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Abstract The nonlocal porous medium equation considered in this paper is a degenerate
nonlinear evolution equation involving a space pseudo-differential operator of fractional order.
This space-fractional equation admits an explicit, nonnegative, compactly supported weak so-
lution representing a probability density function. In this paper we analyze the link between
isotropic transport processes, or random flights, and the nonlocal porous medium equation. In
particular, we focus our attention on the interpretation of the weak solution of the nonlinear
diffusion equation by means of random flights.
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1 Introduction

We deal with a Nonlocal Porous Medium Equation (NPME) studied in [3, 4], given
by the following degenerate nonlinear and nonlocal evolution equation

∂tu = div
(|u|∇α−1(|u|m−2u

))
, m > 1, α ∈ (0, 2], t > 0, (1)

subject to the initial condition

u(x, 0) = u0(x), (2)

where u := u(x, t), with x := (x1, . . . , xd) ∈ R
d , d ≥ 1, is a scalar function defined

on R
d × R

+ and ∂t := ∂/∂t . The pseudo-differential operator ∇α−1 is the fractional
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gradient denoting the nonlocal operator defined as ∇α−1u := F−1(iξ ||ξ ||α−2Fu),
where the Fourier transform F and the inverse transform F−1 of a function v ∈
L1(Rd) are defined by

Fv(ξ) = 1

(2π)d/2

∫
Rd

v(ξ)eix·ξ dx, F−1v(ξ) = 1

(2π)d/2

∫
Rd

v(ξ)e−ix·ξ dx,

with ξ ∈ R
d . This notation highlights that ∇α−1 is a pseudo-differential (vector-

valued) operator of order α − 1. Equivalently, we can define ∇α−1 as ∇(−�)
α
2 −1,

where (−�)
α
2 u = F−1(||ξ ||αFu) is the fractional Laplace operator; i.e. a Fourier

multiplier with the symbol ||ξ ||α . We observe that ∇1 = ∇ is the classical gradient
and that div(∇α−1) = ∇ α

2 · ∇ α
2 = −(−�)

α
2 . Another equivalent definition of the

fractional gradient ∇α−1 involves the Riesz potential; that is ∇α−1 = ∇I2−α where

Iβ = (−�)−
β
2 is a Fourier multiplier with symbol ||ξ ||−β, β ∈ (0, 2) (for more

details on this point see [3, 4]).
In [3, 4], explicit and compactly supported nonnegative self-similar solutions of

(1) are constructed. These explicit solutions generalize the well-known Barenblatt–
Kompanets–Zel’dovich–Pattle solutions of the porous medium equation (4) below.
Furthermore, the authors proved the existence of sign-changing weak solution to the
Cauchy problem (1)–(2) for u0(x) ∈ L1(Rd), and the hypercontractivity L1 �→ Lp

estimates.
By exploiting Darcy’s law, it is possible to interpret the equation (1) as a transport

equation ∂tu = div(|u|v), where v := ∇p := ∇I2−α(|u|m−2u) is a vector velocity
field with nonlocal and nonlinear pressure p in the case of nonnegative initial data.
We observe that the fractional operator ∇I2−α represents the long-range diffusion
effects. The one-dimensional version of the pseudo-differential equation (1) describes
the dynamics of dislocations in crystals (see [2]).

For α = 2, (1) becomes the classical nonlinear porous medium equation

∂tu = div
(|u|∇(|u|m−2u

)) = div
(
(m − 1)|u|m−1∇u

)
. (3)

If we restrict our attention to nonnegative solution u(x, t), the equation (3) becomes

∂tu = m − 1

m
�

(
um

)
, (4)

which is usually adopted to model the flow of a gas through a porous medium. The
reader interested in the theory of porous medium equation can consult, for instance,
[33].

