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Abstract A fractional advection-dispersion equation (fADE) has been advocated for heavy-
tailed flows where the usual Brownian diffusion models fail. A stochastic differential equa-
tion (SDE) driven by a stable Lévy process gives a forward equation that matches the space-
fractional advection-dispersion equation and thus gives the stochastic framework of particle
tracking for heavy-tailed flows. For constant advection and dispersion coefficient functions,
the solution to such SDE itself is a stable process and can be derived easily by least square
parameter fitting from the observed flow concentration data. However, in a more generalized
scenario, a closed form for the solution to a stable SDE may not exist. We propose a numerical
method for solving/generating a stable SDE in a general set-up. The method incorporates a
discretized finite volume scheme with the characteristic line to solve the fADE or the forward
equation for the Markov process that solves the stable SDE. Then we use a numerical scheme to
generate the solution to the governing SDE using the fADE solution. Also, often the functional
form of the advection or dispersion coefficients are not known for a given plume concentration
data to start with. We use a Levenberg—Marquardt (L-M) regularization method to estimate
advection and dispersion coefficient function from the observed data (we present the case for a
linear advection) and proceed with the SDE solution construction described above.
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1 Introduction

The usual hydrological model for contamination/tracer transport through a porous
media is given by a second order advection-dispersion equation (ADE) of the form
% = —aix[v(x)c] + %[D(x)c], where c(x, t) is the tracer concentration at time 7,
location x, v is the drift velocity and D is related to the diffusivity of the media [4, 15].
The probabilistic approach to describe this flow from a mesoscopic view is given by
the hypothesis that the path of a randomly chosen tracer particle is a Markov process
that solves a stochastic differential equation (SDE) driven by Brownian motion. The
basis of this hypothesis is that the conditional probability density function of this
Markov process solves a forward equation of the same form as the ADE [7, 6].

However, for some heavy-tailed flows, the second order diffusion model can be
inadequate. For such cases a model called the fractional advection-dispersion equa-
tion or fADE of the following form has been proposed [27]:

dc 9 go-l dc
5 = s [v(x)c] + Py |:D(x) Bx]' (1.1)
For the current discussion, we will consider a one-dimensional concentration c(x, t)
where x denotes the distance from the origin of the plume, v is the drift velocity and D
is a function that changes with the diffusion of the tracer. The fractional differentiation
order o € (1, 2) controls the tail of the flow. Here the fractional derivative of order «
for any function f is defined as in [3] by:

d*fx)
dx®

1"(1_i o) /[f(x —u) — f(x) +“f/(x)]05y_l_°‘du,
0

The negative fractional derivative is given by Z(: _f )82 = %, where g(x) = f(—x).
If we assume that the diffusion coefficient D is location invariant, then the fADE

can be associated with an SDE driven by an a-stable Lévy process X; ! of the form:
dY; = a(Y;)dt + b(Y)dX;. (1.2)

Following the Brownian diffusion argument, in the heavy-tailed diffusion model, we
assume a random particle’s position at time ¢ is given by the process Y; that solves
SDE (1.2). It can be shown that Y; is a Markov process [1]. Let us denote the tran-
sition probability density function of Y; by py,(y,1), i.e. P(Y; € AlYp = yo) =
/ 4 Pyo(y, D)dy. For the initial distribution u(u) the pdf of ¥; is given by

p(y, 1) = /pu(y, Huw)du, (1.3)

e.g., for a ground water tracer concentration modeling it is reasonable to assume that
all particles start at location yg at time ¢ = O hence u(u) = I (u = yp). If 1| < @ < 2,

1Following the parametrization in [22] X; ~ Stable(c, B, i, o) where « is the index of stability, B is
the skewness parameter, ;« = 0 is the location parameter and o = 1 is the scale parameter.
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it can be shown [10] that p(y, ) solves the forward equation:

p(y,1) 8 (1+8) ra\|7
51 —_5[5’()’)19()’,0]4- 5 |:—cos<7>] W[b MpG, D]

(1-B) 20 I L
+— [—cos<7)] .a(_y)a[b Mpy, D).
(1.4)

Typically the coefficient functions a and b depend on ¢ via Y; as in (1.2) hence the
terms in the forward equation are expressed as a(y) and b(y), where y is supposed
to be in the range space of Y;. However, without loss of generality, the functions can
also be considered as a mapping from 7 x R — R as a(y, ) and b(y, t) and the
associated forward equation will remain the same.

