meaning.

Proposition 6.3. Let A and B be symmetric positive semidefinite matrices such that
k(A + B) = rk(B). In the simultaneous diagonalization in Theorem 6.2 with Re-
mark 6.2-2

Bt =1™M'TT,
T -1 -1
M'" = diag(0, ..., 0, IaefBys1s -+ > Pn ).
def(B)

Proof. Let us verify the Moore—Penrose conditions:

(r=Y"Mr='r™iTT (77 'MT ! = (17) TMT (18)
T™'TT (T~ )MT 'TMTT =TMTT, (19)

and the fact that the matrices (I~)"™M7T-!'TM'TT and TM'TT x
(T~HT™MT ! are symmetric. The equalities (18) and (19) can be verified directly;
and the symmetry properties can be reduced to the equality

(T PuTT =T PyT ™! (20)

with Py = MM = diag(0,...,0,1,..., 1).
—— ——

def(B) k(B)
Since TIT T, =0, T T is a block diagonal matrix. Hence PyT T = T T Py,
whence (20) follows. |

6.2 Angle between two linear subspaces

Let Vi and V; be linear subspaces of R”, with dim V| = k; < dim V, = kj. Then
there exists an orthogonal n x n matrix U such that

diagy, ., (cosO;, i =1,..., k1)
Vi = 2%k . , 21
! span< <d1ag(n —ky)xk, (SINGi, i =1,...,min(n — kz, k1)) @)
Iy
Vo = span{U 2 . 22
2 =sp < <O(nk2)xk2>> (22)

Here rectangular diagonal matrices are allowed. If in (21) there are more cosines
than sines (i.e., if k> + k; > n), then the excessive cosines should be equal to 1, so
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the columns of the bidiagonal matrix in (21) are unit vectors (which are orthogonal
to each other). Here the columns of U are the vectors of some convenient “new”
basis in R”, so U is a transitional matrix from the standard basis to “new” basis; the
columns of matrix products in span(- - - ) in (21) and (22) are the vectors of the bases
of subspaces Vi and V»; the bidiagonal matrix in (21) and the diagonal matrix in
(22) are the transitional matrices from “new” basis in R” to the bases in V| and V5,
respectively.

The angles 6y are called the canonical angles between V7 and V>. They can be
selected so that 0 < 6; < %rr (to achieve this, we might have to reverse some vectors
of the bases).

Denote Py, the matrix of the orthogonal projector onto V;. The singular values of
the matrix Py, (I — Py,) are equal to sinf (k = 1, ..., k1); besides them, there is a
singular value 0 of multiplicity n — k.

Denote the greatest of the sines of the canonical eigenvalues

| sin Z(vi, Vo) | = max sin6f = | Py, (1 = Pyy)|. (23)
=1,...,K1
If dim V| = 1, V| = span(v), then
. v . 1
sin Z(v, Vo) = H (I — Pvz)—H = dlst<—v, V2>.
[vll vl

This can be generalized for dim V| > 1:

v
sin Z(Vy, V)| = max |[(I — Py,)—|,
” ” veV\(0) 2ol
whence
-
v' (I — Py,)v
|| sin Z(Vy, Va) ||2 = max (—ZVZ),
veVi\{0} vl
T
. 2 . v Pyu
1—||sinZ(Vy, Vo))" = min 24)
” ” veViN0)  [lv]12
If dimV, = dimV,, then ||sinZ(Vi, V2)| = [Py, — Py,|l, and therefore
|| sin Z(Vy, Vo)|| = | sin £(Va, V1)||. Otherwise the right-hand side of (23) may
change if V| and V, are swapped (particularly, if dim V| < dim V5, then || Py, ({ —
Py,)|| may or may not be equal to 1, but always || Py, (I — Py,)|| = 1; see the proof

of Lemma 8.2 in the appendix).

We will often omit “span” in arguments of sine. Thus, for n-row matrices X and
X2, |IsinZ(Xy, V)l = [IsinZ(span(X1), V2)|| and [sin Z(Xy, Xo)| =
|| sin Z(span(X1), span(X2))]|.

Lemma 6.4. Let Vi1, Vo and Vi3 be three linear subspaces in R", with dim V|| =
di < dimV, = dy < dim Vi3 = d3 and Vi1 C Vi3. Then there exists such a linear
subspace Viy C R" that Vi1 C V12 C Vi3, dim Vip = dp, and || sin Z(V2, Vo)|| = 1.



Consistency of the total least squares estimator in linear errors-in-variables regression 261

Proof. Since dim Vi3 + dim V2L = ds +n — dr > n, there exists a vector v # 0,
v € Vi3 N Vit Since max(dy, 1) < dimspan(Vyy, v) < dj + 1, it holds that

dimspan(Vq1, v) < dp < dim Vj3.

Therefore, there exists a d>-dimensional subspace Vi, such that span( Vi1, v) C V12 C
Vi3. Then Vi C Vio C Vizand v € Vip N V5t Hence Py, (I — Py,)v = v,
| Py,,(I — Py,)|l = 1, and due to equation (23), || sin Z(V12, V2)|| = 1. Thus, the
subspace V1, has the desired properties. O

6.3 Perturbation of eigenvectors and invariant spaces

Lemma 6.5. Let A, B, A be symmetric matrices, Amin(A) = 0, A2(A) > 0 and
Amin(B) > 0. Let Axg = 0 and Bxgy # 0 (so xg is an eigenvector of the matrix A that
corresponds to the minimum eigenvalue). Let minimum of the function

, x"Bx > 0,

be attained at the point x. Then

A 2 x™B
sin® £(xy. x0) < Al <1+ IIonI x 2)6)
A2(A) xo Bxo x|l

Remark 6.5-1. The function f(x) may or may not attain the minimum. Thus the
condition f(x4) = min,Tg,.( f(x) sometimes cannot be satisfied. But the theorem
is still true if

1&11_1) ixnf fx)= inf f(x) (25)

x:xTBx>0

and x, # 0.

Now proclaim the multivariate generalization of Lemma 6.5. We will not gener-
alize Remark 6.5-1. Instead, we will check that the minimum is attained when we use
Lemma 6.6 (see Proposition 7.10).

Lemma 6.6. Let A, B, Abenxn symmetric matrices, Li(A) = O0foralli=1,...,d,
Ad+1(A) > 0, Apin(B) > 0. Let X be n x d matrix such that AXo = 0 and the matrix
XOT BX, is nonsingular. Let the functional

OO = hmax (X TBX) ' XT(A+ A)X) if X e R and XTBX > 0,
f(X) is not defined otherwise, (26)

attain its minimum. Then for any point X where the minimum is attained,

IA]

. 2
” sSin Z(X, X()) || < m

(1+ 1Bl Amax ((Xg BX,) ™' XJ Xo))-

6.4 Rosenthal inequality

In the following theorems, a random variable £ is called centered if E€E = 0.
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Theorem 6.7. Let v > 2 be a nonrandom real number. Then there exist o« > 0
and B > 0 such that for any set of centered mutually independent random variables
{&,i=1,...,m}, m>1, the following inequality holds true:

E[ - ] f“él@[mw]m(§mg>

m v/2
Y&
i=1

Theorem 6.7 is well known; see [16, Theorem 2.9, page 59].

Theorem 6.8. Let v be a nonrandom real number, 1 < v < 2. Then there exists
o > 0 such that for any set of centered mutually independent random variables
{&,i =1,...,m}, m>1, the inequality holds true:

[h IE aéE[W].

m
2
i=1
Proof. The desired inequality is trivial for v = 1. Forall 1 < v < 2 itis a conse-
quence of the Marcinkiewicz—Zygmund inequality

v m v/2 m m
E[ ]saE[(Zsﬁ) ]saEDsn”:aZEw.
= i=1 i=1 i=1

m
Y&
i=1
Here the first inequality is due to Marcinkiewicz and Zygmund [11, Theorem 13].
The second inequality follows from the fact that for v < 2,

m v/2 m
(Z 53) < ; &1, 0

i=1

7 Generalized eigenvalue problem for positive semidefinite matrices

In this section we explain the relationship between the TLS estimator and the general-
ized eigenvalue problem. The results of this section are important for constructing the
TLS estimator. Proposition 7.9 is used to state the uniqueness of the TLS estimator.

Lemma 7.1. Let A and B be n x n symmetric positive semidefinite matrices, with
simultaneous diagonalization

A=TN'AT™!,  B=(T"")'MT!,
with
A =diag(ry, ..., Ay), M = diag(ug, - - -, Un)
(see Theorem 6.2 for its existence). Fori = 1, ..., n denote
Aifmi if pi >0,
v =10 ifxi =0,

400 ifA; >0, u; =0.
Assume that vi < vy < --- < v,. Then

vi=min{A > 0] “3V, dimV =i: (A—1B)|ly <0}, 27)
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i.e., v; is the smallest number A > 0, such that there exists an i-dimensional subspace
V C R", such that the quadratic form A — LB is negative semidefinite on V.

Remark 7.1-1. v; < oo if and only if
A3V, dimV =i: (A—-AB)|y <0.

Remark 7.1-2. Let v; < oo. The minimum in (27) is attained for V being the linear
span of first i columns of the matrix 7' (i.e., the linear span of the eigenvectors of the
matrix pencil (A, B) that correspond to the i smallest generalized eigenvalues). That
is

(A=viB)ly <0 for V =span(T(y, " ).

—k)xk
In Propositions 7.2—7.5 the following optimization problem is considered. For a
fixed (n + d) x d matrix X find an m x (n + d) matrix A where the constrained
minimum is attained:
AXTAT — min;

Al - Px)=0; (28)
(C—-—ANX=0.
Here the matrix X is assumed to be of full rank:
kX =d. (29)

Proposition 7.2. 1. The constraints in (28) are compatible if and only if
span(X'CT) C span(X " X). (30)

Here span(M) is a column space of the matrix M.

