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Abstract We consider a family of mixed processes given as the sum of a fractional Brownian
motion with Hurst parameter H ∈ (3/4, 1) and a multiple of an independent standard Brownian
motion, the family being indexed by the scaling factor in front of the Brownian motion. We
analyze the underlying markets with methods from large financial markets. More precisely,
we show the existence of a strong asymptotic arbitrage (defined as in Kabanov and Kramkov
[Finance Stoch. 2(2), 143–172 (1998)]) when the scaling factor converges to zero. We apply
a result of Kabanov and Kramkov [Finance Stoch. 2(2), 143–172 (1998)] that characterizes
the notion of strong asymptotic arbitrage in terms of the entire asymptotic separation of two
sequences of probability measures. The main part of the paper consists of proving the entire
separation and is based on a dichotomy result for sequences of Gaussian measures and the
concept of relative entropy.
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1 Introduction

Empirical studies of financial time series led to the conclusion that the log-return in-
crements exhibit long-range dependence. This fact supports the idea of modelling the
randomness of a risky asset using a fractional Brownian motion with Hurst parameter
H > 1/2. However, markets driven by a fractional Brownian motion have been ex-
tensively disputed, as this motion fails to be a semimartingale and, hence, they allow
for a free lunch with vanishing risk (see [6]).

Many attempts were proposed to overcome this drawback of the fractional Brown-
ian motion. In this work, we deal with the regularization method proposed by Cherid-
ito in [2, 1] when H > 3/4. This method consists in adding to the fractional Brownian
motion a multiple of an independent Brownian motion, the resulting process, called
mixed fractional Brownian motion, being Gaussian with the long-range dependence
property. Moreover, as shown in [2, 1], when H > 3/4 the mixed fractional Brownian
motion is equivalent to a multiple of a Brownian motion. Therefore, a Black–Scholes
type model in which the randomness of the risky asset is driven by a mixed frac-
tional Brownian motion is arbitrage free and complete. We call such a model a mixed
fractional Black–Scholes model.

On one hand the fractional Black–Scholes model admits arbitrage. On the other
hand, when the Hurst parameter H > 3/4, adding a Brownian component (in the
above explained way) makes the arbitrage disappear. In this paper we aim to go a step
further and study the sensitivity to arbitrage of the mixed fractional Black–Scholes
model when the Brownian component asymptotically vanishes. In [3, 4] it was argued
that a good way of seeing the sensitivity to arbitrage of a market when one of its pa-
rameters converges to zero (or infinity), is to consider the family of markets indexed
by the corresponding parameter and to use methods from large financial markets. To
be precise, we study the asymptotic arbitrage opportunities in the sequence of mixed
fractional Black–Scholes models when the scaling factor in front of the Brownian
motion converges to zero. We focus on the notion of strong asymptotic arbitrage
(SAA) introduced by Kabanov and Kramkov in [9] as the possibility of getting ar-
bitrarily rich with probability arbitrarily close to one by taking a vanishing risk. Our
model fits the standard framework of large financial markets, as each mixed fractional
Black–Scholes model is arbitrage free (and even complete). We point out that the ex-
istence of arbitrage in the limiting market does not directly imply the existence of
any kind of asymptotic arbitrage in the approximating sequence of mixed markets.
In [9] the existence of strong asymptotic arbitrage was shown to be equivalent to the
entire asymptotic separation of the sequence of objective probability measures and
the sequence of equivalent martingale measures.

In order to show the existence of strong asymptotic arbitrage in the sequence of
mixed fractional Black–Scholes models we use the result of [9] that was mentioned
above. That means we show that the sequence of objective probability measures is en-
tirely asymptotically separable from the sequence of equivalent martingale measures.
Our main contribution is the proof of this entire asymptotic separability in the given
model. We use the notion of relative entropy and a dichotomy result for sequences of
Gaussian measures. Indeed, inspired by the work of Cheridito [2, 1], we first show,
for each fixed market, that the entropy of the objective probability measure relative to
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the equivalent martingale measure, both restricted to a discrete partition, converges to
infinity. Our proof then follows using tightness arguments for the sequence of Radon–
Nikodym derivatives of the objective probability measures with respect to equivalent
martingale measures and the fact that two sequences of Gaussian measures are either
mutually contiguous or entirely separable. The latter is known in the literature as the
equivalence/singularity dichotomy for sequences of Gaussian processes, see [5].