Thus for a location invariant D, the fADE in (1.1) can be written as:

aC 0 % [aC
= T [v(x, 1)C] +D(t)8xa |:8x]’ (1.5)
which essentially has the same form as the forward equation given in (1.4) with 8 =
1,alx,t) = vx,t), [— cos(%)]_lb“(x, t) = D(t). This shows that in a heavy-
tailed plume that follows fADE (1.5), the position Y; of a randomly chosen tracer
particle at time ¢ solves SDE (1.2). Choosing 8 # 1 will allow the particle transition
in forward or backward direction.

In most practical tracking scenarios, the plume data consists of observed tracer
concentration values c(x, t) over a range of locations at certain time points. We write
p(y,t) = Kic(y, t), where K; is a suitable scale parameter that adjusts the total mass
for c(x, t) so that fR p(y,t)dy = 1 for each ¢.

In case v(-) and D(-) are constants, (1.2) reduces to Y; = at + bX; witha = v,
b=[— cos(”T"‘)D]]/ “ and consequently, Y; itself is a stable process. The parameters
of this stable process then can be estimated using the observed data (see [11] for
details). However, when the coefficient functions are not constants, the solution to
the SDE in (1.2) may not have a closed form.

In this paper, we present a numerical method to solve Y, through the fitted fADE
equation using the observed tracer concentration data. Also, often for a groundwater
contamination modeling problem the functional form of the advection or dispersion
coefficients are not known to start with. In that case, the proper advection and dis-
persion coefficient functions are needed to be estimated. This presents an inverse
problem. We formulate this inverse problem as an optimization problem and develop
a Levenberg—Marquardt (L-M) regularization method to obtain the proper advection
and dispersion coefficient function from the observed data (the case for a linear drift
function is presented here). Then we proceed to generate Y; using these fitted co-
efficient functions. The detailed methodology is described in Section 2. Section 3
provides an illustrative example. Section 4 includes concluding remarks.

2 Methodology

We propose a method for generating a weak solution for the SDE given in (1.2).
The core technique is the standard probability integral transformation. Suppose the
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probability density function (pdf) of the solution process Y; at a given time point
t is given by p(y,t) and the cumulative distribution function (CDF) is defined by
Fy,(x) = ffoo p(y, t)dy. Since F(Y;) ~ Uniform(0, 1) [21], a random observation
of Y3, say y, can be generated by F. Y, ") = y where u is a random observation from
Uniform(0, 1). For the present problem, closed form of p(z, y) is not available, and
we use point-wise numerical approximations to estimate p(y, t) for any fixed ¢ and
fixed y. Therefore we can only use a numerical scheme to approximate Fy, and Fy I

2.1 Simulating a solution process for an SDE driven by a heavy-tailed stable pro-
cess

For a heavy-tailed plume where the particle path can be modeled by the SDE in (1.2),
the forward equation is of the form (1.5). To generate the solution to this SDE we
can consider two scenarios: (i) we may want to solve an SDE with a given form of
coefficient functions v(-) and D(-) and driven by a given «-stable process; (ii) a more
practical problem when only the tracer concentrations at different time points over a
range of locations are observed from a plume, while the coefficient functions need to
be estimated along with the parameters of the driving process X; in (1.2) from the
observed concentration values.

In either case, first, we find p(¢, y) that solves the forward equation (1.4) with
given or estimated coefficient functions and then generate Y; using these p(¢, y)’s.

Y; Simulation Steps:

Step 1: Numerical Solution for p(7, y): Assuming the probability density p(y, t) =
Kic(y,t), we estimate K;, « and B from the observed data that assumed to
satisfy fADE (1.5). p(y, t) can be solved numerically using a discretization
scheme from the forward equation (1.4). In case the coefficient functions in
(1.4) are not known, an inverse problem optimization technique can be used
for estimating the parameters. See Section 2.2 for details of this step.

In either case the discretization method provides only point-wise approxima-
tion of p(y, t) values for given ¢ and y and not a closed functional form.

Step 2: Generating Y;: To generate Y; for a fixed 7 using an inverse CDF transfor-
mation, we present a straightforward scheme with a trapezoidal rule to approx-
imate Fy, and Fy, L Approximate Y;’s can be simulated using p(y, ¢)’s from
step 1 as follows:

(a) Choose suitable grid yo < y; < --- < y, and solve for p(y;,t) as
mentioned in step 1. The endpoints yg and y, can be chosen so that p(y, )
is small or negligible for y < yg or y > y,. The fitted coefficient and
parameters from the observed data in step 1 can be used for any y;’s.