2. Let the constraints in (28) be compatible. Then the least element of the partially
ordered set (in the Loewner order) {(AXTAT : A(I—Px) = 0 and (C—A)X = 0}
is attained for A = CX (X" XX) X" X and is equal to CX(XT X X) X TCT. This
means the following:

2a. For A= CX(X"2X)'XT X, it holds that

A — Ps)=0, (C—-A)X =0, (31)

ASTAT =cx(xTEx)'xTCT; (32)

2b. For any A which satisfies the constraints A (I — Py) = 0and (C—A)X =0,
AZTAT = cx(xTzx)'xTCT. (33)

Remark 7.2-1. 1If the constraints are compatible, the least element (and the unique
minimum) is attained at a single point. Namely, the equalities

Al — Py) =0, (C—A)X =0,
ASTAT =cx(xTzx)'xTcT
imply A=CX(X'2X)'Xx"¥.
Proposition 7.3. Let the matrix pencil (CTC, X) be definite and (29) hold. The con-

straints in (28) are compatible if and only if the matrix X ' £ X is nonsingular. Then
Proposition 7.2 still holds true if (X" 2 X))\ is substituted for (X T £ X)'.
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Proposition 7.4. Let X be an (n 4+ d) x d matrix which satisfies (29) and makes the

constraints in (28) compatible. Then fork = 1,2, ...,d,
min ~ Aggm_a(AZTAT
A(I—-Ps)=0 kbm d( )
(C—A)X=0

=min{x > 0: “IVCspan(X), dimV=k: (CTC—1X)ly <07}. (34

Remark 7.4-1. In the left-hand side of (34) the minima are attained for the same

A=CX(X"2XX)"XTX forall k (the k sets where the minima are attained have non-

empty intersection; we will show that the intersection comprises of a single element).
One can choose a stack of subspaces

VicVoaC--- C Vg =span(X)

such that Vi is the element where the minimum in the right-hand side of (34) is
attained, i.e., forallk =1, ...,d,

dim Vy =k, Vi C span(X), (CTC—wX)ly, <0,

with vy = mina (/- ps)=0 )\,k_;_m_d(AE%AT).
(C—A)X=0
In Propositions 7.5 to 7.9, we will use notation from simultaneous diagonalization
of matrices C' C and X:

clc=(rY)ar',  s=("Mr, (35)
where
A =diag(A1, ..., Anta), M = diag(u1, ..., Un+d),
T = [M11u27-"sud1"'7un+d]-

If Remark 6.2-2 is applicable, let the simultaneous diagonalization be constructed
accordingly. For k = 1, ..., n+d denote

A/ if g > 0,
v =130 if A, =0,
+00 if A\g > 0, ux = 0.

Let vg be arranged in ascending order.

Proposition 7.5. Let X be an (n + d) x d matrix which satisfies (29) and makes
constraints in (28) compatible. Then

min - Agym—a(AZTAT) > 1. (36)
A (I—Px)=0
(C—A)X=0
If vg < oo, then for X = [uy,us,...,uq] the inequality in (36) becomes an

equality.
Corollary. In the minimization problem (11), the constrained minimum is equal to
min_~ Amax(AZTAT) = vg.

A (I-P5)=0
tk(C—A)<n
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Proposition 7.6. In the minimization problem (7) the constrained minimum is equal
to

A(I—Ps)=0

d
min ”(A 21/2)_{-HF = ka.
tk(C—A)<n k=1

Whenever the minimum in (7) is attained for some matrix A, the minimum in (11)
is attained for the same A.

Proposition 7.7. Let | M ||y be an arbitrary unitarily invariant norm on m X n matri-
ces. Singular values of the matrix M are arranged in descending order and denoted
oi(M):

01(M) = 02(M) = -+ = Omin(m,n)(M) = 0.

Let M| and M> be m x n matrices. Then
1. Ifoi(My) < 0;(M>) foralli =1, ..., min(m, n), then |M1|lu < || M2]u.

2. Ifo1(My) < 01(M3) and 0;(M1) < 6;(M>) foralli =2, ..., min(m, n), then
Millu < M2]lu.

Proposition 7.8. Consider the optimization problem (12) with arbitrary unitarily
invariant norm ||M||y. Then

1. Any minimizer A to the optimization problem (7) also minimizes (12).
2. Any minimizer A to the optimization problem (12) also minimizes (11).

Proposition 7.9. For any A where the minimum in (7) is attained and the corre-
sponding solution Xex; of the linear equations (8) (Xext is an (n + d) x d matrix of
rank d), it holds that

~

span{u; : v; < vg) C span{Xex) C span{u; : v; < vg). 37

Conversely, if vg < +00 and the matrix Xexc satisfies conditions (37), then there
exists a common solution A to the minimization problem (7) and the linear equa-
tions (8).

As a consequence, if vy < vgz41, then (7) and (8) unambiguously determine

o~

span(Xex¢) of rank d.

Proposition 7.10. Let (CTC, X) be a definite matrix pencil. Then for any A where
the minimum in (11) is attained, the corresponding solution Xex; of the linear equa-
tions (8) (such that 1k Xex = d) is a point where the minimum of the functional

X > (X TEX)7'XTCTCX), XeR™HD* xTyxs0,  (38)
is attained. It is also a point where the minimum of
X = na (XTZX) ' XT(CTC = mE)X), (39)

is attained.

The functional (39) equals the functional (38) minus m.
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8 Appendix: Proofs
Detailed proofs of Theorems 3.5-3.7

8.1 Bounds for eigenvalues of some matrices used in the proof

8.1.1 Eigenvalues of the matrix COT C

The (n + d) x (n + d) matrix CJ C, is symmetric and positive semidefinite. Since
C()XgXt = AopXo — By = 0, the matrix C(;r C, is rank deficient with eigenvalue 0 of
multiplicity at least d. As Ag A, is an x n principal submatrix of CoT Co>

ra+1(Cg Co) = Amin(A] Ao) (40)

by the Cauchy interlacing theorem (Theorem IV.4.2 from [19] used d times).

Due to inequality (40), if the matrix AE')—AO is nonsingular, then A, 41 (C&r Co) > 0,
whence rk(COT Co) = d. If the conditions of Theorem 3.5, 3.6 or 3.7 hold true, then
Amin(Ang) — 00, and thus

)»d_;,_l(C(;rCO) > )\min(AgAO) >0

for m large enough.
Proposition 8.1. If conditions (4)—(6) hold true, and conditions of either of Theorems

3.5, 3.6, or 3.7 hold true, then for m large enough (CTC, X) is a definite matrix
pencil almost surely. More specifically,

Imo Vm > mo: P(CTC+ 2 >0)=1.

Proof. /. If the matrix X' is nonsingular, then Proposition 8.1 is obvious. Due to
condition (6), tk ¥ > d (see Remark 2.1), whence ¥ # 0. In what follows, assume
that X' is a singular but non-zero matrix. Let F' = ( g Ybea(n+d)x (n+d—rk(X))
matrix whose columns make the basis of the null-space Ker(X) = {x : ¥x = 0} of
the matrix X.

2. Now prove that columns of the matrix [/, Xo] F' are linearly independent. Assume
the contrary. Then for some v € Rr+d=Tk(2)\ {0},

(ln  Xo] Fv =0,

Fiv=—-XoFov,
Fv= (X )Fv =X} Fu, (1)
0=XFv=2XX" - Fu. (42)

Furthermore, Fv # 0 because v # 0 and the columns of F' are linearly indepen-
dent. Hence, by (41), Fov # 0.

Equality (42) implies that the columns of the matrix X' X th are linearly dependent,
and this contradicts condition (6). The contradiction means that columns of the matrix
[1 X0 ] F are linearly independent.

ext

3. If the conditions of either Theorem 3.5, 3.6, or 3.7 hold true, then the matrix Ang
is positive definite for m large enough.
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4. Under conditions (4) and (5), CF = 0 almost surely. Indeed, E¢; = 0 and
var[¢;F1=FTXF =0,i=1,2,...,m.

5. Itremains to prove the implication:
if AjAy>0 and CF=0, then C'C+ ¥ >0.

The matrices C ' C and X are positive semidefinite. Suppose that x ' (CTC+X)x =0
and prove that x = 0. Since x'(CTC + X)x =0, Cx = 0and Xx = 0. The vector
x belongs to the null-space of the matrix Y. Therefore, x = Fv for some vector
v € RM4=KY Then
0= Ay Cx = Ag(Co + C)x
= AgCoFv + AgCFv
= Ag Ay I, Xol Fv+0. (43)

As the matrix A(—)'—A0 is nonsingular and columns of the matrix [1, Xo] F are linearly
independent, the columns of the matrix A(—)r Ay [ Xo] F are linearly independent as
well. Hence, (43) implies v = 0, and so x = Fv = 0.

We have proved that the equality x ' (CTC 4+ X)x = 0 implies x = 0. Thus, the
positive semidefinite matrix C ' C + X is nonsingular, and so positive definite. ~ [J

1
8.1.2 Eigenvalues and common eigenvectors of N and N~ 2 C(—')—CON_T

The rank-deficient positive semidefinite symmetric matrix C(—)r Cp can be factorized
as:

Cg Cy = U diag(rmin(Cy Co), 42(Cq Co), - - ., Anta(Cy Co))U T
= Udiag(r;j(Cy Co); j=1,....n+d)U",
with an orthogonal matrix U and
Amin(Cy Co) = *2(Cy Co) = -+ = 2a(Cy Co) = 0.
Then the eigendecomposition of the matrix N = C(—)r Co + )»min(A(—)r Ag)l is
N = U diag(;(Cg Co) + Amin(Ag A0); j=1,....n+d)U".

Notice that
Amin(N) = -+ = Ag(N) = Amin(Aq Ao). (44)

The matrix N is nonsingular as soon as Ang is nonsingular. Hence, under the con-
ditions of Theorem 3.5, 3.6, or 3.7, the matrix N is nonsingular for m large enough.
Since CoX?,, = 0, it holds that

ext —

NX2( = Amin(Ag A0) X0y (45)
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As soon as N is nonsingular, the matrices N ~1/2 and N~V ZCJ CoN ~1/2 have the
eigendecomposition

1

N—1/2=Udiag( ; j=1,...,n+d>UT,

25 (CJ Co) + hmin(A4] A0)
A (Cq Co)
2j(Cy Co) + Amin(A] Ao)

NVl coNT? = Udiag( ci=1,., n+d>UT.