Other types of nonlocal porous medium equations have been proposed in liter-
ature. For instance, [5, 6] introduced the porous medium equation with fractional
diffusion effects

∂tu = div(u∇p), (5)

with nonlocal pressure p := (−�)−su, 0 < s < 1, and u ≥ 0. For α = 2 − 2s ∈
(0, 2) we obtain the equation (1) with m = 2; i.e. ∂tu = div(u∇α−1u). In [32] the
nonlinear diffusion equation (5) is generalized as follows

∂tu = div
(
um−1∇p

)
, u(x, t) ≥ 0, x ∈ R

d, t > 0, (6)
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with m > 1 and initial condition u(x, 0) = u0(x) which is nonnegative bounded with
compact support or fast decaying at infinity. The main contribution in [32] concerns
the study of the property of finite/infinite speed of propagation of the solutions to (6)
with varying m.

The following equation

∂tu = −(−�)
α
2
(|u|m−1u

)
, α ∈ (0, 2), (7)

is studied in [34], where it is also proved that the self-similar solutions of (7) enjoy
the L1-contraction property and then they are unique. Nevertheless, these solutions
are not compactly supported. Explicit self-similar solutions to (6) and (7) have been
obtained by [20] for particular values of m.

The main goal of this paper is to investigate the relationship between (1) and
some random models. In particular, we focus our attention to the probabilistic in-
terpretations of the weak solution to NPME. The idea to study stochastic processes
associated to the classical porous medium equation (4) was developed by different
authors; see, for instance, [21–23, 12, 13, 24, 29]. In the listed papers the authors
introduced different types of Markov chains on lattice and interacting particle sys-
tems having a dynamic which macroscopically converges to the solution of (4). By
[17], the Barenblatt solution of (4) can be viewed as the mean of the first passage
time of a symmetric stable process to exterior of a ball. In [1], the authors provided
a probabilistic interpretation of (4) in terms of stochastic differential equations. Re-
cently, [11] highlighted the connection between (4) and the Euler–Poisson–Darboux
equations by taking into account time-rescaled random flights.

Up to our knowledge, this paper is the first attempt concerning the probabilistic
interpretation of the fractional porous medium equation (1). Similarly to [11], we
can exploit stochastic models defined by continuous-time random walks in R

d, d ≥
1, arising in the description of the displacements of a particle choosing uniformly
its directions; i.e. the so-called isotropic transport processes or random flights. In a
suitable time-rescaled frame, the probability law of the above processes is given by
the solution (8) below. Therefore, this paper represents a generalizations of some
results contained in [11]. We point out that the proposed random processes recover
some features of the Barenblatt weak solution (8) to nonlinear evolution equations
like finite speed of propagation and the anomalous diffusivity. For this reason the
random flights seem to represent a natural way to describe the real phenomena studied
by means of (1).

In Section 2, we recall the definition of weak solution to (1) as well as its basic
properties. In Section 3 the isotropic transport processes are introduced. Furthermore,
Section 3 contains our main results; i.e. Propositions 3.1, 3.2. From these propositions
we are able to give a reasonable interpretation of the solutions to (1). In the last section
we sum up the main contribution of the paper.

2 A review on the weak solutions to NPME

Let us recall the definition of weak solution to the nonlocal operator equation (1) and
its main properties (see [4]).
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Definition 2.1. A function u : Rd × (0, T ) → R is a weak solution to the Cauchy
problem (1)–(2) in R

d × (0, T ) if u ∈ L1(Rd × (0, T )),∇α−1(|u|m−2u) ∈ L1
loc(R

d ×
(0, T )), |u|∇α−1(|u|m−2u) ∈ L1

loc(R
d × (0, T )) and

∫
Rd

∫ T

0

(
u∂tϕ − |u|∇α−1(|u|m−2u

) · ∇ϕ
)
dtdx +

∫
Rd

u0(x)ϕ(x, 0)dx = 0,

where ϕ ∈ C∞(Rd × (0, T )) ∩ C1(Rd × (0, T )) has a compact support in the space
variable x and vanishes near t = T .