The paper is structured as follows. In Section 2, we set the mixed fractional
Black–Scholes model and recall the framework of the large financial market. At the
end of this part, we state the main result (Theorem 1). Section 3 is dedicated to the
proof of Theorem 1, whereas Section 4 provides a discussion about the existence of
strong asymptotic arbitrage using self-financing strategies constrained to jump only
in a finite set of times. We end our work with Appendix A in which we recall the def-
inition of relative entropy and an equivalent characterization in terms of the Radon–
Nikodym derivative.

2 Preliminaries and main results

2.1 Setting the model
Let (Ω,F , P ) be a probability space.

Definition 1. A fractional Brownian motion ZH = (ZH
t )t≥0 with Hurst parameter

H ∈ (0, 1) is a continuous centred Gaussian process with covariance function

Cov
(
ZH

t , ZH
s

) = E
(
ZH

t ZH
s

) = 1

2

(
t2H + s2H − |t − s|2H

)
, s, t ≥ 0.

In particular, Z
1
2 is a standard Brownian motion.

A linear combination of different fractional Brownian motions is refered in the
literature as a mixed fractional Brownian motion. In order to avoid localization ar-
guments we only consider finite time horizon processes. In addition we focus on
linear combinations of a standard Brownian motion (Bt )t∈[0,1] and an independent
fractional Brownian motion (ZH

t )t∈[0,1] with Hurst parameter H ∈ (3/4, 1), both de-
fined on (Ω,F , P ). Cheridito shows in [2, 1] that, for each α ∈ R the mixed process
MH,α := (M

H,α
t )t∈[0,1] defined by

M
H,α
t := α ZH

t + Bt , t ∈ [0, 1],
is equivalent to a Brownian motion. By this we mean that the measure QH,α induced
on C[0, 1] by MH,α and the Wiener measure QW (induced by the Brownian motion
on C[0, 1]) are equivalent. As a consequence, the process MH,α is a (FH,α

t )t∈[0,1]-
semimartingale, where, for each t ≥ 0, FH,α

t := σ((M
H,α
s )s∈[0,t]) is the right-

continuous natural filtration augmented by the nullsets.
Now, for each α > 0, we call by the α-mixed fractional Black–Scholes model the

financial market consisting of a risk free asset normalized to one and a risky asset
(S

H,α
t )t∈[0,1] given by

S
H,α
t := S

H,α
0 exp

((
μ − σ 2

2α2

)
t + σ

(
ZH

t + 1

α
Bt

))
, t ∈ [0, 1], (1)
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where μ ∈ R and σ > 0 represent the drift and the volatility of the asset.1 We
denote by X := (Xt )t∈[0,1] the coordinate process in C[0, 1] and we define the process
Sα := (Sα

t )t∈[0,1] as

Sα
t := Sα

0 exp

((
μ − σ 2

2α2

)
t + σ

α
Xt

)
, t ∈ [0, 1]. (2)

From the above discussion, we conclude that SH,α under P is equivalent to Sα un-
der QW , which is a martingale when μ = 0. For a general drift, we denote by Qμα

σ

the measure induced on C[0, 1] by the Brownian motion with drift −μα
σ

(in particu-
lar Q0 = QW ). Thanks to the Girsanov theorem, the process SH,α under P is also
equivalent to Sα under Qμα

σ
, which is a martingale. Therefore, the α-mixed fractional

Black–Scholes model with the filtration (FH,α
t )t∈[0,1] has a unique equivalent mar-

tingale measure, and therefore is arbitrage-free and complete.