Thus, the eigenvalues of N~'/2 and N~1/ 2COT CoN~1/2 satisfy the following:

_ _ 1
INTV2] = dnax (NT1?) = o0 (46)
\/ )\min(AgAO)
Aj(NTV2Cg N =0, j=1,....d; 47)
T<a(NTPefeoNTY2) <1, j=d+1,... n+d. (48)
As a result,
In<uw(N"12cf CyN~?) < n. (49)
Because tr(CoN~'CJ ) = tr(C,N~V2N=12C ) = w(N~V2C ) CyN~1/%),
In<u(CoN~'cy) < n. (50)
These properties will be used in Sections 8.2 and 8.3.
8.2 Use of eigenvector perturbation theorems
8.2.1 Univariate regression (d = 1)
Remember inequalities (44) (whence (51) follows) and (45):
X\;tNX\ext > )hmin(A(—l)—AO)?;()?extQ (51)
NX2 = min(Ag A0) X2
Then
X&X&)? (XL NXQ?
XeTxtXeXt : ng—{xgxt B XeTxtNXeXt ’ ng—l—Nngt
cos? A(Xext, ngt) > cos’ A(Nl/zXext, Nl/ngxt),
sin’ A(J?ext, ngt) < sin® A(Nl/zjf\ext, Nl/ngxt). (52)

Now, apply Lemma 6.5 on the perturbation bound for the minimum-eigenvalue
eigenvector. The unperturbed symmetric matrix is N ~!/2 COT CoN~1/2, satisfying

Amin(NT12CJ CoNT/%) = 0,
N2l coNTANY2X0 =0,
r(NTV2Cf CoNTV) = 1

The null-vector of the unperturbed matrix is N ~1/2x9, .
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The column vector Xey is a generalized eigenvector of the matrix pencil (CTC,
27). Denote the corresponding eigenvalue by Apin. Thus,

CTCS(\ext = Amin Z‘5(\ext~
The perturbed matrix is N -l 2(C Tc — mX)N —1/2. the minimum eigenvalue of the
matrix pencil (N_I/Z(CIC —mZ‘)N‘l/z, N_I/ZZ’N_I/Z) is equal to Amin —m, and
the eigenvector is N 12X

N*]/Z(C—rc _ mE)N7]/2N1/25(\eXt — ()\-mln _ m)N71/22N71/2N1/25(\eXt'

We have to verify that N~1/2XN~1/2N1/2x0 = 0; this follows from condi-
tion (6). Obviously, the matrix N ~!/2 X N~1/2 is positive semidefinite:

N2 N~1/2 >, (53)
Denote
e=||N"V2HCTC—mZ)N"V2 - N2 CoNTI.

By Lemma 6.5

. -~ €
sin’ Z(N]/zXextv N]/Zngt) = ﬁ

1+ ng—trNngt . Xg;(tEXeXt
X0Txx0 X1 NXey /)
ext ext ext ext
Use (45) and (51) again, and also use (52):

sin? A(Xext, X0 ) < sin? A(Nl/z)?ext, NI/ZXSM)

ext

0T yO0 v v
<26<1+ XextXext . %tEAXeXt)
ng—tr Engt X;(txext
x0Tx0 1z
5ze<1+—e’“ﬂ°“ ﬂ ”). (54)
Xext Exext

8.2.2  Multivariate regression (d > 1)

What follows is valid for both univariate (d = 1) and multivariate (d > 1) regression.
Due to (44), N > )»min(A(—)r Ap)I in the Loewner order; thus inequality (51) holds

in the Loewner order. Hence

TRT x0 (x0T x0 \=1y0T%
Yo ERd\{O} v XextXext(Xext Xext Xexl Xextv
0T X Xextv
TYT x0 (x0T yx0 \—1y0T%
V' Xoxi Xext Kext Xext) ™ Xext XextV

> )\min(A(TAO) ext“*ext

==
VT XN Xextv

With inequality (45), we get

TyT yO0 0T y0 \=1y0Ty

v XextXext(Xext Xext Xext Xextv
=T o

UTXeX[Xextv
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TayT vO0 0T 0 \—1y0T Ay
> v NXextXext(Xext NXext) Xext N Xexiv
B VT X & N Xextv

Using equation (24) to determine the sine and noticing that

ext

ext ext ext) ext ’

10T Ar1/2
ext ext) XCXIN 2

PNl/zxgxt = Nl/ZXSX[(XOTNXO
we get

)

1= sin £ (R KB = 1= sin £V Reg 120

ext ext ’2
| sin Z(Xext, X2 | < || sin Z(N*Xexe, N2 X)) |- (55)

ext ext

The TLS estimator )?ext is defined as a solution to the linear equations (8) for A
that brings the minimum to (7). By Proposition 7.6, the same A brings the minimum
to (11). By Proposition 7.10, the functions (38) and (39) attain their minima at the
point X, ext- Therefore, the minimum of the function

M = dna (MNP EN2M) ' MTNV2(CTC —mE)N~2M)  (56)

is attained for M = Nl/zfext.
Now, apply Lemma 6.6 on perturbation bounds for a generalized invariant sub-
space. The unperturbed matrix (denoted A in Lemma 6.6) is N~/ 2C(—)r CoN~1/2;

its nullspace is the column space of the matrix N'/2X%, (which is denoted X¢

in Lemma 6.6). The perturbed matrix (A + A in Lemma 6.6) is N~/2(CcTC —
mX)N~1/2. The matrix B in Lemma 6.6 equals N~'/2X N~1/2. The norm of the
perturbation is denoted € (it is | Al in Lemma 6.6). The (n + d) x d matrix which
brings the minimum to (56) is N /2y, ext- The other conditions of Lemma 6.6 are (47),
(48), and (53). We have

| sin Z(NY2Xex, N'2X0) |17

ext
€ _ _ _
= ﬁ(l + ”N I/ZEN 12 ” )‘max((ng—trEngt) ngx—trNngt))'
Again, with (55), (45) and (46), we have

| sin A(E(\ext, ngt)
< | sin 2N Rew N2X)

(P2l
)&min(AE)rAO)
= 26(1 + ”2” )&max((ng—l—Engt)71ng—tngxt))- (57)

I

< 2e (1 + Amax (kmin (AJAO) (XSXT Engt)_ngx—tngxt))

8.3 Proof of the convergence € — 0
In this section, we prove the convergences

My =N"2cJCN? >0,
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My =N""2(CTC-mZ)N7'2 >0

in probability for Theorem 3.5, and almost surely for Theorems 3.6 and 3.7. As € =

M, + MlT + M>||, the convergences M; — 0 and M> — 0 imply € — 0.

End of the proof of Theorem 3.5. It holds that

IMiI% = |[N~"2cd ENTV2|5 = tr(N_l/zCTC‘N_lC éTN—l/Z)

m m
=tr(CoN'CJCNTICT) =) "N "IN "N IE

l
i=1 j=1I

The right-hand side can be simplified since E¢;N ’I"T = 0 fori # j and
E&GN~Ie] =uw(ZN~Y):

m
EIMF =Y coN e tr(EN"') = t(CoN~'Cg ) r(ZNT).
i=1
The first multiplier in the right-hand side is bounded due to (50) as tr(CoN~'C/) <
n, for m large enough. Now, construct an upper bound for the second multiplier:

w(EN7!) = HN—1/221/2HF N~ 1/2” ”21/2HF = (N tr 3
L2 tr x>
)"min(N) B )\min(A(—)rAO).

Finally,
ntr X

E|M;|% < —————.
B = dmin(A] Ag)

.. . P
The conditions of Theorem 3.5 imply that )»max(Ag)— Ap) — o0; therefore, M| —>
0asm — oo.
Now, we prove that M> —P> 0 as m—o00. We have

My =N""*CTC—mz)N"'/?,

Y0, @re, — )l

Ml < [N"V2| [ETE —mz | [N~
M) < [N mE | N = = T

(58)

Now apply the Rosenthal inequality (case 1 < v < 2; Theorem 6.8) to construct a
bound for E | M;||":
const Z, VElETe — 2

E|M|" <
ro(Ag Ay

mm

By the conditions of Theorem 3.5, the sequence {E ||EI.TEI. - X, i=1,2,...}is
bounded. Hence
O (m)

E[M;]" £ ——=— asm — oo,
(AJ Ap)

mln

E|Ms  — 0 and Ms —> 0 asm — oo. 0
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End of the proof of Theorem 3.6.
m
=Y N EN T
i=1

By the Rosenthal inequality (case v > 2; Theorem 6.7)

m
EIIM1||2r§constZE||N 1/2 TcN 1/2||2r
i=1

m r
+ const(ZE ||N_1/2c(;5iN_1/2 ||2) .

i=1

Construct an upper bound for the first summand:

m m
Y B[N Pegan P < ZIIN Vg | max Efa| [N
— , i=

.....

m r
>IN < (Z v 1)
=1
t r
~ (Sewn'eg) = wlcon-tcq)y =
i=1

by inequality (50). By the conditions of Theorem 3.6, the sequence { r?ax E &1,
i=1,....m

m =1,2, ...} is bounded. Remember that | N~'/2| = »_1/*(A] A¢). Thus,
< 0(1)
X:IE||N_1/ZCJ,~E,'N_1/2 ||2r =———=— asm—oo.
i=1 )‘mm(A A )

The asymptotic relation

m
S m|veanep = 00
; )"min(A() Ao)

can be proved similarly; in order to prove it, we use boundedness of the sequence
{ nllax E &%, m = 1,2,...}. Finally,
o(1)
(AJ Ap)

mm

E M |* = asm — 0o.

The conditions of Theorem 3.6 imply that Y > E | M I < oo, whence
M; — 0asm — oo, almost surely.
Now, prove that M, — 0 almost surely. In order to construct a bound for E || M3 ",

use the Rosenthal inequality (case v > 2; Theorem 6.7) as well as (58):

E m T~ -y r
B M) < Sl 2= ‘(CT )
(AJ Ay)

m=mg

m1n
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_ const YrLENETE — 21T const(Y L ElET ¢, — X272
A Ay AJ Ay

mln( mln(

Under the conditions of Theorem 3.6, the sequences {E ||EiTEi =X, i=1,2,...}
and {E||&¢, — X%, i = 1,2, ...} are bounded. Thus,
om'?)