Let (x)+ := max(x, 0). The following theorem, proved in [4], represents our
starting point.

Theorem 2.1. Let α ∈ (0, 2] and m > 1. A weak solution in the sense of Definition
2.1 in (η, T ) × R

d , for every 0 < η < T < ∞, is given by the function u : Rd ×
(0, T ) → [0,∞) defined as

u(x, t) = Ct−dβ

(
1 − k

2
α
||x||2
t2β

) α
2(m−1)

+
, (8)

where β := β(α, d,m) := 1
d(m−1)+α

,

k := k(α, d) := dΓ (d/2)

(d(m − 1) + α)2αΓ (1 + α
2 )Γ (d+α

2 )
,

C := C(α, d,m) := Γ (d
2 + α

2(m−1)
+ 1)k

d
α

π
d
2 Γ ( α

2(m−1)
+ 1)

.

Furthermore, u(x, t) is the pointwise solution of the equation (1) for ||x|| 	= ctβ and

is min{ α
m−1 , 1}-Hölder continuos at ||x|| = ctβ , where c := c(α, d) := 1/k

1
α .

It is worth to mention that the family of functions (8) represents a class of non-
negative compactly supported solutions of (1). Moreover, (8) is a self-similar solution
under a suitable space-time rescaling; i.e.

u(x, t) = Ldβu
(
Lβx,Lt

)
, L > 0.

It is crucial to observe that the constant C appearing in (8) guarantees the mass con-
servation ∫

Rd

u(x, t)dx =
∫
Rd

u0(x)dx = 1,

or equivalently
d

dt

∫
Rd

u(x, t)dx = d

dt

∫
Rd

u0(x)dx = 0,

and then u(x, t) (as well as u0(x)) is a probability density function with compact
support Bctβ := {x ∈ R

d : ||x|| ≤ ctβ}. By setting R2 = 1
k2/α , the solution (8)

coincides with (2.4) in [4].
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We point out that NPME has the property of finite speed of propagation. We
are able to explain this property as follows. The solution to NPME is a continuous
function u(x, t) such that for any t > 0 the profile u(·, t) is nonnegative, bounded and
compactly supported. Hence, the support expands eventually to penetrate the whole
space, but it is bounded at any fixed time. Therefore, for fixed t > 0, the support of
(8) is given by the closed ball Bctβ , while the free boundary (that is the set separating
the region where the solution is positive) is given by the sphere S

d−1
ctβ

:= {x ∈ R
d :

||x|| = ctβ}.
The finite speed of propagation of NPME is in contrast with the infinite speed of

propagation of the classical heat equation; that is, a nonnegative solution of the heat
equation is positive everywhere in Rd .

Remark 2.1. For α = 2, the solution (8) becomes the Barenblatt–Kompanets–
Zel’dovich–Pattle solution to the porous medium equation (4) supplemented with the
initial condition u(x, 0) = δ(x) (see, for instance, [33]).

Remark 2.2. From Theorem 3.1 it follows that (u(x, t), t ≥ 0) is a class of rotation-
ally invariant functions; that is, let O(d) be the group of d × d orthogonal matrices
acting in Rd , then we have that u(MT x, t) = u(x, t) = u(||x||, t), where M ∈ O(d).

The next proposition contains the explicit Fourier transform of (8). A similar re-
sult has been already proved, for instance, in [4], Lemma 4.1.

Proposition 2.1. The Fourier transform of the probability density function u(x, t)

given by (8) is equal to

û(ξ, t) := Fu(ξ, t)

= 1

(2π)
d
2

(
2k1/α

tβ ||ξ ||
) d

2 + α
2(m−1)

Γ

(
d

2
+ α

2(m − 1)
+ 1

)
Jd

2 + α
2(m−1)

( ||ξ ||tβ
k1/α

)
,

(9)

where ξ ∈ R
d , d ≥ 1, and Jμ(x) = ∑∞

k=0(−1)k
(x/2)2k+μ

k!Γ (k+μ+1)
, with μ ∈ R, is the

Bessel function.