(b) Approximate Fy, (y;) by I:“y, (y;)fori =1,2,...,n,using the trapezoidal
rule:

p(y1, 0 + p(yo, 1)
2 9

p(y2,t) + p(y1, 1)
2 b

Fy,(y1) = (y1 — Y0)

Fy,(»2) = Fy,(01) + (2 — y1)
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pOrs )+ p(yr—1,1)
2 9

Fy,(3) = Fy,(yr—1) + r — Yr—1)

POn> 1) + p(Yn-1,1)

Fy,(0n) = Fy, yn—1) + On = Yu-1) 5

(c) For arandomly generated Uniform(0, 1) observation u, find its placement
in the grid, i.e. y», y,4+1 such that Fy, ) <u < Fy, (¥r+1), for some
r €{0,1,...,n}. A way of generating associated random observation of
Y, or Fy, ! (u) (approximated) as y is described below:

Vrs . if u=y;
y = u—F )
Y )’r+ﬂv if y, <u < yr1.
P(t» J’r)

Incase u < ﬁyt (yo) set y = yp and if u > ﬁyt (yn) sety = yp.

(d) To generate N i.i.d approximated random observations J1, y2, ..., YN
of Y;, start with randomly generated independent Uniform(0, 1) obser-
vations u1, ua, ... uy and then repeat step (c). Note that the efficiency of
this appr0x1mat10n will depend on the spacing of the chosen grid since we
are actually generating sample from distribution Fy, here and F vy, = Fy,
as OIBa<X |vi+1 — yi| — 0 following the convergence property of the stan-

L=n

dard trapezoidal rule.

2.2 A formulation for a numerical solution of the forward equation

In this subsection, we will present a finite volume scheme with the characteristic
line for solving a forward equation of the form (1.4). To incorporate a discretized fi-
nite volume scheme with proper boundary condition, we re-parameterize the forward
equation with fractional order 2 — A with 0 < A < 1 (consistent with the construction
described in [25]) as follows:

ap a a _ —
§+_ a()p = o= [b@ (v D" + (1= ) D) Dp] =0, xi <x <xr,

p(x;,t) =0, px,,t)=0, O0<t<T.
2.1
Essentlally, compared to (1.4) the fractional derivative order « = 2 — A, while y =
1J2r indicates the relative weight of forward versus backward transition. ,, D;* and

x Dx, represent the left and right fractional integral operators defined as

1
uD () = r(,3> ( — ) f(s)ds,

2.2)
“f(x) = Tﬂ) f (s — )" £ (s)ds.
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To comply with the boundary conditions, x = x; and x = x, are set to be the inflow
and outflow boundaries respectively [25], while a(x;) and a(x,) are assumed to be
non-negative.

2.2.1 The discretized finite volume scheme and the accumulation terms
Let us define a partition P; on the time interval [0, T'], and a partition P, on the space
interval [x7, x,]

P:0=ty<tj<---<ty=T,

(2.3)

Prixi=xp<X| <+ <X =Xp,
with At, =t, —t,_1forn=1,...,Nand Ax; = x; —x;_y fori = 1,..., I.Let P,
be the dual partition of Py defined by x;_1/2 = %(xi_1+x,-) with Ax; 12 = Xip12—
xi—ipfori =1,...,I—1laswellas Axyp = x12—xpand Axji120 = X7 —X7-1/2.

Lety = r(60; x, 7) be a continuous and piecewise-smooth curve that passes through
the point X at time 7, such that r(0; Xi—1/2,tx) and r(0; x; 11,2, tn) do not meet each
other during the time period [#,_1, #,]. We define a space-time control volume 'an by
extending the cell [x;_1,2, x;1+1/2] along the curve r(¢; x, #,) fromt =1, tot =1,

QU ={0, 1) i rt;xicija, tn) <X <r(Xig1/2. )y o1 <t <y} (2.4)
Assuming the prism £2/" does not intersect the boundary x = x; and x = x, of the
domain during the time period [t,—1, t,], let x* = r(t,—1; x, t,) be the foot at time

tn—1 of the curve with head x at time #,.
Integrating equation (2.1) over the control volume £2!" we get

ap tn 817)\
/9,-" dedt—i—/trl_l(a(x)p —b(t)—xl_kp)

Without loss of generality, the accumulation term in (2.4) can be evaluated by assum-
ing

r(t;x; »tn)
Par=0. 25

r(t;xi—-1/2,tn)

xi]/z < Xi—-1/2 < xl‘*+1/2 < Xi41/2» (2.6)
and accumulation term can be re-written as follows:

3 Xi—1/2 I(X;Xi—]/Z»tn) 0
/ P 1cdr :/ [/ —pdti| dx
qQr ot - f 1 ot

12 n—
Xapl 9 Xiw12[0 fln a
+/+ U —pd;}derf [/ —pdti|dx.
Xi—1/2 tny 01 Xy 1(X3Xi41/2,n) ot
2.7