2.2 Asymptotic arbitrage

In this work, we treat the collection of α-mixed fractional Black–Scholes models
with methods from large financial markets. This idea is formalized in the following
definition.

Definition 2 (The large mixed fractional market). We call by large mixed fractional
market the family of α-mixed fractional Black–Scholes models, α > 0, i.e. the family
of markets

LH := (
Ω,F ,

(
FH,α

t

)
t∈[0,1], P , SH,α

)
α>0.

We aim to study the presence of asymptotic arbitrage in the large financial mixed
fractional market when α tends to infinity, i.e. when the Brownian component asymp-
totically disappears. More precisely, we intend to investigate, using methods of [9],
the presence of a so-called strong asymptotic arbitrage. The latter is an analogue con-
cept of arbitrage but for sequences of markets rather than for a single market model.
Intuitively, this kind of arbitrage for sequences of markets gives the possibility of get-
ting arbitrarily rich with probability arbitrarily close to one while taking a vanishing
risk. In order to make this idea precise we first specify the set of admissible trading
strategies.

Definition 3 (Admissible trading strategy). A trading strategy for SH,α is a real-
valued predictable SH,α-integrable stochastic process Φ := (Φt )t∈[0,1]. The trading
strategy is said to be admissible if there is m ∈ R+ such that for all t ∈ [0, 1]:
(Φ · SH,α)t ≥ −m almost surely.

Now we proceed to recall the definition of strong asymptotic arbitrage of [9].

Definition 4. A strong asymptotic arbitrage (SAA) is said to exist in the large mixed
fractional market as α tends to infinity if there exists a sequence (α�)�≥1 converging
to infinity and a sequence (Φ�)�≥1, where Φ� is an admissible trading strategy for
SH,α� , such that

1SH,α is the solution of dS
H,α
t = μ S

H,α
t dt + σ S

H,α
t d(ZH + 1

α B)t .
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1. (Φ� · SH,α�)t ≥ −m�, t ∈ [0, 1], � ≥ 1,

2. lim�→∞ P((Φ� · SH,α�)1 ≥ M�) = 1,

where mk and Mk are sequences of positive real numbers converging to zero and to
infinity, respectively.

Remark 1. This definition is equivalent to the notion of strong asymptotic arbitrage
of the first kind as given in [9]. This is trivially seen by taking V �

0 (Φ�) = m�

M�
and

V �
t (Φ�) = m�

M�
+ 1

M�
(Φ� ·SH,α�)t that the SAA1 of [9] can be obtained from our SAA.

It is equally trivial to get a SAA from the SAA1. The notion is further equivalent to
the strong asymptotic arbitrage of the second kind from [9] as it is shown there that
SAA1 and SAA2 are equivalent and hence can be subsumed under the name SAA.

Our approach to show the existence of arbitrage of this kind will be not construc-
tive. Instead, we use an equivalent characterization of strong asymptotic arbitrage
based on the notion of entire asymptotic separability of sequences of measures, which
is defined as follows.

Definition 5. The sequences of probability measures (P�)�≥1 and (Q�)�≥1 are said to
be entirely asymptotically separable if there exists a subsequence �k and a sequence
of sets Ak ∈ F�k such that limk→∞ P�k

(Ak) = 1 and limk→∞ Q�k
(Ak) = 0. In this

case we write (P�)�≥1 � (Q�)�≥1. In addition, two families of probability measures
(P α)α>0 and (Qα)α>0 are said to be entirely asymptotically separable, and we write
(P α)α>0 � (Qα)α>0, if there is a sequence (α�)�≥1 converging to infinity such that
(P α�)�≥1 � (Qα�)�≥1.

The precise relation between this notion and the existence of SAA is given in [9,
Proposition 4]. In the case of complete markets, this result takes the following simple
form.

Proposition 1. Consider a large financial market (Ωα,Fα, (Fα
t )t∈[0,T ], P α)α>0 and

assume that each small market is complete. For each α > 0, let Qα ∼ P α be the
unique equivalent martingale measure. Then the following conditions are equivalent

1. There is a SAA.

2. (P α)α>0 � (Qα)α>0.