Proof. We prove the theorem for d ≥ 2. The case d = 1 follows by simple calcula-
tions. Let σ be the measure on S

d−1
1 . We recall that (see (2.12), p. 690, [10]),

∫
S

d−1
1

eiρξ ·θdσ(θ) = (2π)d/2
Jd

2 −1(ρ||ξ ||)
(ρ||ξ ||) d

2 −1
(10)

One has that

û(ξ, t) = 1

(2π)
d
2

∫
Rd

eiξ ·xu(x, t)dx

= (by Remark 2.2)

= 1

(2π)
d
2

∫ tβ

k1/α

0
ρd−1Ct−dβ

(
1 − k2/αρ2

t2β

) α
2(m−1)

dρ

∫
S

d−1
1

eiρξ ·θdσ(θ)
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= (by (10))

=
∫ tβ

k1/α

0
ρd−1Ct−dβ

(
1 − k2/αρ2

t2β

) α
2(m−1) J d

2 −1(ρ||ξ ||)
(ρ||ξ ||) d

2 −1
dρ

= Ctβ(1− d
2 )

(k1/α)
d
2 +1||ξ || d

2 −1

∫ 1

0

(
1 − w2) α

2(m−1) wd/2Jd/2−1

( ||ξ ||tβ
k1/α

w

)
dw.

In view of formula 6.567(1) on p. 688 of [19],∫ 1

0
xν+1(1 − x2)μ

Jν(bx)dx = 2μΓ (μ + 1)b−(μ+1)Jν+μ+1(b) (11)

where b > 0, Reν > −1, Reμ > −1, we obtain (9).

3 Isotropic transport processes related to NPME

In this section, we analyze the link between the weak solution of the nonlocal equation
(1) and the transport processes. We follow the approach developed in [11]. Let us start
with introducing isotropic transport processes and recalling their main features.

An isotropic transport process, also called random flight, is a continuous-time
random walk in R

d described by a particle starting at the origin with a randomly
chosen direction and with finite speed c > 0. The direction of the particle changes
whenever a collision with some scattered obstacles in the environment happens and
then a new direction of motion is taken. For d ≥ 2, all the directions are independent
and identically distributed. The directions are chosen uniformly on the sphere Sd−1

1 =
{x ∈ R

d : ||x|| = 1}. For d = 1, we have two possible directions alternatively
taken by the moving particle. The random flights have been studied, for instance, in
[30, 31, 9, 26, 27, 10, 7, 18, 28]. Recently, in [14, 15] the relationship between the
isotropic transport processes and some fractional Klein–Gordon equations has been
analyzed. Furthermore, stochastic models like random flights are associated to the
Euler–Poisson–Darboux partial differential equations as argued in [16].

Rigorously speaking, we introduce the isotropic transport processes as follows.
Let (Tk, k ∈ N0) be a sequence of random arrival epochs with T0 := 0. Further-
more, let (Vk, k ∈ N0) be a sequence of random variables defined for d = 1, by
Vk := V (0)(−1)k , where V(0) is a uniform r.v. on {−1,+1}, while for d ≥ 2 they
are independent (Sd−1

1 ,B(Sd−1
1 ))-valued random variables where B(Sd−1

1 ) denotes
the Borel class on S

d−1
1 . We assume that during the interval [0, t] the particle takes

a new direction, V0, V1, . . . , Vn, n + 1 times at random moments T0, T1, . . . , Tn, re-
spectively. Therefore, we can define an isotropic random flight on (Ω, (Fn

t , t ≥ 0))

as follows

Xn := (
Xn(t) = (

Xn
1 (t), . . . , Xn

d(t)
)
, t ≥ 0

)
, Xn(0) = 0, n ∈ N,

where Xn(t) stands for the position, at time t ≥ 0, reached by the moving particle
according to the mechanism described above and (V n(t), t ≥ 0) is the jump process

V n(t) := Vk, Tk ≤ t < Tk+1,
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with 0 ≤ k ≤ n; i.e.