Here the notation #(x; x;_1/2, t,) represents the time instant that the curve
r(t;, xi—1/2, ty) = x. The notation 7 (x; x; 41,2, t,) is defined similarly.
A simple calculation of the second term on the right-hand side of (2.7) yields

i g R X
/ i |:/ —pdti|dx:/ ’ p(x,tn)dx—/ ' px, tp—1)dx.  (2.8)
Xi—1/2 Ih—1 ot Xi—1/2 Xi—1/2
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The first and third terms on the right-hand side of (2.7) are integrated as follows

Xic12[ prOGXi—12.0) g
f [ / i dti|dx
X Ih—1 a[

511/2
fn Ar(t; Xi—1/2, t) =172
=/ p(rt; xi—1/2, t), t) ———+—22 /2 dt—/ p(x, ta_1) dx, (2.9)
-1 ot x?k_]
i—1/2
and
Xi+1/2 In B
LU e
Xy LJtGexiprat) ot
Xi41/2 In ar tx; 1
=/ p(x,rn)dx—/ p(r 3 31412, 1), 1) oI 5 1)
X1y In—1 ot

Incorporating equations (2.8)—(2.18) into (2.7) we get

ap Yi+1/2 X
—dxdt = p(x, t)dx — p(x, ty—1)dx
QF X

dt i—1/2 xitl/z

In or(t; xi_1,2, 1,
+/ p(r(t;xz'—l/z,tn),t)% dt (2.11)
1

_ /t" or(t; xit1/2, th)
1

n—1

p(rt: xiz1y2. 1), 1) ” dr.

n—1
The derivation shows that (2.11) does not depend on the assumption (2.4).
Now we just set the space-time boundaries r(¢; x;+1/2, ;) of the control volume
R2{" to be the characteristic curves, which are defined by the initial value problem of
the ordinary differential equation

dr
i a(r,t), rt; x, ty) 1=, = x. (2.12)

That is, because the characteristics 7 (f; x;+1/2, t;) are assumed to be tracked exactly
and hence the residual advection term vanishes naturally.

Substituting (2.11) for the accumulation term in (2.5), we obtain a locally conser-
vative reference equation on an interior space-time control volume £2/" as follows:

Xi+1/2 In
f p(x,tn)dx+/ F(p,b)(r(t: xiy1/2.12). 1) dt
Xi—1/2 In—1
In
—/ F(p,b)(r(t; xi—1/2,1y), 1) dt (2.13)
th—1
xi*+1/2
:/ p(xvtn—l) d)C,
X

"
i-1/2
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which can be approximated as

Xit1/2
/ p(x,ty) dx 4+ At[F(p,b)(xiq1/2, 1) — F(p, b)(xi—1/2. 1) ]
X,

i—1/2

X1 (2.14)
:/ p(x, th—1) dx,
xf—l/z
with the Lagrangian interface fluxes
alfk
F(p,b)(r(t; Xiz1/2,1p), 1) := —b axﬁp(r(l; Xi+1/2, In), 1). (2.15)

Note that the interface fluxes F(p, b)(r(¢; xij+1/2, ta), t) are defined across the
space-time boundary r(¢; x; —1,2, t,) and r (¢; x; 11,2, t,) of the space-time control vol-
ume £27".

To discretize equation (2.1), we further let {¢; 1.1:1 be a set of hat functions such
that ¢; (x;) = 1 and ¢; (x;) = 0 for j # i. Hence the finite volume approximation p,
to the true solution p can be expressed as

-1
pr(x) =) pjd;(x).
j=1

and the finite volume scheme on the interval [x; 1,2, x;y1/2] fori = 1,...,1 —1has
the form
. -1 *
Xit+1/2 Xit1/2
f PO i) dx + ALY iz =/ p(x, tn-1) dx, (2.16)
Xi—1/2 j=1 xi*—]/Z

where, [z; ;] 11 ; i | is the coefficient matrix of the fractional term, and is given by

zij = bl(voDt,, + (1 = ¥)wy 1, D) D (xi120,)
—(roDil;, + (1= V) D7) DY) (xi1/2.0,)].

Assuming the trial functions p(x, t,) are chosen to be piecewise linear functions
on [x;, x,] with respect to the fixed spatial partition P,, we evaluate the accumulation
term at time step ¢, in the finite volume scheme (2.16) analytically as

(2.17)

Xit1/2
/ p(x,tn) dx = é[Axi(p?_l +3p0) + Axip Gpf + Pl )] (218)

Xi—1/2
In addition, we can compute xl?"_l P and x;k+1 2 at time step #,—1 via a backward
approximate characteristic tracking. Since the trial function p(x, t,,—1) is also piece-
wise linear with respect to the fixed spatial partition P, at time #,_1, we can evaluate
the accumulation term at time step #,—; analytically. Because the accumulation term
at time step t,—1 affects only the right-hand side of the finite volume scheme (2.16),
the scheme retains a symmetric and positive-definite coefficient matrix. Furthermore,
the finite volume scheme (2.16) is locally conservative, even if the characteristics are
computed approximately.
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2.2.2  The fractional diffusion term and the stiffness matrix