Therefore the study of SAA in LH reduces to determining whether (QH,α)α>0 is
entirely asymptotically separable from (Qμα

σ
)α>0 or not.2

2.3 Main result

We state now our main result.

Theorem 1. There exists a strong asymptotic arbitrage in the large mixed fractional
market LH for α → ∞.

As mentioned we will show that (QH,α)α>0 � (Qμα
σ

)α>0.

2In the case when μ = 0, the study of SAA reduces to showing that (QH,α)α>0 � QW .
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3 Proof of Theorem 1

In order to prove Theorem 1, we provide a series of lemmas from which the desired
result is obtained as a direct consequence. Before proceeding, we introduce some
notations.

Following the lines of [2, 1], we define, for all n ∈ N, Yn : C[0, 1] → Rn by:

Yn(ω) =
(

ω

(
1

n

)
− ω(0), ω

(
2

n

)
− ω

(
1

n

)
, . . . , ω(1) − ω

(
n − 1

n

))T

and denote by QH,α,n and Qn
μα
σ

the restrictions of QH,α and Qμα
σ

to the σ -algebra

Fn := σ(Yn). We fix the Hurst parameter H ∈ (3/4, 1) and we avoid to mention the
dependence on it by setting QH,α ≡ Qα and QH,α,n ≡ Qα,n.

We denote by Cn the covariance matrix of the increments of the fractional Brow-
nian motion ZH :

Cn(i, j) := Cov
(
ZH

i
n

− ZH
i−1
n

, ZH
j
n

− ZH
j−1
n

)
, 1 ≤ i, j ≤ n,

and by λn
1, . . . , λn

n its eigenvalues. Since the matrix Cn is symmetric and positive
semi-definite, all the λn

i , 1 ≤ i ≤ n, are real and nonnegative.
We moreover set

Σ0 := 1

n
In + α2Cn and Σ1 := 1

n
In + 1

n2

μ2α2

σ 2 1n×n,

where In is the identity matrix and 1n×n is the n×n matrix with all coefficients equal
to 1. Clearly, the matrices Σ0 and Σ1 are positive definite and therefore invertible.

The proof of Theorem 1 strongly relies on the concept of relative entropy (also
called sometimes Kullback–Leibler divergence) of the probability measure Qα,n (re-
spectively, Qα) relative to Qn

μα
σ

(respectively, Qμα
σ

), denoted by H(Qα,n|Qn
μα
σ

) (re-

spectively, H(Qα|Qμα
σ

)), see [7, Section 6]. We recall the definition of relative en-
tropy and some relevant results in the Appendix A.

Lemma 1. For each n ≥ 1, we have

H
(
Qα,n|Qn

μα
σ

) = 1

2

[
tr

(
Σ−1

1 Σ0
) − n + μ2α2

σ 2n2 1T
n Σ−1

1 1n + ln

(
det(Σ1)

det(Σ0)

)]
, (3)

where 1n ∈ Rn is the vector with all coordinates equal to 1, and, for each square
matrix A, tr(A) and det(A) denote the trace and the determinant of A, respectively.

Proof. Note first that

EQα,n

[
YnY

T
n

] = Σ0 and EQn
μα
σ

[
YnY

T
n

] = Σ1.

Note also that

EQα,n[Yn] = 0n and EQn
μα
σ

[Yn] = −μα

σn
1n,

where 0n ∈ Rn is the vector with all coordinates equal to 0. Since Yn is a Gaussian
vector under the two measures, the result follows using Lemma 7 and performing a
straightforward calculation.
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Using standard properties of the trace and the determinant, it is not difficult to see
that

tr(Σ0) =
n∑

i=1

(
1

n
+ α2λn

i

)
and ln

(
det(Σ0)

) =
n∑

i=1

ln

(
1

n
+ α2λn

i

)
. (4)

We set an := 1
n

μ2α2

σ 2 and note that Σ1 = 1
n
(In+an1n×n). The next lemma summarizes

the properties of the matrix Σ1.