Xn(t) := c

∫ t

0
V n(s)ds = c

n−1∑
k=0

Vk(Tk+1 − Tk) + c(t − Tn)Vn, n ∈ N. (12)

Xn is adapted to the filtration (Fn
t , t ≥ 0) where

Fn
t := σ

(
(Tk ≤ t) ∩ (V0, V1, . . . , Vk) ∈ B,∀B ∈ B⊗k+1, 0 ≤ k ≤ n

)
,

where B := {−1,+1}, if d = 1, or B := B(Sd−1
1 ), if d > 1. Therefore Xn(t)

represents a random motion with finite velocity c and Xn(t) ∈ Bct a.s. for a fixed
t > 0. The components of Xn(t) can be written explicitly as in formula (1.6) of
[10]. Important assumptions in our paper are: the random vector of the renewal times
(τ1, . . . , τn), where τk+1 := Tk+1 − Tk , has the joint density equal to

f1(τ1, . . . , τn) = n!
tn

1Sn(τ1, . . . , τn), for d = 1, (13)

and

f2(τ1, . . . , τn) = Γ ((n + 1)(d − 1))

(Γ (d − 1))n+1

1

t (n+1)(d−1)−1

(n+1∏
j=1

τd−2
j

)
1Sn(τ1, . . . , τn),

(14)
for d ≥ 2, or

f3(τ1, . . . , τn) = Γ ((n + 1)( d
2 − 1))

(Γ (d
2 − 1))n+1

1

t (n+1)( d
2 −1)−1

(n+1∏
j=1

τ
d
2 −2

j

)
1Sn(τ1, . . . , τn),

(15)
for d ≥ 3, where

Sn :=
{
(τ1, . . . , τn) ∈ R

d : 0 < τj < t −
j−1∑
k=0

τk,

1 ≤ j ≤ n, τ0 = 0, τn+1 = t −
n∑

j=1

τj

}
.

The distributions (14) and (15) are rescaled Dirichlet distributions, with parameters
(d − 1, . . . , d − 1), d ≥ 2, and ( d

2 − 1, . . . , d
2 − 1), d ≥ 3, respectively. Generalized

versions of the Dirichlet density functions (13) and (14) have been used in [8] to
generalize the family of random walks defined above.

In the one-dimensional case the process (12) is the well-known telegraph process
and admits the density given by (see [9])

P(Xn
1 (t) ∈ dx1)

dx1
=

⎧⎪⎨
⎪⎩

Γ (n+1)

(Γ ( n+1
2 ))22nct

(1 − x2
1

c2t2 )
n−1

2+ , n odd,

Γ (n+1)

Γ ( n
2 +1)Γ ( n

2 )2nct
(1 − x2

1
c2t2 )

n
2 −1
+ , n even.

(16)
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We observe that for n odd, we have that

P
(
Xn

1 (t) ∈ dx1
) = P

(
Xn+1

1 (t) ∈ dx1
)
.

Under the assumptions (14) and (15), [10] provides (Theorem 2 in [10]) the explicit
density functions of the random flights Xn(t); that is,

P(Xn(t) ∈ dx)

dx
=

⎧⎪⎪⎨
⎪⎪⎩

Γ ( n+1
2 (d−1)+ 1

2 )

Γ ( n
2 (d−1))π

d
2 (ct)d

(1 − ||x||2
c2t2 )

n
2 (d−1)−1
+ , if (14) holds,

Γ ((n+1)( d
2 −1)+1)

Γ (n( d
2 −1))π

d
2 (ct)d

(1 − ||x||2
c2t2 )

n( d
2 −1)−1

+ , if (15) holds.
(17)

Remark 3.1. It is easy to check that the sequence of random flights Xn, n ∈ N,
admits the following scaling property

P
(
aXn(t/a) ∈ dx

) = P
(
Xn(t) ∈ dx

)
, a > 0.