The finite volume scheme (2.16) appears similar to the one for the canonical second-
order diffusion equation, but has a fundamental difference. Although the hat functions
¢; have local support, (2.2) reveals that , D Ad) j and xDx_, Aqb ; have global support.
Therefore, the stiffness matrix Z := [Zlﬁj]il,;ll is a full matrix, which requires O (N?)
of memory to store. Numerical schemes for space-fractional differential equations
were traditionally solved by the Gaussian type direct solvers that require O (N?) of
computations [13, 14, 18, 19]. In recent years, there have been some other notable
developments in methods for solving the algebraic linear systems arising from dis-
cretization of fractional-order problems, especially for space dimension higher than
one (see [9]); we plan to explore them in our future work.

To simplify the computation of the diffusion term, we have to explore the structure
of the stiffness matrix Z [17, 26]. The entries of the stiffness matrix Z are presented
below.

Its diagonal entries are given by:

= ! byh*! L a thlA 3)'
w0 = rar ™ - (2() - (5))

A A
e () - (3))
r(A+1) 2 2 (2.19)

b1 — !
T ozt oY)

A A
- le**(z—A +2 (l> — <§> )
FO.+1) 2 2

forl <i<I-—1.
Whereas, the sub-triangular entries of the matrix Z are given by:

ji—1 = 71 by (2 Ly’ 3\ _ 1 b(l Bl
i =TT Y ( (5) _<5> )_F(A+1)2k (=
a3, () (l)x>
ro+ " <<2> 2<2> 2
1 3\ n* 5\*
~rarn? (G) () r-(5) r2ran)

(2.20)
for2 <i<I-—1,and

1 N 1N\ 3\
= ——by Y (i—j+z) —2(i—j—=) +(i-j—-=
“ITTOE ) 2 2 2

A A A
—ébyhk_l i—j+E -2 i—j+l + i—j—l
F(+1) 2 2 2
2

(2.21)
for3<i<l—1landl <j<i-—2.

The super-triangular entries of matrix Z can be also derived as
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' r(a+1) 2 2 2
1 | oo (1 (3Y
ro+n " et <2<2) (z) >
- bhH33A1 31A1
TTGHD ( (5) d=n- (5> ¢

5 A
_ <E) (1) — 2%,), (222)

forl <i <11 —2,and

2
N 3\*
(e ()
_ 1 th"lA
“Toarn Y ( (’_’_2)

3\* 1\*
—<j—i—§> —<j—i+§>> (2.23)
forl<j<lI—-3andj+2<i=<I-1.

2.2.3  Estimation of coefficient function
We present the case where the drift coefficient function in fADE (1.5) (and therefore
in equation (2.1)) is assumed to be a piecewise linear function of x,

ap—ayx, ifx; <x < xp,
ar) —azx, ifx, <x <x,,

a(x) = { (2.24)

where parameters ag, a;, a» and a3 are to be estimated from the observed concen-
tration data. The main idea on this part is to obtain certain measurements through
physical or mechanical experiments, and then use the data to calibrate these parame-
ters in the fADE (see [16]). This is an inverse problem: based on the initial guess pg
of the equation (2.1), and certain observation (or desired) data such as values of the
state variable g at the final time, we attempt to seek for the constant parameters ay,
a1, ay and a3 from the governing differential equation (2.1).

We formulate the inverse problem as an optimization and develop a Levenberg—
Marquardt (L-M) regularization method (see, [12, 20, 24]) to iteratively identify the
parameter. It is known that the inverse problem usually requires multiple runs of
the forward problem. Considering the computational cost of the forward problem
is already high, the inverse problem could become infeasible. Hence we propose an
optimization algorithm for the parameter estimation.

Here we only present the details of the fitting of ap and a;. The other two param-
eters ap and a3 can be estimated similarly. The parameter identification of ag and a
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can be formulated as follows: let & := {ag, a1}, then to find «;,, that satisfies

M

ain =g min G@) = 3 Y [pC i) — p 0, (229)
i=1
where, p(x;, t) = I%,c(x,', t) for observed concentration ¢ at location x;, time ¢.
In case the data is available for time points t1, #2, ..., g We rewrite equation
(2.25) as
Qjpy = arg n}xin G()