Lemma 2. For each n > 1, the eigenvalues of Σ1 are 1/n with multiplicity n − 1
and 1

n
+ an with multiplicity 1. In particular, we have

det(Σ1) = nan + 1

nn
.

The inverse of Σ1 is given by

Σ−1
1 = n

(
In − an

nan + 1
1n×n

)
.

Proof. Denote dλ
n := det(Σ1 − λIn) = det(( 1

n
− λ)In + an

n
1n×n). Subtracting the

row i from the row i + 1, for each 1 ≤ i < n, in the matrix Σ1 − λIn, we see that dλ
n

is equal to the determinant of the matrix
⎛
⎜⎜⎜⎜⎜⎜⎝

1
n

− λ + an

n
an

n
an

n
· · · an

n

λ − 1
n

1
n

− λ 0 . . . 0

0
. . .

. . .
. . . 0

...
. . . λ − 1

n
1
n

− λ 0
0 · · · 0 λ − 1

n
1
n

− λ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

Expanding the determinant by minors with respect to the last column we get

dλ
n =

(
1

n
− λ

)
dλ
n−1 + an

n

(
1

n
− λ

)n−1

, n > 2.

Iterating this identity, we obtain

dλ
n =

(
1

n
− λ

)n−2

dλ
2 + (n − 2)

an

n

(
1

n
− λ

)n−1

=
(

1

n
− λ

)n−1(1

n
− λ + an

)
.

The first two statements follow. For the last statement, one can easily check that

Σ1 × n

(
In − an

nan + 1
1n×n

)
= In.

This shows the desired result.

Lemma 3. For all n > 1, we have

lim
α→∞ H

(
Qα,n|Qn

μα
σ

) = ∞.
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Proof. Our starting point is Lemma 1. Evaluating each term entering (3), we first
obtain

tr
(
Σ−1

1 Σ0
) = n tr(Σ0) − nan

nan + 1
tr(1n×nΣ0)

=
n∑

i=1

(
1 + nα2λn

i

) − nan

nan + 1

(
1 + α2tr(1n×nCn)

)
. (6)

Note that

tr(1n×nCn) =
n∑

i,j=1

Cn(i, j) = E
[(

ZH
1

)2] = 1.

Thus, taking an = 1
n

μ2α2

σ 2 , equation (6) becomes

tr
(
Σ−1

1 Σ0
) = n +

n∑
i=1

nα2λn
i − μ2α2

μ2α2 + σ 2

(
1 + α2). (7)

For the third term in (3), using that 1T
n 1n×n1n = n2, one can easily derive that

1T
n Σ−1

1 1n = n2

nan + 1
= n2σ 2

μ2α2 + σ 2 . (8)

For the last term in (3), we use (4) and Lemma 2 to obtain

ln

(
det(Σ1)

det(Σ0)

)
= ln(nan + 1) −

n∑
i=1

ln
(
1 + nα2λn

i

)

= ln

(
μ2α2 + σ 2

σ 2

)
−

n∑
i=1

ln
(
1 + nα2λn

i

)
. (9)

Inserting (7), (8) and (9) in (3) yields

H
(
Qα,n|Qn

μα
σ

) = 1

2

[ n∑
i=1

(
nα2λn

i − ln
(
1 + nα2λn

i

)) − μ2α4

μ2α2 + σ 2

+ ln

(
μ2α2 + σ 2

σ 2

)]
. (10)

Since the trace is similarity-invariant, we deduce that

n∑
i=1

λn
i = tr(Cn) =

n∑
i=1

Cn(i, i) = 1

n2H−1 .