E|M r—— asm — 00;
| M>]| ATAO)

mm (

o0
> EIM|” < oo,

m=my
whence M, — 0 as m — o0, almost surely. O
End of the proof of Theorem 3.7. The proof of the asymptotic relation

o)
AJ Ay

m1n (

MMWM- as m — 0o

from Theorem 3.6 is still valid. The almost sure convergence M; — 0 as m — 00 is
proved in the same way as in Theorem 3.6.

Now, show that M, — 0 as m — oo, almost surely. Under the condition of
Theorem 3.7,

— E )¢, — ZII"
Elele — 2| = 0q), ——————<w

and IEEl.TEl. — XY = 0. The sequence of nonnegative numbers {)»min(Ang), m =
1,2, ...} never decreases and tends to +o0o. Then, by the Law of large numbers in
[16, Theorem 6.6, page 209]

1 N
_— ¢ ¢i—X)—>0 asm— oo, as,
)\min(A(—)rA()) g( l )
whence, with (58),
I3, @ 6 — D)
)\mm(A() A())

My — 0 asm — o0, a.s. |

1M < — 0 asm — 00, as.;

8.4 Proof of the uniqueness theorems

Proof of Theorem 4.1. The random events 1, 2 and 3 are defined in the statement
of this theorem on page 256. The random event 1 always occurs. This was proved in
Section 2.2 where the estimator )?ext is defined. In order to prove the rest, we first
construct the random event (59), which occurs either with high probability or eventu-
ally. Then we prove that, whenever (59) occurs, there is the existence and “more than
uniqueness” in the random event 3, and then prove that the random event 2 occurs.
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Now, we construct a modified Verswn X ggd of the estimator X ext 1n the followmg
way. If there exist such solutions (A, Xext) to (7) & (8) that || sin A(Xext, Xext)|| >
(1+ 1 X0l>) 12, et Xg}(?d come from one of such solutions. Otherwise, if for every
solution (A, Xext) to (7) & (8) || sin £Z(Xext, X0 )| < (1 + ||x0||2) 172 et Xmod
come from one of these solutions. In any case, let us construct Xg)‘(‘t’ in such a way
that it is a random matrix. It is p0551b1e that follows from [17].

Thus we construct a matrix X™%4 such that:

L. X?,‘Sd is a (d + n) x n random matrix;

2. for some A € Rm*@+m (A Xmody jq a solution to (7) & (8);

ext

3. if | sinz(X;*;‘sd, X901 < (1+ [ XolI>)™2, then || sin £(Xext, X901l < (1 +

1 Xo0l1%)~1/2 for any solution (A, Xex() to (7)&(8)

From the proof of Theorem 3.5 it follows that || sin /(X ggd, X Sxt) | — 0in prob-
ability as m — oo. From the proof of Theorem 3.6 or 3.7 it follows that || sin £ (X4,

ext)|| — 0 almost surely. Then

|| sin A(Xm‘)d X9 !

ext ext)” m

either with high probability or almost surely.

Whenever the random event (59) occurs, for any solution A to (7) and the corre-
sponding full-rank solution X, ext t0 (8) (which always exists) it holds that || sin A(JA( exts

ext)|| <1+ 1 Xol®)~1/2, whence, due to Theorem 8.3, the bottom d x d block of

the matrix Xey; is nonsmgular nght -multiplying Xext by a nonsingular matrix, we
can transform it into a form ( X 1) The constructed matrix X is a solution to equa-
tion (9) for given A. Thus, we have just proved that if the random event (59) occurs,
then for any A which is a solution to N, equatlon (9) has a solutlon

Now, prove the unlqueness of X. Let (A1, X 1) and (A», Xz) be two solutions to
(7) & (9). Show that X 1 = X2 (If we can for Ay = Aj, then the random event 3
occurs.) Denote Xext = (X 1Y) and XeXt = (Xz) By Proposition 7.9, span(Xe’“)

span{uy, vy < d) and span(XSXt) C span{ug, v < d), where vy and uy are gen-
eralized eigenvalues (arranged in ascending order) and respective eigenvectors of the
matrix pencil (XX, X).

Assume by contradiction that X| # X». Then rk[XeX‘, Xe’“] > d + 1, where
[X§ Xext X e’“] is an (n + d) x 2d matrix constructed of X§ xoxt and X§ o . Then

(59)

d* = tk{ug, v <d) > tk[XS, XS >d+1

(which means vy = vg41). Thend, — 1 < d < d*, where d, — 1 = dim span(uy,
v < d),d = dim span(ngt) and d* = dimspan(u;, vy < d) (notation d
and d* comes from the proof of Proposition 7.9). By Lemma 6.4, there exists a d-
dimensional subspace V12 for which span(ug, v < d) C Vio C span{ug, vp < d)
and || sin Z(Vi3, ext)|| = 1. Bind a basis of the d-dimensional subspace Vi» C
R+ into the (n + d) x d matrix Xg’“, so span{X e’“) = Vi2. Again, by Pr0p0s1-
tion 7.9 for some matrix A, (A, ngt) is a solution to (7) & (9). Then || sin A(Xe’“,
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o~

X0l =1 = (1 + [IXol>)~"/2 Then | sin Z(XZe, Xq0ll = (14 [ XolH ™2,
which contradicts (59). Thus, the random event 3 occurs.

Now prove that the random event 2 occurs. Let A; and Aj be two solutions to
the optimization problem (7). Whenever the random event (59) occurs, the respective
solutions X and X to equation (9) exist. By already proved uniqueness, they are
equal, i.e., X 1= X 2. Then both A and A, are solutions to the optimization problem

1A EY) ) p — min;
A(I — Pg) =0; (60)
(C—MXF =0

for the fixed 5(\?“ = (f;) = (% ). By Proposition 7.2 and Remark 7.2-1, the least

clement in the optimization problem (28) for X = X ' is attained for the unique
matrix A = CX' ?’“(5(\ extTxm X ‘f’“)Tf(\ xtT ¥, Since it is attained, it is also attained for
both A{ and A;. Hence, A| = A,. Thus, the random event 2 occurs.

We proved that the random event | always occurs, and the random events 2 and 3
occur whenever (59) occurs, which occurs either with high probability or eventually
as desired. O

Remark 8.1. This uniqueness of the solution A to the optimization problem (7) agrees
with the uniqueness result in [6]. The solution is unique if v < vg41.

Proof of Theorem 4.2. 1. In Theorem 4.1, the event 1 occurs always, not just with
high probability or eventually. The solution A to (7) exists and also solves (11) due to
Proposition 7.6. Thus, the first sentence of Theorem 4.2 is true. The second sentence
of Theorem 4.2 has been already proved, since the constraints in the optimization
problems (7) and (11) are the same.

2 & 3. The proof of consistency of the estimator defined with (11) & (9) and
of the existence of the solution is similar to the proof for the estimator defined with
(7) & (9) in Theorems 3.5-3.7 and 4.1. The only difference is skipping the use of
Proposition 7.6. Notice that we do not prove the uniqueness of the solution because
we cannot use Proposition 7.9. O

To Remark 4.2-1. The amended Theorem 4.2 can be proved similarly. In the proof of
part 1, read “The solution A to (7) . .. solves (12) due to Proposition 7.8.” In the proof
of parts 2 and 3, read “The only difference is using Proposition 7.8, part 2 instead of
Proposition 7.6.”

Proofs of auxiliary results
8.5  Proof of lemmas on perturbation bounds for invariant subspaces
Proof of Lemma 6.5 and Remark 6.5-1. For the proof of Lemma 6.5 itself, see
parts 2 and 3 of the proof below. For the proof of Remark 6.5-1, see parts 2, 3 and 4
below. Part 1 is a mere discussion of why the conditions of Remark 6.5-1 are more
general than ones of Lemma 6.5.

In the proof, we assume that {x : x " Bx > 0} is the domain of the function f (x).
The assumption affects the definition of limy_,,, f(x), and inf f is the infimum of
f(x) over the domain.
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1. At first, clarify the conditions of Remark 6.5-1. As it is, the existence of a point x
such that
liminf f() = inf f(7) (61)

t—x fTBi>0
is assumed in Remark 6.5-1. Now, prove that, under the preceding condition of Re-
mark 6.5-1, there exists a vector x # 0 that satisfies (61).
The function f(x) is homogeneous of degree 0, i.e.,

flkx) = f(x) ifkeR\{0}andx  Bx > 0.

Hence, all values which are attained by f (x) on its domain {x : x " Bx > 0}, are also
attained on the bounded set {x : ||x||=1, x| Bx > 0}:

f({x xl=1, x"Bx > ()}) = f({x :x'Bx > 0})

Then
inf  f(x)= _inf f(x).
lxl=1 xTBx>0
x"Bx>0
Let F be a closure of {x : |x||=1, x' Bx > 0}. There is a sequence {x,

k = 1,2,...} such that |x¢[|=1 and x;/ Bx; > O for all k, and limy_, o f(xx) =
inf T5,.0 f(x). Since F is a compact set, there exists x, € F which is a limit of
some subsequence {xi,, i =1,2,...} of {xx, k =1,2,...}. Then either

liminf f(x) < _inf f(x) (62)
X=X xTBx>0
or, if x, = x, for i large enough,
fx) < _inf f(x). (63)
xTBx>0

(In equations (62) and (63), we assume that {x : x"Bx > 0} is a domain of f(x), so
(63) implies x*T Bx, > 0.) Again, due to the homogeneity, liminf f(x) < f(x,) if
X—> Xy

f (x4) makes sense. Hence (62) follows from (63) and thus holds true either way.
Taking the limit in the relation f(x) > inf f, we obtain the opposite inequality
liminf f(x) > inf f(x).
xTBx>0

X—> Xy

Thus, the equality (25) holds true for some x, € F. Note that ||x.|| = 1, so x, # 0.

2. Prove that under the conditions of Lemma 6.5 or Remark 6.5-1

either f(xy) < f(x)
or X (A+ A)x, <0.