Hereafter, we discuss the main results of the paper; i.e. Propositions 3.1, 3.2 be-
low. Therefore, we provide a reasonable probabilistic interpretation of the weak solu-
tion (8) in terms of a time-rescaled random flights. From the features of Xn it emerges
that the random flights share with (8) the crucial property of finite speed of propaga-
tion in the space. For this reason the transport process (12) seems to represent a fine
choice to model phenomena described by nonlinear diffusion equation with nonlocal
pressure (1). Our first result is the following theorem and it represents a generalization
of Theorem 1 in [11].

Proposition 3.1. Let Yn := (Y n(t), t ≥ 0), n ∈ N, be the sequence of random flights

Yn(t) := Xn(tβ), with speed c := c(α, d) := 1/k
1
α . Yn is adapted to the filtration

(Gn
t , t ≥ 0), where Gn

t := Fn
tβ

, progressively measurable and

P
(
Yn(t) ∈ dx

) = u(x, t)dx, t > 0,

where u(x, t) is the weak solution (8) to the equation (1). The relationships between
the number n of changes of velocity of Yn and the parameters m > 1 and α ∈ (0, 2]
of NPME, are given by:

(i) for d = 1,

m =
{

α
n−1 + 1 = α

2k
+ 1, n = 2k + 1,

α
n−2 + 1 = α

2k
+ 1, n = 2k + 2,

k ≥ 1;

(ii) for d ≥ 2, (14) holds and m = α
n(d−1)−2 + 1 with d > 2

n
+ 1;

(iii) for d ≥ 3, (15) holds and m = α
n(d−2)−2 + 1 with d > 2

n
+ 2.

Proof. Let n ∈ N. We observe that path map

t �→ Yn(t, ω) = c
∫ tβ

0
V n(s, ω)ds, ω ∈ Ω,
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is continuous and then Yn is a continuous process. Therefore, Yn is progressively
measurable if it is adapted to (Gn

t , t ≥ 0) (see, e.g., Proposition 1.13, [25]). Let
tβ > 0, (s, ω) �→ V n(s, ω), ω ∈ Ω, s ≤ tβ is a B([0, tβ ]) ⊗ Gn

t -measurable func-

tion. Hence, by Fubini’s theorem one has that the map ω �→ c
∫ tβ

0 V n(s, ω)ds is
Gn

t -measurable and then the process Yn is adapted to the filtration (Gn
t , t ≥ 0).

By rescaling the time coordinate as follows

t ′ := tβ,

the solution (8) to NPME becomes

u
(
x, t ′

) = Γ (d
2 + α

2(m−1)
+ 1)

Γ ( α
2(m−1)

+ 1)π
d
2

1

(ct ′)d

(
1 − ||x||2

(ct ′)2

) α
2(m−1)

+
, (18)

where c := c(α, d) := 1/k
1
α .

Let us deal with a telegraph process defined by (12) with time scale t ′ and speed
c. By exploiting the duplication formula for the Gamma function we can write the
solution (18) for d = 1 as follows

u
(
x1, t

′) = Γ (2 + α
m−1 )21−2( α

2(m−1)
+1)

(Γ ( α
2(m−1)

+ 1))2

1

ct ′

(
1 − x2

1

(ct ′)2

) α
2(m−1)

+
. (19)

For
α

2(m − 1)
= n − 1

2
, that is m = α

n − 1
+ 1,

the solution (19) coincides with the first part of (16), while for

α

2(m − 1)
= n

2
− 1, that is m = α

n − 2
+ 1,

the solution (19) coincides with the second part of (16). For n > 2, in both cases
m ∈ (1,∞). Therefore, we can conclude that

P
(
Xn

1

(
t ′
) ∈ dx1

) = P
(
Xn+1

1

(
t ′
) ∈ dx1

) = u
(
x1, t

′)dx1.