In addition, we have ln(
μ2α2+σ 2

σ 2 ) ≥ 0. Therefore, (10) leads to

H
(
Qα,n|Qn

μα
σ

) ≥ α2

2

(
n2−2H − μ2α2

μ2α2 + σ 2

)
− n

2
ln

(
1 + nα2λn

max

)
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≥ α2

2

(
n2−2H − 1

) − n

2
ln

(
1 + nα2λn

max

)

= 1

2
ln

(
eθnα2

(1 + nα2λn
max)

n

)
, (11)

where θn := n2−2H − 1 > 0 and λn
max = maxi=1...n λn

i . The result follows taking the
limit when α tends to infinity in the previous expression.

Remark 2. If μ = 0, using Lemma 1, the previous result extends directly to the case
n = 1.

Remark 3. The above proof also gives us the relation between the relative entropy
of Qα,n relative to Qn

μα
σ

, i.e. H(Qα,n|Qn
μα
σ

), and the relative entropy of Qα,n relative

to Qn
W , i.e. H(Qα,n|Qn

W). Indeed, using [1, Lemma 5.3] one can deduce from (10)
that

H
(
Qα,n|Qn

μα
σ

) = H
(
Qα,n|Qn

W

) − 1

2

μ2α4

μ2α2 + σ 2 + 1

2
ln

(
μ2α2 + σ 2

σ 2

)
. (12)

Remark 4. We point out that we also have

lim
α→∞ H

(
Qα|Qμα

σ

) = ∞.

Indeed, we know from [1, Lemma 5.3] that supn H(Qα,n|Qn
W) < ∞, which directly

implies that also supn H(Qα,n|Qn
μα
σ

) < ∞. Therefore, applying [7, Lemma 6.3] we

obtain

H
(
Qα|QW

) = sup
n

H
(
Qα,n|Qn

W

)
and H

(
Qα|Qμα

σ

) = sup
n

H
(
Qα,n|Qn

μα
σ

)
.

The statement then follows from the result for the restrictions.

For each n ≥ 1, we denote the Radon–Nikodym derivative of Qα,n relative to
Qn

μα
σ

by

Ln
α := dQα,n

dQn
μα
σ

.

Using [7, Lemma 6.1] (see Lemma 7 in Appendix A), we see that

H
(
Qα,n|Qn

μα
σ

) = EQα,n

[
ln

(
Ln

α

)] = EQn
μα
σ

[
Ln

α ln
(
Ln

α

)]
.

Moreover, let us recall the notion of (Qα,n)α>0-tightness: (Ln
α)α>0 is (Qα,n)α>0-

tight if the following holds:

lim
N→∞ lim sup

α→∞
Qα,n

(
Ln

α > N
) = 0.

Lemma 4. For each n > 1, the family (Ln
α)α>0 is not (Qα,n)α>0-tight.



424 F. Cordero et al.

Proof. We know, by Lemma 3, that EQα,n[ln(Ln
α)] = H(Qα,n|Qn

μα
σ

) tends to infinity

when α tends to ∞. Since the measures Qα,n and Qn
μα
σ

are Gaussian, the result fol-

lows as a direct application of the remark on [5, p. 457] which says that tightness is
equivalent to the boundedness of the following two families: EQα,n[ln(Ln

α)], α > 0,
and VarQα,n[ln(Ln

α)], α > 0.

Before we can state and prove the last lemma of this section, we recall now the
definition of contiguity of sequences/families of probability measures.

Definition 6. A sequence of probability measures (P�)�≥1 is contiguous with respect
to the sequence of probability measures (Q�)�≥1, (P�)�≥1 
 (Q�)�≥1, if for any se-
quence A� ∈ F�: lim

�→∞ Q�(A�) = 0 ⇒ lim
�→∞ P�(A�) = 0. We say that (P�)�≥1 and

(Q�)�≥1 are mutually contiguous if (P�)�≥1 
 (Q�)�≥1 and (Q�)�≥1 
 (P�)�≥1, in
which case we write (P�)�≥1 
 �(Q�)�≥1.