1 & & ) (2.26)
2 DD wil PGt @) = plxi, 1]

k=1 i=1
here x;, ; is the ith observed location at time #; and wy is the weight assigned for
the sample set available for the same time point. (For example the data set used in
Section 3 has R = 3).
An iteration algorithm such as the Newton method with line searching could be
employed to find the solution to (2.26). Basically, the Newton algorithm for minimiz-
ing (2.26) uses the first and second derivatives of the objective function G(«):

_ G'(e)
G" (o)’

where k represents the kth iteration. It is easy to check that (2.27) is equivalent to
solve

Opt] = O (2.27)

—1
apr1 = o — (JLJe) Tirk, (2.28)
where .
o= 5075387, with
J— (PG tiie) Op (xy, m;» 1is @) (2.29)
aa LERIEIEE) aa s
and ;
1..2 R .
ry,=(r;r;...;r , with
o= ) A (2.30)
=i, TiM)s i =P s tis ) — plxg g 1),
forj =1,...,M;,andi = 1,2,..., R. Note that in practice, we always use the

finite difference
p(xg,j, tiy € +8) — p(xy j, tis &)
8
with a small enough 6 to approximate the derivatives in (2.29).

However, the Newton method may fail to work because of J,{J x may be nearly
zero. Therefore, the search direction di := —JZrk /JkTJ % may not point in a decent
direction.

A common technique to overcome this kind of problem is the L-M algorithm (or
Levenberg algorithm since a single parameter case is considered in this paper), which
modifies (2.27) by the following formulation

aeir = o — (T + o) I r, (2.31)
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where gy, is a positive penalty parameter, and /5 is a 2 x 2 identity matrix. The method
coincides with the Newton algorithm when o, = 0; and it gives a step closer to the
gradient descent direction when gy is large.

Algorithm A: Parameter Identification Algorithm:

Given the observation data g and an initial guess «g = {agp, aj}o, choose p €
0,1),0 € (0,1/2), o9 > 0, and § small enough. For k = 0,1,..., M, (let M =
My + My + M3),

(1) Solve the equation (2.1) corresponding to ot and oty + 8 respectively to obtain
p(, -, ax) and p(-, -, g + ).

(2) Compute J; and ry, and update the search direction
di := —(J Ji + lez)_lJ,frk-
(3) Determine the search step p™ by Armijo rule:
Glok + p™di) < Glow) + op™ diJ{ 1
where m is the smallest non-negative integer.
(4) If |p™di| < Tolerance level, then stop and let oy, := og. Otherwise, update

aprt =0+ o"dk,  Okt1 1= 0k/2,
and go to the first step for the iteration again.

Algorithm A summarizes the proposed parameter estimation steps through the in-
verse problem approach which includes the details of the L-M method. In particular,
the Armijo rule [2] in the third step, known as one of the inexact line search tech-
niques, is imposed to ensure the objective function G has sufficient descent. Other
rules and the related convergence theory can be found in [24].

3 Anillustrative example

In this section, we use a heavy-tailed groundwater tracer concentration data to illus-
trate the methodology described in Section 2. The data comes from natural-gradient
tracer tests conducted at the MacroDispersion Experimental (MADE) site at Colum-
bus Air Force Base in northeastern Mississippi, precisely the MADE-2 tritium plume
data [8]. The data consists of the maximum concentration measured in vertical slices
perpendicular to the direction of plume travel, at day 27, day 132, day 224, and day
328 days after injection (see Figure 4 in [5]).

In [11], an fADE with constant drift and diffusion coefficient was fitted to the
same data. With constant coefficient functions, the resulting solution process Y; in
the SDE (1.2) itself is a stable process. The parameters of the fitted stable process
were estimated using the least-square method.
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Here we are considering an fADE that may have variable coefficients. For the fits
presented in this section, the diffusion coefficient is still assumed to be location in-
variant, but we use a piecewise linear drift function of the form (2.24). The choice of
X1, Xp and x, are subjective but should comply with the boundary conditions. x; = 0
(starting location), x, = 300 (beyond the observed location range) and x,, = 9.375
(a rough mid-location of the observed range) were set for the current simulation. We
used the fitted parameter values from the constant coefficient model [11] as initial val-
ues for the simulation; these parameter values are included in Appendix A. Then we
used the data to estimate the linear drift and to obtain p(x, ) that solves (2.1) by the
methodology presented in Section 2. c(x, t) = Kp(x, t) gives the fitted concentration
that solves fADE associated with (2.1).

The concentrations fitted by the proposed method for the MADE site data at day
224 and day 328 are included here.

Fitted parameters for the MADE site data at day 224:
ap = 0.110, a; = 0.00032, ax = 0.0003, a3 = 0.00019,
b =0.1859783, A = 0.80, y = 0.9999, K = 56778.24.