Because the matrix B is symmetric and positive semidefinite, x ' Bx = 0 if and
only if Bx = 0, and x " Bx > 0 if and only if Bx # 0. As Bxo # 0, x, Bxo > 0 and
the function f(x) is well-defined at xg.

Under the conditions of Lemma 6.5 the function f(x) is well-defined at x¢ and
attains its minimum at x,, so f(x4) < f(xp).

Under the conditions of Remark 6.5-1 we consider 3 cases concerning the value
of x;r Bx,.
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Case 1. x] Bx, < 0. But on the domain of f(x) the inequality x" Bx > 0 holds
true. Since x, is a limit point of the domain of f (x), the inequality x;r Bx, > 0holds
true, and Case 1 is impossible.

Case 2. x,] Bx, = 0. Prove that x| (A + A)x, < 0. On the contrary, let x, (A +
A)x>|< > (. Remember once again that x " Bx > 0 on the domain of f(x). Then

. i
A+ A

lim f(x)= lim )C(Ti“L)x

X—> Xy X—> Xy x' Bx

= 400,
which cannot be inf f(x). The contradiction obtained implies that x;r (A+A)x, <0.
Case 3. x;r Bx, > 0. Then the function f(x) is well-defined at x,, and
fen) = lim f(x) =inf f(x) < f(xo).
So, f(x4) < f(x0) in Case 3.

3. Proof of Lemma 6.5 and proof of Remark 6.5-1 when f(x,) < f(xx). Then

xT(A+ A)x - xg (A + A)xg

xTBx - x(;erO
As Axy =0,
Ti. T 2. T
- x, Axox ' Bx ~ xol|“x "' Bx
xTAx < —xTAx + % < ||A||(||x||2 + L)
xy Bxo Xo Bxo

With use of eigendecomposition of A, the inequality x T Ax > X>(A) ||lx|> x
sin” Z(x, xo) can be proved. Hence the desired inequality follows:

llxol1? xTBx)

xg Bxy lxI?

A2(A)sin® Z(x, x0) < [|A]] (1 +

4. Proof of Remark 6.5-1 when x;r(A + A)x* < 0. Then
x " Ax < —xTAx,
A(A)|1x 1% sin® Z(x, x0) < A |1x]I,
A2 (A) sin® Z(x, x0) < || Al

A

whence the desired inequality follows. O

Notation. If A and B are symmetric matrices of the same size, and furthermore the
matrix B is positive definite, denote

A
max o = AmaX(B*IA).

The notation is used in the proof of Lemma 6.6.
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Lemma 8.2. Let]1 <djy <n, 0<dy <n. LetX € R"4\ be a matrix of full rank,
and V be a dy-dimensional subspace in R". Then

XTI - PyX

max ———
XTx

XTI -Py)X

maXW—l lf d] >d2.

= || sin Z(X, V)||2 if di <d,

Proof. Using the min-max theorem, the relation span(X) = span(Pspan(x)) and sim-
ple properties of orthogonal projectors, construct the inequality

XTI -PyX
max ————
XTx
v XTI - Py)Xv
= eRin TXTX
veR1\{0} v v
wT(I — Py)w UTPspan(X) - PV)Pspan(X>U
= max % = max T
wespan(X)\{0} wlw veRM\ {0} V' Pypan(x) Pspan(x)V
T
v Py I — Py) P, v
>  max sPdn(X)( v) span{X) = )\maX(Pspan(X)(I - PV)PSpan<X))

veRM\ {0} vTv

2
= )\max(Pspan<X) (I —Pv)U - PV)Pspan(X)) = “ Pspan(X) (- PV)” .
On the other hand,

wT(I — Py)w wTPspan(X)(I — Py) Pypan(x)yw
max —_— = max
wespan(X)\{0} wTw wespan(X)\{0} wT

w

T

v Py 1 — Py) Py, v

< max spdn(X)( — V) span(X) .
veR"\ {0} v'v

Thus,
X' - PyX 2
max ——=——— = | Ppaniy (1 = P) "
If dy < dy, then || Pspan(xy(I — Py)|| = | sin Z(X, V)| due to (23). Otherwise, if
dy > d», then

dim span{X) +dimVt=tkX4+n—dimV =d,+n—d > n.

Hence the subspaces span(X) and V<L have nontrivial intersection, i.e., there exists
w # 0, w € span(X) N V<. Then Pspan(xy(I — Py)w = w, whence || Pspan(x)(I —
Py)| = 1. On the other hand, ||Pspan(X)(1 —Py)| < ||Pspan(X)|| x (I = Pyl = 1.
Thus, || Pspan(x)(I — Py)|| = 1. This completes the proof. O

Proof of Lemma 6.6. The matrix B is positive semidefinite, the matrix X(—)r BXjy is
positive definite, and the matrix Xy is of full rank d (hence, n > d). The matrix A
satisfies inequality A > Ag441(A)(I — Pspan(x,)) in the Loewner order.
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Let X be a point where the functional f(x) defined in (26) attains its minimum.
Since X(—)FBXO is positive definite, f(Xo) makes sense. Thus, f(X) < f(Xp),
XT(A+AX Xg (A+ A)Xo
max —————— < max ——————.
XTBX XJ BX,

Using the relations
XTAX > —|AIIXTX,  X{JAXo < |IA|l X{ Xo,
X"BX <|BIX"X, AXo =0,

we have
XTAX — |AIXTX 1Al XJ X,
<max ————,
IBI XTX XJ BX,
1 XTAX - . XJ X,
— | max —=— — [|A]| | = [[A]| max — . (64)
Bl X'X X, BX,

Since A > Ag41(A)(I — Pspan(x,)), by Lemma 8.2

T T
. 2 X' (- Pspan(Xo)) X AX
Aa+1(A) || sin Z(X, Xo) |~ < Ag+1(A) max X < max ———.
Then the desired inequality follows from (64):
A XJ X
|'sin 2(X, Xo)|” < &O + || B| max %) 0
Ad+1(A) XO BX()

8.6 Comparison of || sin Z(Xext, X2 )|l and | X — Xo|

In the next theorem and in its proof, matrices A, B and X have different meaning
than elsewhere in the paper.

Theorem 8.3. Let (g) and ( )f(; ) be full-rank (n + d) x d matrices. If

() D e @
B \~1 1+ 11 X012

then:

1) the matrix B is nonsingular;

-1 A+ X0l UXols*>+sa/1=s2) o0 1o A Xo
2) ”AB +X0” S 1_(1+”X0H2)52 Wlths - ” S]nl((B)v (_I ))”

Proof. 1. Split the matrix P(lxo ), which is an orthogonal projector along the column

—I
space of the matrix ( )_(? ), into four blocks:

P, P
1= pogy =l = (5t 1)



280 S.V. Shklyar

Up to the end of the proof, P means the upper-left n x n block of the (n+ p) x (n+ p)
matrix P(J-XO). Prove that Amin(P1) =
—1
Let Xo = UXV " be a singular value decomposition of the matrix X (here X is
a diagonal n x d matrix, U and V are orthogonal matrices). Then

iy == (D) (9) ()

(VU -2ETz+ 0 zhHuT  uzETE+Dn7vT
= vieTys+n-'sTuT V- Tz +Dn"HvT)

1
1+ Xo 12

The n x n matrix I — (27X + I)~' 27T is diagonal; its diagonal entries are

T 2 v = 1, .. n Whele
l oy 1,
1 o; (1‘(0)

0;(Xp) is the i-th singular value of X if 1 <i < min(n, d),
0i(Xo) =0ifmin(n,d) <i <n.
Those diagonal entries comprise all the eigenvalues of Py;

1 1
1+ 02, (1Xol) — 1+ 11Xol1?

Amin (Pl ) =

2. Due to equation (23), the square of the largest of sines of canonical eigenvalues
between the subspaces V7 and V> is equal to
Tpl

v' Pyuv
H sin Z(Vy, V) H2 = max 7‘/22
veVi\(0} vl
Hence for v € Vi, v #0,
Tpl
PVZv
o)l

| sin 2V, v ? = (66)

3. Prove the first statement of Theorem 8.3 by contradiction. Suppose that the matrix
B is singular. Then there exist f € R? \ {0} and u = Af € R” such that Bf = 0 and

u _(Af
(062) = (57) <%

where V; C R"* is the column space of the matrix (g). As the columns of the
matrix (g) are linearly independent, ({j) # 0. Then, by (66),

AN X\ (u>TPLX‘} <u> uTPLu
o) (o - L,

- 1Co)1I1% e
which contradicts condition (65).

1

> Amin(P1) = m,
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4. Prove inequality (67). (Later on we will show that the second statement of Theo-
rem 8.3 follows from (67)). There exists such a vector f € R? \ {0} that ||(AB~! +
Xo) fIl = 1AB~" + Xoll | f . Denote

u=(AB~"+ Xo)f,

Q)= (4) ) ()

Since (X, —I)P#y \ =0and P}, | (*9) =0,

(%) (%)
o= ((6) - (9)4) 7 () (9)1)
=(6) 7ty &) =7ew

IAB=! + Xol* I £1I?
1+ [| XolI?

> |ul|* Amin (P1) =

Notice that z # 0 because B~' f # 0 and the columns of the matrix (g) are
linearly independent. Thus,

0 <zl = [AB7 £+ [ £2) < (1 + [AB~' ) 112

By (66),
Tpl
z' P Z
. A\ X\ (X0) IAB~! + Xo|2
sin £ B \_;1 z 7 = 2 12y
- Izl (I + I Xol*) A+ [|AB—|*)

AB 1+ X
() (D)= et e
- V14 1Xol2 1+ (IXoll + IAB~T + Xo|))2

5. Prove that the second statement of Theorem 8.3 follows from (67). The function
8

= 68
VI+ X0l /1 + (I Xoll + 5)> ©9

5(8)

is strictly increasing on [0, +00), with s(0) = 0 and lims_, 40 S(§) = m
0

Therefore, inequality (67) implies the implication:

if [AB™! + Xo| > 8,

sin4(<A> (XO))H> ’
B) \-1 V1T + X0l V1 + ([ Xoll + 5)2

The equivalent contrapositive implication is as follows:

e ((3)- (29)] < :
B) " \=1))1 7 14+ 1X0ll2 V1 + (IXo]l + 5)2

then

if
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then | AB~" + Xo| <. (69)
The inverse function to s(8) in (68) is

(1 + 1 X0l®) (s% 1 Xoll + s+/1 — s2)

o) = [— (1 + [ Xo[D)s2

Substitute § = §(|| sin Z(( g ), ( )_(‘; ))|) into (69) and obtain the following statement:

e ((3) (9] = ((3)-(5)

then |AB~" + Xo| < &(|sin 2((%4). (*))]).

if <

3

whence the second statement of Theorem 8.3 follows.