Now, let us consider a random flight defined in R
d, d ≥ 2, by (12) with time scale

t ′ and speed c defined above. Under the assumption (14), for

α

2(m − 1)
= n

2
(d − 1) − 1, that is m = α

n(d − 1) − 2
+ 1,

the function (18) coincides with the first part of (17). Since m ∈ (1,∞), we infer that

d >
2

n
+ 1. (20)

For d = 2 the inequality (20) holds for n ≥ 3; for d = 3, it holds for n ≥ 2; for
d > 3, (20) holds for all n ≥ 1. Therefore, under the condition (20)

P
(
Xn

(
t ′
) ∈ dx

) = u
(
x, t ′

)
dx.
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Analogously, under the assumption (15), for

α

2(m − 1)
= n

(
d

2
− 1

)
− 1, that is m = α

n(d − 2) − 2
+ 1,

the function (18) coincides with the second part of (17). Since m ∈ (1,∞), we infer
that

d >
2

n
+ 2. (21)

For d = 3 the inequality (20) holds for n ≥ 3; for d = 4, it holds for n ≥ 2; for
d > 4, (20) holds for all n ≥ 1. Therefore, under the condition (21)

P
(
Xn

(
t ′
) ∈ dx

) = u
(
x, t ′

)
dx.

To enhance the features of the random models Yn, n ≥ 1, it is useful to introduce
the Euclidean distance process Rn := (Rn(t), t ≥ 0); that is Rn(t) := ||Yn(t)||. For
a fixed t ≥ 0, Rn(t) ∈ [0, ctβ ] a.s. The next result will be useful for arguing on the
anomalous diffusivity of Yn.

Proposition 3.2. Under the conditions (i), (ii) and (iii) of Proposition 3.1, the follow-
ing results hold:

1) the probability density function of Rn becomes:

P(Rn(t) ∈ dr)

dr
= 2Γ (d

2 + α
2(m−1)

+ 1)

Γ ( α
2(m−1)

+ 1)Γ (d
2 )

rd−1

(ctβ)d

(
1 − r2

c2t2β

) α
2(m−1)

+
, t > 0; (22)

2) let p ≥ 1 and d ≥ 2; then

E
(
Rn(t)

)p = Γ (d
2 + α

2(m−1)
+ 1)Γ (

d+p
2 )

Γ ( α
2(m−1)

+ 1 + d+p
2 )Γ (d

2 )

(
ctβ

)p
, (23)

while for d = 1

E
(
Rn(t)

) =
⎧⎨
⎩

0, p odd,

Γ ( 1
2 + α

2(m−1)
+1)Γ (

1+p
2 )

Γ ( α
2(m−1)

+1+ p+1
2 )

√
π

(ctβ)p, p even; (24)

3) the rescaled process (
Xn(tβ )

ctβ
, t ≥ 0) has the distribution law independent from

the time t and with compact support B1; i.e.

w(x, t) := P(
Xn(tβ )

ctβ
∈ dx)

dx
= Γ (d

2 + α
2(m−1)

+ 1)

πd/2Γ ( α
2(m−1)

+ 1)

(
1 − ||x||2) α

2(m−1)

+ .

Furthermore

ŵ(ξ, t) := Fw(ξ, t)

= 1

(2π)
d
2

(
2

||ξ ||
) d

2 + α
2(m−1)

Γ

(
d

2
+ α

2(m − 1)
+ 1

)
Jd

2 + α
2(m−1)

(||ξ ||);
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4) the rescaled distance process (
Rn(t)

ctβ
, t ≥ 0) admits probability density function

given by a Beta r.v. with parameters d
2 and α

2(m−1)
+ 1.

Proof. 1) By exploiting Remark 2.2 and P(Rn(t) ≤ r) = P(Yn(t) ∈ Br ), it is not
hard to prove that

P
(
Rn(t) ∈ dr

) = area
(
S

d−1
1

)
rd−1u(r, t)dr,

where area(Sd−1
1 ) = 2πd/2/Γ (d/2), and then (22) immediately follows.