Table 1. Observed and fitted tracer concentrations for MADE data at day 224

Day 224
x = location, C = tracer concentration
x | Observed C Fitted C
2.1000 3378.0000 | 2871.7248
2.9000 1457.0000 | 3187.0093
3.6000 6494.0000 | 3529.6230
6.0000 1335.0000 | 4027.3618
6.6000 7705.0000 | 3321.0305
6.8000 2206.0000 | 3086.6518
6.9000 1291.0000 | 2969.4625
7.2000 4515.0000 | 2734.3773
8.0000 3598.0000 | 2361.1656
8.7000 2447.0000 | 2083.3103
9.7000 2831.0000 | 1809.0524
10.8000 2208.0000 | 1586.8821
12.7000 849.0000 | 1273.2312
13.5000 2213.0000 | 1169.6987
16.0000 1485.0000 935.2569
27.5000 443.0000 442.0004
31.8000 165.0000 356.0560
40.3000 291.0000 245.6054
48.8000 237.0000 178.6647

57.5000 76.0000 134.2397
66.3000 54.0000 103.7457
74.8000 137.0000 82.8644
83.4000 37.0000 67.3318
100.7000 28.0000 46.5417
117.0000 51.0000 34.4212
166.6000 18.0000 16.5498
183.5000 28.0000 13.9355
218.5000 9.0000 11.4791

268.7000 6.0000 10.1389
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Fitted parameters for day 328 MADE site data:
ap = 0.105, a; = 0.00030, a; = 0.0005, a3 = 0.00018,
b =0.2233695, . = 0.79, y = 0.9999, K = 37195.05.

Table 2. Observed and fitted tracer concentrations for MADE data at day 328

Day 328
x = location, C = tracer concentration
x | Observed C Fitted C
2.1000 1762.0000 | 2001.9586
3.6000 4157.0000 | 3264.5572
5.5000 2018.0000 | 1982.1889
6.0000 1295.0000 | 1653.7130
6.6000 2742.0000 | 1436.3243
6.8000 798.0000 | 1405.9525
6.9000 661.0000 | 1390.7665
7.2000 4721.0000 | 1323.8183
8.0000 2877.0000 | 1132.2689
8.7000 946.0000 | 1050.1787
9.7000 3140.0000 920.6741
10.8000 2075.0000 819.8101
12.7000 1636.0000 689.5556
13.5000 1569.0000 646.4434
16.0000 869.0000 536.8714
16.3000 1825.0000 525.8232
17.0000 286.0000 501.7569
18.0000 597.0000 470.2962
27.5000 127.0000 281.0554

31.8000 49.0000 231.1571
40.3000 108.0000 163.9576
48.8000 75.0000 121.3509
57.5000 95.0000 92.2235
66.3000 38.0000 71.8197
74.8000 126.0000 57.6513
83.4000 54.0000 47.0086
100.7000 19.0000 32.6278
117.0000 46.0000 24.1752
166.6000 25.0000 11.6326
183.5000 22.0000 9.4787
218.5000 11.0000 7.0942
268.7000 8.0000 6.0752

Comments:

1. The fit above uses piecewise linear drift velocity and location invariant diffu-
sion coefficient as opposed to constant drift but same diffusion coefficient used
in [11]. The fitted curves in Figures 2 and 4 show a better tail fit here compared
to similar plots in [11]. The fractional order « for the fADE with constant coef-
ficient was fitted as 1.09 and 1.05 for day 224 and day 328 respectively in [11].
Here the fitted fractional order o(= 2 — A) are 1.2 and 1.19 for day 224 and
day 328 respectively. Since the new fit improves on the fit in [11], this indicates
that a better drift velocity fit may lead to an adjustment of the fractional order
to improve the tail fit in the fADE. Ideally, the drift velocity function might be
mechanically estimated from a properly designed field experiment while the
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Fit for MADE site data at day 224
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Fig. 1. The fitted and observed concentration at day 224 for MADE site data

Log-Log Plot for MADE site data at day 224
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Fig. 2. The fitted and observed concentration with log scale at day 224 for MADE site data
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Fit for MADE site data at day 328
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Fig. 3. The fitted and observed concentration at day 328 for MADE site data

Log-Log Plot for MADE site data at day 328
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Fig. 4. Fitted and observed concentration with log scale at day 328 for MADE site data
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diffusion coefficient and the fractional order can be estimated as described in
this paper for an even better fADE fit.

2. Using simulation step 2, iid sample of size 1000 for Y; was generated at r =
day 224 and ¢ = day 328. Histograms for the generated samples in Figures 5
and 6 are fairly consistent with the observed concentration (or observed den-
sity) data. These figures indicate that although we had adopted a numerical
approach to generate Y;’s, the simulation method is efficient enough to follow
the underlying probability distribution.