In part 5 of the proof, condition (65) is used twice. First, it is one of conditions of
the first statement of the theorem: without it, the matrix B might be singular. Second,
the function §(s) is defined on interval [0, é) |

S1HIXoI2

Corollary. Let(}_(?) be an (n + d) x d matrix, and let {(2:: ), m=172,...}bea

sequence of (n+d) x d matrices of rank d. If || sin Z(( ’2,2 ), ( )_(‘1’ N — 0asm — oo,
then:

1) the matrix By, is nonsingular for m large enough,
2) —A,, B, — Xoas m—oo.

8.7 Generalized eigenvalue problem for positive semidefinite matrices: proofs

Proof of Lemma 7.1. For fixed i, split the matrix T in two blocks. Let T = [T}y, Ti2],
where T;1 is the matrix constructed of the first i columns of 7', and Tj; is the matrix
constructed of the last n — i + 1 columns of 7. Denote V; and V, the column spaces
of the matrices 7;1 and Tj3, respectively. Then dim V) =i anddim V, =n —i + 1.

1. The proof of the fact that v € {A > 0| “IV, dimV =i : (A —AB)|ly <0’} if
v; < oo. In other words, if v; < 0o, then relations

A>0, dim(V)=i, (A—AB)|y <0 (70)

hold true for A = v; and V = V. _
If v € Vi, then v = T;1x for some x € R’. Hence

v (A= vB=x"T](A—vB)T, x
i
=x! diag(A1—viptt, .., Ai—vin)x = ZXJZ()‘j —Vij).
j=1

The inequality A; — v;u; < 0 holds true for all j such that either A; = u; = 0 or
Aj/uj < v;; particularly, it holds true for j =1, ..., i. Hence vT(A —v;B)v <0.
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2. The proof of the fact that v; is a lower bound of the set {A > 0| “IV, dimV =
i : (A—AB)|ly < 07}. In other words, if there exists a subspace V C R” such that
the relations (70) hold true, then v; < A.

By contradiction, suppose that dimV =i, (A — AB)|y < 0,v; > A > 0. Then
vi > 0.

Now prove that (A — AB)|y, > 0. If v € V, \ {0}, then v = T;>x for some
x € R"7*+1\ {0}. Then

n
v (A — AB)v = fo.ﬂfi(xj — ).
Jj=i

For j > i, due to the inequality v j = v;i > 0and the conditions of the lemma, the case
Aj = 0is impossible; thus A; > 0. Prove the inequality A; — Ap; > 0. If u; > 0,
then A; — Au; = (v; — A)uj. Since v; > v; > A, the first factor v; — A is a positive
number. Hence, A; — Au; > 0. Otherwise, if u; = 0, then A; — Au; = A; > 0.
Thus the inequality A ; — A ; > 0 holds true in both cases. Hence v (A—AB)v > 0.
Since this holds for all v € V; \ {0}, the restriction of the quadratic form A — A B onto
the linear subspace V; is positive definite.

On the one hand, since (A—AB)|y < 0and (A—AB)|y, > 0, the subspaces V and
V> have a trivial intersection. On the other hand, since dimV +dimV, =n+ 1 > n,
the subspaces V and V, cannot have a trivial intersection. We got a contradiction.

Hence v; < A, and v; is a lower bound of {A > 0 | “3V, dimV =i : (A —
AB)|y < 07}. That completes the proof of Lemma 7.1. O

Remember that M is the Moore—Penrose pseudoinverse matrix to M; span(M)
is the column span of the matrix M. If matrices M and N are compatible for multi-
plication, then span(M N) C span(M). (Furthermore, span(M;) C span{M) if and
only if M; = M, N for some matrix N). Hence, span(MM ") = span(M) (to prove
it, we can use the identity M = MMT M.

Since the n x n covariance matrix X' is positive semidefinite, for every k x n
matrix M the equality span(M XM ") = span(M X) holds true. This can be proved
with use of the matrix square root.

If what follows, for a fixed (n + d) x d matrix X denote

Apm=CX(XT2x)'x7 %,
where C is anm x (n + d) matrix, X' is an n X n positive semidefinite matrix.

Proof of Proposition 7.2. 1, necessity. Relation (30) is a necessary condition for
compatibility of the constraints in (28). Let A(I — Py) = 0and (C — A)X =0
for some m x (n + d) matrix A. Dueto A (I — Px) = 0, A = M X for some ma-
trix M. Then CX = AX = MXX, X'CT = X" XM, whence span(X ' CT) C
span(X T X).

1, sufficiency. Relation (30) is a sufficient condition for compatibility of the con-
straints in (28). Let span(X 'CT) C span(X'X). Then X'CT = X" XM for
some matrix M. The constraints A (I — Py) = 0, (C — A)X = 0 are satisfied
for A = M T X, so they are compatible.
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2a, eqns. (31). If the constraints are compatible, they are satisfied for A = Apn.
Indeed,

Apm (I — Pg) = CX(XT2Xx)'xTx (1 - Py) =0,
since X (I — Py) = 0. If the constraints are compatible, then
span(XTZ‘X) = span(XTZ‘) C span(XTCT),
whence
XTEX(XTEX) XTCT = PyrsyXxTCcT=xTCT,
ApmX = CX(XT2x)'xTEx = CX,
(C—Apm)X =0.

2a, eqn. (32) and 2b. If the constraints are compatible, then the constrained least ele-
ment of AXTAT is attained for A = Apm. The least element is equal to
CX(XTZX)TXTCT. Let A satisfy the constraints, which imply APy = A and
AX = CX. Expand the product

(A= Apm)ZT(A = Apm) T = AZTAT — A ZTAT — AZTAL + Apm ZTA],
(71)

Simplify the expressions for three (of four) summands:
AxtAl, = asTEx(xTzx) xTCT
= APsX(XTZx)'xTCT
=AX(X"zx)'xTcT =cx(xTzx)'xTCT.
Applying matrix transposition to both sides of the last chain of equalities, we get
AmZIAT =cx(xTEx)'xTCT.
For the last summand,

Am=ETAl =cx(XT2x) X T2 zx(xT2x) xTCT
—cx(xTzx) xTrx(xTzx) 'xTcT
=cx(xTzx)'xTcT,

Thus, (71) implies that
AZTAT = (A = Apm) ZT(A — Apm) " + cx(xsz)TxTcT. (72)

Hence '
AZTAT = cx(xTzx)'xTCT,

and statement 2b of the theorem is proved. For A = Ay, equality is attained, which
coincides with (32).
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Remark 7.2-1. The least point is attained for a unique A. It is enough to show that if
A satisfies the constraints and AXTAT = CX(XTXX)TXTCT, then A = Apm.

Indeed, if A satisfies the constraints A (I — Py) = 0 and (C — A)X = 0, and
AXTAT =CcXx(XTZX)'XTCT, then due to (72)

(A= Apm) ZT(A — Apm) " =

As 27T is a positive semidefinite matrix, (A—Apm)Z‘Jf =0and (A—Apm) Py = (A—
Apm) X" X = 0. Add the equality A (I — Px) = 0 (which is one of the constraints)
and subtract the equality Apm (I — Px) = 0 (which is one of equalities (31) and holds
true due part 2a of the theorem). Obtain

A—Apm=(A—=Apm)Pyx +AU - Pg) — Apm (I — Px) =0,

whence A = Apy,. |

Proof of Proposition 7.3. 1. Necessity. Since the matrices C' C and X are positive
semidefinite, the matrix pencil (C T, x» ) is definite if and only if the matrix C TC+
X is positive semidefinite. Thus, if the matrix pencil (CTC , X'} is definite, then the
matrix C ' C 4 X is positive definite. As the columns of the matrix X are linearly
independent, the matrix X (CTC+X)XT = XTCTCX + X T ¥ X is positive definite
as well, whence span(XTCTCX +XTXX)=R"

If the constraints are compatible, then the condition (30) holds true, whence

=span(X ' C'CX + X' ¥X)

C span(XTCTCX> + span(XTZ‘X)
(XTCT)+ span(X T )
pan(X ' ) = span(X ' X).

= span

Since span(X " ¥ X) = R”, the matrix X ' ¥ X is nonsingular.
2. Sufficiency. 1f the matrix X " X' X is nonsingular, then
span(X " X) = span(X ' £X) = R" > span(X ' C").

Thus the condition (30), which is the necessary and sufficient condition for compati-
bility of the constraints, holds true. O
Proof of Proposition 7.4. Construct simultaneous diagonalization of matrices
XCCTXTand XX X (according to Theorem 6.2) that satisfies Remark 6.2-2:
xTcTex=(rYar~!',  x'sx=(r"Y)Mr"

Notations A,M, T = [T  T2], wi, Ai, vi are taken from Theorem 6.2, Remark 7.2-1,
and Lemma 7.1.
The subspace

span(X TCT) = span(X T €T CX) = span((T~") " AT ") = span{(T~") " 4)
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is spanned by columns of the matrix (7~!)T that correspond to nonzero %;’s. Sim-
ilarly, the subspace span(X ' ¥) = span((T~')"M) is spanned by columns of the
matrix (T~HT that correspond to non-zero w;’s. Note that the columns of the matrix
(T~1T are linearly independent. The condition span(X 'CT) C span(X T X is sat-
isfied if and only if A; 7% O for all i such that u; # 0 (thatis v; < 00,i = 1,...,d,
where notation v; = A;/v; comes from Theorem 6.2). Thus, due to Proposition 6.3,

(xTzx)" = T™iTT,
Construct the chain of equalities:

min  Asm—a(AZTAT)
A (I—P5)=0
(C-A)X=0

Q rtima(CX(XTEX)'XTCT) = dgyma(CXTMITT XTCT)

QuMITTXTCTCXT) = 1 (M7 A) =

© min{r > 0:“IVicRY, dim Vi=k : (X CTCX —2XT ZX)|y, <07}

9D min{x > 0: “3VCspan(X), dim V=k: (CTC =2 X)|y <07}
Equality (a) follows from 7.2 because the matrix CX(XT X X)"XTCT is the least
value of the expression AXTAT with constraints (I — Px)AT = 0and (C — A)X =
0.