These notions extend to families of probability measures (P α)α>0 and (Qα)α>0
as follows. We say that (P α)α>0 is contiguous (resp. mutually contiguous) to (Qα)α>0
if for every sequence (α�)�≥1 converging to infinity we have (P α�)�≥1 
 (Qα�)�≥1
(resp. (P α�)�≥1 
 �(Qα�)�≥1), in which case we write (P α)α>0 
 (Qα)α>0 (resp.
(P α)α>0 
 �(Qα)α>0).

Lemma 5. For each n > 1, we have

(
Qα,n

)
α>0 �

(
Qn

μα
σ

)
α>0.

Proof. Since, by Lemma 4, (Ln
α)α>0 is not tight with respect to (Qα,n)α>0 we apply

[8, Lemma V.1.6] and deduce that, for each n > 1, (Qα,n)α � Qn
μα
σ

. The dichotomy

for sequences of Gaussian measures of [5, Corollary 4] says that two sequences of
Gaussian measures on Rn are either mutually contiguous or entirely separable. So we
conclude that, for each n > 1, (Qα,n)α>0 � (Qn

μα
σ

)α>0.

Remark 5. From Remark 2, when μ = 0, the same arguments lead to the conclusion
that Lemma (5) holds true for n = 1.

Proof of Theorem 1. From Proposition 1 (see also [9, Proposition 4]), we know that
there is a SAA if and only if (Qα)α>0 � (Qμα

σ
)α>0.

Fix n > 1. By Lemma 5, there exist a sequence (α�)�≥1 converging to infinity
and sets A� ∈ Fn such that

lim
�→∞ Qα�(A�) = lim

�→∞ Qα�,n(A�) = 0

and

lim
�→∞ Qμα�

σ
(A�) = lim

�→∞ Qn
μα�
σ

(A�) = 1.

The result follows.
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4 Interpretation of the results in the restricted markets

Lemma 5 might suggest that, for each n > 1 (or following Remark 5, for each n ≥ 1
if μ = 0), there exists also some kind of asymptotic arbitrage in the large financial
market consisting of the restrictions of the α-mixed fractional Black–Scholes models,
α > 0, to the grid En := {0, 1

n
, . . . , n−1

n
, 1}. However, we will show that this is

impossible.
For simplicity, we only consider the case n = 1 and μ = 0. We also assume that

S
H,α
0 = 1. Thus, for each α > 0, the corresponding market is

S
H,α
t = exp

(
σ

(
ZH

t + 1

α
Bt

)
− σ 2

2α2 t

)
, t = 0, 1. (13)

In this case all possible strategies are constants and hence the value process V α
1 takes

the following form
V α

1 = cα

(
S

H,α
1 − 1

)
,

where cα ∈ R. Obviously, we cannot hope for admissibility (boundedness from be-
low), see the discussion in the introduction of [10]. But even if we do not require any
admissibility here, there is no way to choose a sequence of α� → ∞ and correspond-
ing value processes V α� such that the following hold: there exists β > 0 and ε� → 0
with

(i) P
(
V

α�

1 > β
)

> β, for all �,

(ii) lim
�→∞ P

(
V

α�

1 ≥ −ε�

) = 1. (14)

This is not possible since ZH
1 as well as B1 are independent N(0, 1) and hence are

strictly positive as well as strictly negative, with positive P -probability (and here
neither letting α → ∞ nor multiplying S

H,α
1 − 1 by some constants, either positive

or negative, will be of any help: whenever there will be a strictly positive part in the
limit there will also be a strictly negative part in the limit with a non-disappearing
probability). Hence there is no such thing as (14) which, in our discrete time t = 0, 1
situation, is the appropriate version of an asymptotic arbitrage.

The reason behind this apparent contradiction is that in contrast to the continu-
ous time large financial market its discrete counterpart is not complete. Under the
original measure P (which induces Qα on C[0, 1]) we have that ZH

1 ∼ N(0, 1)

and B1 ∼ N(0, 1) and the two random variables are independent. We know that the
Wiener measure QW is a martingale measure for Sα (understood on C[0, 1]) for all α,
hence QW |F1 is an equivalent martingale measure for (13). We will now construct a
different martingale measure for the process (13) which is equivalent to P on (Ω,F).