Histogram of generated Y's at day 224
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Particle location Y,

Fig. 5. Histogram of 1000 Y; values generated by the proposed method at t = 224. The red
line shows the fitted pdf from (2.1) and blue dots show observed density = observed concen-
tration /K (data estimates K = 56778.24)

4 Discussion

The trapezoidal rule provides a very simple and quick numerical approximation of
the CDF of Y; in (1.2) and for its inverse in the proposed simulation step 2. A more
sophisticated numerical method like Simpson’s rule or other higher order Newton—
Cotes formula or quadrature rules [23] can be used to obtain a more accurate F y,, but
the procedure will be much more computationally taxing.

The method described here can be used to simulate a large number of observa-
tions (approximated) from Y;. With the usual particle tracking insights, these sim-
ulated values can also be used to build empirical confidence intervals for the fitted
concentration values.
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Histogram of generated Y's at day 328
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Fig. 6. Histogram of 1000 Y; values generated by the proposed method at + = 328. The red
line shows the fitted pdf from (2.1) and blue dots show observed density = observed concen-
tration /K (data estimates K = 37195.05)

Let us consider P[Y; € (a,b)] = Fy,(b) — Fy,(a). This is the probability that
a randomly chosen tracer particle will be in a given interval (a, b) at a time point
t. For example, in groundwater pollution modeling this expression can be an impor-
tant one that estimates the chance that the pollution will reach a certain area after a
certain time. Using i.i.d. random simulations Y,(l), Yt(z), e, Y,(N) of Y;, an empirical
estimate for this probability can be given by P = % Z,N:1 1 [Yl(l) € (a, b)]. Then

by the central limit theorem P asymptotically follows the normal distribution with

PlY, ,b)1(1 — P[Y, ,b
mean P[Y; € (a, b)] and variance L¥: < (@, D) L¥: € (@ )]). Hence for

N
large N’s, an asymptotic (1 — «)100% confidence interval for P[Y; € (a, b)] can be

given by
. P(1—P)
P Fzqp N “4.1n

Now noting that density p(y, t) can be approximated by ﬁP[Yt € (a, b)] with a
small interval (a, b), the simulated Y; values can be used to calculate the confidence
intervals for the fitted densities. See [11] for detailed asymptotic confidence interval
construction steps and related results associated with the empirical density function
that is calculated using the generated Y;’s.

Assuming that the observed concentrations are scaled versions of density p(y, t)
of Y;, one can repeat simulation step 2 described in Section 2.1 without solving the
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forward equation to generate Y;’s. However, the grid used for the simulation will
be limited only to the fixed observed data location points. Since Y;’s are simulated
through numerical approximation the performance of this simulation depends on the
grid spacing used. Thus the fitted fADE in simulation step 1 not only gives us the
better understanding of the underlying process but also is essential for generating a
good approximate process that resembles Y; by enabling the use of a finer grid for the
numerical approximation. Further, modeling the underlying fADE process facilitates
better prediction than mere extrapolation from an observed sample set.

On the other hand, an fADE can be fitted to the observed concentration by sim-
ulation step 1 only, without describing the underlying stochastic process. But the
stochastic diffusion description is useful for understanding the mesoscopic flow and
particle tracking methods. Further, generating the solution to the SDE associated with
the fADE can be used to construct confidence intervals for the fADE fits that account
for the error of estimation by a sample set.

In conclusion, the fADE and the associated «-stable SDE are essential tools to
model heavy-tailed diffusion. However, the model fitting part may get complicated
if we consider any scenario other than constant drift and diffusion coefficients. A
numerical scheme for solving the fADE and the related SDE with linear drift is pre-
sented here. The general ideas used in the simulation steps can be replicated for a
more complicated form of the drift. We plan to explore such models in our future
work along with the convergence and the efficiency of the numerical approximations
applied here.

A Appendix

In [11] the tracer trajectory Y; of the MADE site data was assumed to follow an SDE
of the form (1.2) with constant parameters and hence itself was a stable process with
index of stability o, skewness parameter §, location parameter v (same as the assumed
constant drift velocity in (1.5)) and scale parameter o, where 6% = Dt|cos(mwa/2)|
with constant diffusion coefficient function D in (1.5).

The fitted values in [11] are:

Day 224 fitted values:
o =5.137167, u = 43.915430;
B =0.99;
a = 1.0915;

v = 0.196051m /day
D = 0.1859783m% /day

K = 56778.24.
Day 328 fitted values:
o = 5.3800654; u = 74.677975;
B =0.99;
a = 1.050998;

v = 0.2276768m /day
D = 0.2233695m* /day
K =37195.05

These were used as initial values for the iterations in Section 3.
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