Equality (b) follows from the relation between characteristic polynomials of two
products of two rectangular matrices:

XexrmirTxTem W) = (0" Tyt exr )

because CX T is anm xd matrixand MTT T X T CT is a d x m matrix. Thus, the matrix
CXTM'TTXTCT has all the eigenvalues of the matrix MITTXTCT x CXT =
M A and, besides them, the eigenvalue 0 of multiplicity m — d. All these eigenvalues
are nonnegative.

Equality (c) holds true due to Lemma 7.1.

Since the columns of the matrix X are linearly independent, there is a one-to-
one correspondence between subspaces of span(X) and of R?: if V is a subspace of
span{X), then there exists a unique subspace V| C R4, and for those V and Vi,

e dimV =dim Vy;

« the restriction of the quadratic form CTC — A.X to the subspace V is negative
semidefinite if and only if the restriction of the quadratic form X TCTCX —
AX T X X to the subspace V; is negative semidefinite.

Hence, equality (d) holds true.

Equation (34) is proved. As to Remark 7.4-1, the minimum in the left-hand side of
(34) is attained for A = Appy. The minimum in the right-hand side of (34) is attained
if the subspace V is a linear span of k columns of the matrix X7 that correspond to
the k least v;’s. |
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Proof of Proposition 7.5. By Lemma 7.1 and Proposition 7.4, the inequality (37) is
equivalent to the obvious inequality

min{A > 0: “3VCspan(X), dimV=k: (CTC —1X)|y <07}
>min{A > 0“3V, dimV =k : (A —AB)|y <0}

From the proof it follows that if v; = oo, then for any (n + d) x d matrix X of
rank d the constraints in (28) are not compatible.

Now prove that if v; < oo and X = [uy,us,...,uq], then the inequality in
Proposition 7.5 becomes an equality. Indeed, then the constraints in (28) are compat-
ible because they are satisfied for A = C TDT~!, where

D = diag(dy, da, ..., di+n),

g — 1 ifur>0andk <d,
*Tlo ifu=0ork > d.

By Proposition 7.2

min  Aem-a(AZTAT) = b a(CX(XTZX) X TCT)
A(I—P5)=0
(C—A)X=0

= m((xTZx) xTcTCx)
= )»k(MjiAd) = Vg,

where My = diag(uy, ..., ig) and Ay = diag(Aq, ..., Ag) are principal submatrices
of the matrices M and A, respectively. O

Proof of Proposition 7.6. For every matrix A that satisfies the constraints
(I — Py)A = 0 and rk(C — A) < n, there exists an (n + d) X d matrix X of
rank d such that (C — A)X = 0. Assuming that such A exists, we get v < +00
because the equalities v = 400, (I — Px)A = 0,1kX = d,and (C — A)X =0
cannot hold simultaneously.

We have

m
|a (=) )5 =u(aztaT) = Y a(aztaT)
i=1
m—d d
=Y m(AZTAT) + ) gm-a(A(D)TAT)
i=1 k=1

>0+ v, (73)

where the inequalities hold true due to positive semidefiniteness of X' and due to
Proposition 7.5.

If v; = o0, than the constraints A (I — Py) = 0 and rk(C — A) < n are not com-
patible. Otherwise, the equality in (73) is attained for A = Agp := CX(XT X X)T x
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X7 X, where the matrix X consists of first d rows of the matrix T, where T comes
from decomposition (35).

Thus, if the constraints in (7) are compatible, then the minimum is equal to
(Zzzl ve)/% and is attained at Ap. Otherwise, if the constraints are incompati-
ble, then by contraposition to the second statement of Proposition 7.5 vy = +00 and
d_ w2 = 40

If the minimum in (7) is attained at A, then the inequality (73) becomes an equal-
ity, whence

M(AZTAT) =0, i=1,...,m—d; (74)
Meam—d(AZTATY =, k=1,....d; (75)
in particular,
Amax (AZTAT) = vy,

Remember that v; is the minimum value in (11). Thus, the minimum in (11) is at-
tained at A, although it may be also attained elsewhere. O

Proof of Proposition 7.7. /. The monotonicity follows from results of [14]. The
unitarily invariant norm is a symmetric gauge function of the singular values, and the
symmetric gauge function is monotonous in non-negative inputs (see [ 14, ineq. (2.5)]).

2. Letoy (M) < 01(M3) and 0; (M) < 0;(M>) foralli =2, ..., min(m, n). Then
forallk =1, ..., min(m, n)

k

k
Z(Ti(Ml)Sal( 1) +o2(My) + + Omin(m,n) ( I)ZUi(MZ)-
P 01(M2) + 02(M1) + - - - + Tmingm.n) (M1) 4=

Due to Ky Fan [3, Theorem 4] or [14, Theorem 1], this implies that

o1(My) + 02(My) + -+ - + Omingm,n) (M1)

(IMillu < | Mz]lu.
o1(M3) + 02(M1) + - - - + Omin(m,n) (M1)
Since
M M)+ -+ om M
< o1(My) + o2 (My) + - - - + Omingm,n) (M1) <1 and My > O,
o1(M2) + o2(My) + -+ - + Omin(m,n) (M1)
[Millu < [IM2]lu. U

Proof of Proposition 7.8. Notice that the optimization problems (7), (11), and (12)
have the same constraints. If the constraints are compatible, then the minimum in (7)
is attained for A = Aep := CX(XT2X) XT X,

. Let Apin(7) minimize (7), and let Ageys satisfy the constraints. Then, by Proposi-
tion 7.5 and eqn. (75),

Aktm—d (Amin (7)E%A11—1m(7)) =V < )&k—&-m—d(AfeasE%Af—Eas)’ k=1,...,d;
Ud+lfk(Amin(7)(21/2)T) =< Ud+lfk(Afeas(21/2)T),
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k =max(l,d+1-m), ..., d;
o (Aminn (22 < 0j(Aras (22, j=1,..., min(d, m);
by eqn. (74)
Ai(AminnZ A Lin ) =0, i=1,....m—d,

Um+l—i(Amin(7)(21/2)T) =0=<omti1-i (Afeas(21/2)T), i<m-—d,

o (Aminh (22 =0 < 0 (Areas(Z?)T),  d 41 < j < min(m, n+d).
Thus

i (Amin(Z)) < 0j(Aeas(£V)) forall j < min(m, n +d),  (76)

whence by Proposition 7.7 || Amin (1 (ZY2) Iy < | Ateas(Z/H) ||y, Thus Amin 7
indeed minimizes (12).

2. Let Amin(12) minimize (12), so the constraints are compatible. Then Ay mini-
mizes both (7) and (11), see Proposition 7.6. Thus,

[Aminin(Z2) g < [Aem(272) ]

and by (76)
oj (Aem(EI/Z)T) < O‘j(Amin(lz)(ZJl/z)T) for all j < min(m,n + d).
Then by Proposition 7.7 (contraposition to part 2)

o1 (Aem(El/z)T) = O'l(Amin(lZ)(El/z)T)v
A(Iglfi’n):o(AETAT) = hmax (Bem ETAL) = Amax (Bmin(12) 2T Agin (12)).
rk(C—AZ)Sn

Thus Amin (12) indeed minimizes (11). O

Proof of Proposition 7.9. We can assume that u; € {0, 1} in (35).

The set of matrices A that satisfy (8) depends only on span(f(\exo and does not
change after linear transformations of columns of X, ext-

By linear transformations of the columns, the matrix T-1X, ext can be transformed
to the reduced column echelon form. Thus, there exists such an (n + d) x d matrix
Ts in the column echelon form that

span(Xex) = span(T Ts).

Notice that rk 75 = rk X\ext =d.
Denote by d, and d* the first and the last of the indices i such that v; = v;. Then

Vg,—1 < vg, ifde>2;
vd*:...zvdz...zvd*;
Vax < vgry1 ifd* <n—+d.
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Necessity. Let A be a point where the constrained minimum in (7) is attained. Then
equalities (74)—(75) from the proof of Proposition 7.6 hold true. Thus, due to Propo-
sitions 7.4 and 7.5, forallk =1, ...,d

min{A > 0:“3VC span(Xey(), dim V=k : (CTC —AX)|ly <07} = n.
According to 7.4-1, we can construct a stack of subspaces
Vi CVaC- - C Vg = span(Xex),

such that dim V; = k and the restriction of the quadratic form C TC — w X to the
subspace Vj is negative semidefinite, for all k < d.

Now, prove that R

span(u; : v; < vg) C span(Xext)- 77)

Suppose the contrary: span{u; : v; < vg) ¢ span(j(\ext). Then there exists i < dy
such that u; ¢ span(f(\ ext)» and, as a consequence, u; ¢ Viax(; : vj<vi}- Find the least
k such that uy ¢ Vinax(; vj<ug} Let k, and k* denote the first and the last indices i
such thatv; = vg. Then 1 <k, <k <k*™ <d, <d <d*and uy ¢ Vi=.

Since span(u1, ..., uk,—1) C Vk,—1 C Vi,

dim(Vk* N span(ug,, . .., un+d)) = dim(Vk*/ span{uy, ..., uk*_l))
=dim Vi — (ky — 1) = k* — k. + 1.