Indeed, define a measure P̃ on (Ω,F) as follows: dP̃
dP

= g(X) where we have

X := exp(σZH
1 ) and g(x) = e−x 1

h(x)
where h(x) = 1√

2πσx
exp(− 1

2 (
ln(x)

σ
)2) is the

density of a lognormal distribution, i.e., the density of the law of X under P . Obvi-
ously this measure change has the purpose to make the distribution of X exponential
with parameter 1. Recall that the measure Qα,1 is considered as a measure on R (the
measure induced by M

H,α
1 := αZH

1 + B1).
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Lemma 6. The measure P̃ satisfies:

1. P̃ ∼ P .

2. E
P̃
[SH,α

1 ] = 1 = S
H,α
0 , which means that P̃ is a martingale measure for (13),

for each α.

3. Let Q̃α,1 be the measure that is induced by (M
H,α
1 , P̃ ) on R, for each α > 0.

Then (Q̃α,1)α>0 
 �(Qα,1)α>0.

Proof. To prove (1) observe that g(x) > 0 for all 0 < x < ∞ and 0 < X < ∞
P -a.s. and hence dP̃ α

dP
= g(X) > 0 P -a.s. Moreover

EP

[
g(X)

] =
∫ ∞

0
g(x)h(x)dx =

∫ ∞

0
e−xdx = 1,

and so P̃ is a probability equivalent to P .
For (2) we see that

E
P̃

[
S

H,α
1

] = EP

[
g
(
eσZH

1
)

exp

(
σ

(
ZH

1 + 1

α
B1

)
− σ 2

2α2

)]

= EP

[
g
(
eσZH

1
)

exp
(
σZH

1

)]
EP

[
exp

(
σ

α
B1 − σ 2

2α2

)]

= EP

[
g(X)X

]
,

where we used the independence of ZH
1 and B1 under P . Finally we have that

EP

[
g(X)X

] =
∫ ∞

0
g(x)xh(x)dx =

∫ ∞

0
xe−xdx = 1,

proving (2).
For (3) note that, for each A ∈ B(R), we have Qα,1(A) = P(M

H,α
1 ∈ A) and

Q̃α,1(A) = P̃ (M
H,α
1 ∈ A). Thus, using that P̃ ∼ P , we infer, for a family of sets Aα ,

that Qα,1(Aα) = P(Dα) → 0, for α → ∞, if and only if Q̃α,1(Aα) = P̃ (Dα) → 0,
where Dα = {MH,α

1 ∈ Aα} ∈ F1. The result follows.

In conclusion, Lemma 6 shows that there exists a family of equivalent martingale
measures for the model (13) with good properties, in this case with the property of
mutual contiguity. And this fact is reflected by the impossibility to find asymptotic
arbitrage opportunities for the family of models (13), α > 0.

A Relative entropy

In this section, we recall the concept of relative entropy and some equivalent charac-
terization. A more detailed presentation of the topic can be found in [7].
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Definition 7. Let Q1 and Q2 be probability measures on a measurable space (Ω,F)

and let P = {Fi : i = 1, . . . , n} be a finite partition of Ω , i.e. Ω = ∪n
i=1Fi and Fi

are pairwise disjoint. The entropy of the measure Q1 relative to Q2 is the quantity

H(Q1|Q2) = sup
P

n∑
j=1

Q1(Fj ) ln

(
Q1(Fj )

Q2(Fj )

)
,

where P is the class of all possible finite partitions P of Ω . In the above formula, we
assume that 0 ln 0 = 0 and ln 0 = −∞.

Lemma 7 ([7, Lemma 6.1]). If a probability measure Q1 is absolutely continuous
w.r.t. another probability measure Q2, then the relative entropy H(Q1|Q2) is related
to the Radon–Nikodym derivative ϕ = dQ1

dQ2
as follows:

H(Q1|Q2) = EQ1

[
ln(ϕ)

] = EQ2

[
ϕ ln(ϕ)

]
.
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