2) From point 1), we have

E
(
Rn(t)

)p =
∫ ∞

0
area

(
S

d−1
1

)
rp+d−1u(r, t)dr

= 2Γ (d
2 + α

2(m−1)
+ 1)

Γ ( α
2(m−1)

+ 1)Γ (d
2 )

∫ ctβ

0

rp+d−1

(ctβ)d

(
1 − r2

c2t2β

) α
2(m−1)

dr

= Γ (d
2 + α

2(m−1)
+ 1)

Γ ( α
2(m−1)

+ 1)Γ (d
2 )

(
ctβ

)p
∫ 1

0
w

d+p
2 −1(1 − w)

α
2(m−1) dw

= Γ (d
2 + α

2(m−1)
+ 1)Γ (

d+p
2 )

Γ ( α
2(m−1)

+ 1 + d+p
2 )Γ (d

2 )

(
ctβ

)p
.

For d = 1 the result (24) follows by similar calculations.
3) For fixed t > 0, the result (3.2) is derived from (18), by applying the Jacobian

theorem to the bijection g : Rd → R
d with g(x) = 1

ctβ
x. By the same calculations

leading to (9), we can prove that the Fourier transform ŵ(ξ, t) holds true.
4) It is an immediate consequence of the point 1).

The Barenblatt–Kompanets–Zel’dovich–Pattle solution to the classical PME does
not spread in the space linearly over the time and then we can argue that the phenom-
ena described by the equation (4) represent anomalous diffusion (see, for instance,
[33]). Similar considerations hold for (8). By means of Theorem 3.2, we infer that the
stochastic models Yn, n ≥ 1, behave similarly to an anomalous diffusion. From (23)
and (24), we observe that

Var
(
Rn(t)

) = O
(
t2β

)
, t > 0.

For d = 1, one has 2β = 2
m−1+α

= 4k
α(2k+1)

, k ≥ 1 (condition (i) in Proposition 3.1).
Therefore, for a fixed k ∈ N, we can find the values α ∈ (0, 2], such that the process
Yn spreads over the real line like a sub-diffusion or a super-diffusion. Therefore Yn

has the following properties:

• scatters in the space as a sub-diffusion; i.e. 2β < 1, if and only if 4k
(2k+1)

< α;

• is a super-diffusion process; i.e. 2β > 1, if and only if 4k
(2k+1)

> α;

• represents a classical diffusion if and only if 4k
(2k+1)

= α (i.e. 2β = 1).
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Analogous remarks hold in higher dimensions. For a fixed n ∈ N and d ≥ 2 (resp.
d ≥ 3), under the condition (ii) (resp. (iii)) in Proposition 3.1, the random process Yn

has the following properties:

• behaves similarly to a sub-diffusion if and only if 2n(d−1)−4
(n+1)(d−1)−1 < α (resp.

2n(d−2)−4
(n+1)(d−2)−2 < α);

• spreads over the space like a super-diffusion if and only if 2n(d−1)−4
(n+1)(d−1)−1 > α

(resp. 2n(d−2)−4
(n+1)(d−2)−1 > α);

• represents a diffusion if and only if 2n(d−1)−4
(n+1)(d−1)−1 = α (resp. 2n(d−2)−4

(n+1)(d−2)−1 = α).

4 Conclusions

We are able to provide a probabilistic interpretation of the weak solution (8) to
NPME. In particular, we deal with random flight models (12) with a suitable rescal-
ing of the time coordinate. These random processes enjoy the main features of (8), at
least for particular values of m:

• finite speed of propagation property with compact support given by a closed
ball;

• spread over the space like t2β ; i.e. anomalous diffusivity depending on the val-
ues of the fractional parameter α.

In conclusion, the isotropic transport processes seem to describe well the real
phenomena studied by means of the degenerate nonlinear diffusion equation with
fractional pressure (1).
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