Since uy ¢ Vi, ux ¢ Vix N span{ug,, ..., Untd),
dim span(Vk* N span{ug,, .. .Untad), uk) =k* —k, +2.
Now, consider the (n +d — k, + 1) x (n +d — k4 + 1) diagonal matrix

D) = [ug,, -, ttnral (CTC = AZ)ug,, ..., ttnral
=diag(A; —Apj, j =ky,...,n+d)

for various A. For A = v = vy, the inequality A; — vgu; > 0 holds true for all
Jj > ks, so the matrix D(vg) is positive semidefinite. For A = v« 1, the inequality
Xj — virgrpj < 0 holds true for all k, < j < k* + 1, so there exists a k* —
ky + 2-dimensional subspace of R"+¢~%+1 where the quadratic form D(vg+y1) is
negative semidefinite. For A < vg«y1, the inequality A; — Au; > 0 holds true for all
k* +1 < j < n+ d. Therefore, there exists an n + d — k*-dimensional subspace
of R"T4=k+1 where the quadratic form D(}) is positive definite. According to the
proof of Sylvester’s law of inertia, there is no subspace of dimension k* — k, +2 =
m+d—ki+1)— (m+d—k*) + 1 where the quadratic form D() is negative
semidefinite. Thus, vg4 is the least number such that there exists a k* — k, + 2-
dimensional subspace where the quadratic form D(}) is negative semidefinite.
Similarly to the chain of equalities in the proof of Proposition 7.4,

vt = minf{d > 0:“3V), dimV; =k* —k, +2 1 D)y, <07}
=min{A > 0:“IV;, dimV; =k* —k, +2 :
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[Ukes - s tnsa]l (CTC = AD)uk,. ..., tnsally, <07}
=min{A > 0:“3V;, V Cspan(ug,, ..., Upta), dimV =k* —k, +2 :
(CTCc—az)ly <07} (78)
The restriction of the quadratic form CTC — v; ¥ to the subspace span(uy,, . .

Un+q) 1s positive semidefinite because [uk,, . . ., un+d]T(CTC — X)X [ug,, ..
Un+aq] = D(vg) is a positive semidefinite diagonal matrix. Then

L)

L)

{vespan(ur,,...unsa) : vI(CTC—n D) < 0}

= {v e span{u,, ..., tnta) : (CTC — v Z)v =0} (79)

is a linear subspace. Since this subspace contains the subspace Vi N span(uy,, ...,
Un+q) (as the quadratic form CTC —wXis negative semidefinite on Vi) and the

vector uy (as ug € span(ug,, ..., Uptq) and u,j(CTC — e Xuy, = A — vepg = 0),
it contains span{ Vi N span(ug,, ..., Un4+d), Uk). But, as vx < vg=1, this contradicts
(78).
Now, prove that R
span{Xext) C span(u; : v; < vg). (80)
Due to (77),
span{Xex) = span (span(Xex) N Span(ug,, - . ., tn4d)s UL, -- - Ud,—1).

Hence, to prove (80), it is enough to show that

o~

span({Xexe) N span{ug,, . .., Vnta) C span{ugq,, ..., Vg*). 81)

The restriction of the quadratic form CTC — vy X to the subspace span(ug,,
..., Up4q) 18 positive semidefinite. Hence

{v € span(ug,, ... Up4d) : UT(CTC — vdZ‘)v < O}
= {v e span{uq,, ... un+a) v (CTC —v4Z)v =0} (82)

is a linear subspace (see equation (79)). This subspace contains the subspaces

span(f(\ext) N span(ug,, ..., Vy+q) and span(ug,, ..., vg+). Denote the dimension of
the subspace (82):
dr) = dim{v € span(ug,, . . . Un+d) : vT(CTC — vdZ‘)v = O}.
If (81) does not hold, then d» > d* —dy + 1;d» > d* — dy + 2. Then
IV C span(ug,, ... Unta), dimV =dr : (CTC - vy X))y <0

(as an instance of such a subspace V, we can take the one defined in (82)). Then,
taking a d* — d, + 2-dimensional subspace of V, we get

3V C span{ug,, ... Upya), dimV =d* —d+2 : (CTC — v X)ly <0.

Due to (78) (for k = d), vg++1 < vg4, which does not hold true.
Assuming the contrary to (81), we got a contradiction. Hence, (81) and (80) hold
true.
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Sufficiency. Remember that T = [uy, ..., uy1q]is an (n + d) x (n + d) matrix of
generalized eigenvectors of the matrix pencil (CTC, X), and respective generalized
eigenvalues are arranged in ascending order. By means of linear operations of the
columns, the matrix 7~ Xext can be transformed into the reduced column echelon
form. In other words, there exists such an n x n nonsingular matrix 73, that the (n +
d) x n matrix

Ts = T~ XexTy (83)

is in the reduced column echelon form. The equality (83) implies that
span(Xex) = span(T'T5). (84)

If condition (37) holds, then in representation (84) the matrix 75 has the following
block structure

Tg+—1 O —1)x (d—d*+1)
T5 =| O@*—d,+1)x@d*—1) Ts1 ,
Om—d*)xd

where Te; is a (d* — dyx + 1) x (d — dy + 1) reduced column echelon matrix. (Any
of the blocks except Tg; may be an “empty matrix”.)

Since the columns of 75 are linearly independent, the columns of Tg; are linearly
independent as well. Hence the matrix T¢; may be appended with columns such that
the resulting matrix T = [7T¢1, T62] is nonsingular. Perform the Gram—Schmidt or-
thogonalization of columns of the matrix 7g by constructing such an upper-triangular

matrix
T = <T71 T72> _ 17 7
0 Tps O —dyxd—du+1) | T74

TpT
that 7,' Tg' T, T; = Igr—g,+1-
Change the basis in the simultaneous diagonalization of the matrices C " C and
2. Denote

Thew = [u1, .. g1, [ua,, ... ug)T6T7, uges1, . .. Untd]-

If v; > 0, the equation (35) with Ty, substituted for 7" holds true, since

T CTCT=A, Tl ZT, =M.
(Here we use that Ay, = --- = Ag+, g, = --- = pg+. If vg = 0, then the latter

equation may or may not hold true.) The subspace

span()?exo = span(T Ts) = span(ul, cooug,—1, [ua,, ... Md*]T(,])

= span(ul, coolg,—1, [Ug,, ... ud*]T()lTn)

is spanned by the first d columns of the matrix Tpey.
It can be easily verified that span(X;uCT) span(TTTTA) and span(X] ¥) =

span(Tg T5"M). The condition span(X,CT) C span(X . Z) holds true if (and only

ext



Consistency of the total least squares estimator in linear errors-in-variables regression 293

if) vy < oo. Thus, due to Proposition 7.2, if t/l\w condition v; < o¢ holds true, then
the constraints A (I — Px) = 0 and (C — A)Xext = 0 are compatible.
Let Apy be a common point of minimum in

Moam—d(BpmZTAT )= min Myma(AZTAT
k+m d( pm pm) AUZPg)=0 k+m d( )
(C—=A)Xext=0

forallk =1,...,d,suchthat Apy (I — Px) = 0and (C — Apm)fext = 0; such Apy
exists due to Remark 7.4-1. By Proposition 7.5,

Meam—d(BpmZTAL) = v, k=1,....d,
and, from the proof of Preposition 7.6,
ri(AmZTAL) =0, i=1...m-d

The minimum in (7) is attained at A = App,.

The case vy = 0 is trivial: then (37) imply that Cf(\ext = 0. Then A = 0 satisfies
the constraints A (I — Py) = 0 and (C — A))?ext = 0 and minimizes the criterion
function in (7). |

Proof of Proposition 7.10. Remember that if v; < oo, then the constraints in (11)
are compatible, and the minimum is attained and is equal to v,; see Proposition 7.5.
Otherwise, if v; = 00, then the constraints in (11) are incompatible.

Transform the expression for the functional (38):

01(X) = hmax (X TZX) "' X7 CTCX)
= hmax (CX(XTEX)"'XTCT)

= min Amax (A ZTAT). (85)
ApeRmx(+d) : Ay (I—Px)=0, (C—A1)X=0

Here we used the rule how eigenvalues of the matrix product change when the ma-
trices are swapped, and we also used Propositions 7.2 and 7.3. By Proposition 7.5,
01(X) > vy, R

If the minimum in (11) & (8) is attained (say at some point (A, Xext)), then
the constraints in the right-hand side of (85) are compatible for X = Xext (partic-
ularly, A is a matrix that satisfies the constraints). Then by Proposition 7.3 the matrix
f(zl;tfjf(\m is nonsingular. Thus, for X = fex[, minimum in the right-hand of (85)
is attained at A1 = A (because A satisfies stronger constraints of (85) and brings a
minimum to the same functional with weaker constraints of (11)).

Hence,
> . . 3 T
01(Xex) = min (A Z7AY)
AreRmx@+d) : Ay (I—Px)=0, (C—A1)Xex;=0

=(AZTAT) = vy,

which is the minimum value of Q.
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Transform the expression for the functional (39):

dnax (XT2X) ' XT(CTC = m2)X)
= A (XTZX) ' XT(CTC)X = mlyia) = Q1(X) —m.

Hence, the functionals (38) and (39) attain their minimal values at the same points.
O

9 Conclusion

The linear errors-in-variables model is considered. The errors are assumed to have the
same covariance matrix for each observation and to be independent between differ-
ent observations, however some variables may be observed without errors. Detailed
proofs of the consistency theorems for the TLS estimator, which were first stated in
[18], are presented.

It is proved that that the final estimator X for explicit-notation regression coeffi-
cients (i.e., for X¢ in (1) or (2), and not the estimator X, ext for X th in equation (3),
which sets the relationship between the regressors and response variables implicitly)
is unique, either with high probability or eventually. This means that in the classifi-
cation used in [8], the TLS problem is of 1st class set | (the solution is unique and
“generic”), with high probability or eventually.

As by-product, we get that if in the definition of the estimator the Frobenius norm
is replaced by the spectral norm, then the consistency theorems still hold true. The
disadvantage of using spectral norm is that the estimator X is not unique then. (The
set of solutions to the minimal spectral norm problem contains the set of solutions
to the TLS problem. On the other hand, it is possible that the minimal spectral norm
problem has solutions, but the TLS problem has not — this is the TLS problem of 1st
class set F3; the probability of this random event tends to 0.)

Results can be generalized to any unitary invariant matrix norm. I do not know
whether they hold true for non-invariant norms such as the maximum absolute entry,
which is studied in [7].
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