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Abstract Fractional equations governing the distribution of reflecting drifted Brownian mo-
tions are presented. The equations are expressed in terms of tempered Riemann—Liouville type
derivatives. For these operators a Marchaud-type form is obtained and a Riesz tempered frac-
tional derivative is examined, together with its Fourier transform.
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1 Introduction

In this paper we consider various forms of tempered fractional derivatives. For a func-
tion f continuous and compactly supported on the positive real line, let us consider
the Marchaud type operator defined by

(2" f)(x) 2/0 (f) = fx —y) T (dy) (1.1)
where
o e~
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with n > 0,0 < o < 1. The operator (1.1) coincides with the classical Marchaud
derivative for n = 0.
The Laplace transform of the fractional operator (1.1) reads

/oo e—Ax (9“’"]‘)()5) di — (/00(] _ e‘”)ﬂ(dy)>f()»)
0 0
= ((+1"=n*) . (1.3)

Throughout the work we denote by f the Laplace transform of f. In the Fourier
analysis the factor (n + i1)¥ — n* is the multiplier of the Fourier transform of f [7].
Tempered fractional derivatives emerge in the study of equations driving the tempered
subordinators [1, 7]. In particular, the operator (1.1) is the generator of the subordi-
nator H;,t > 0, with Lévy measure (1.2) and density law whose Laplace transform
is given by (1.3), that is,

FeHi = =1+ =0 _ =t [T DAy 5 ),

The process H; is called relativistic subordinator and coincides, for n = 0, with a
positively skewed Lévy process, that is a stable subordinator. Tempered stable subor-
dinators can be viewed as the limits of Poisson random sums with tempered power
law jumps [7].

The fractional operator 2*" f defined in (1.1) is related to the tempered upper
Weyl derivatives defined by

S0 _ 1 ifx f@® —n(x—1)
(75 f)(x)_l"(l—a)dx N (x—t)"‘e dr. (1.4)

By combining (1.4) with the lower Weyl tempered derivatives we obtain the Riesz

. . . o, 1 . . . . .
tempered fractional derivatives 9%/ from which we obtain the explicit Fourier trans-

alx[”
form in (2.5).
We consider the Dzherbashyan—Caputo derivative of order % that is,

t
o =—= [ ree—sta (15)
with the Laplace transform
foo (DT f)(t)dt = A2 F) — AT £(0), A > 0.
0

The relationship between the Riemann-Liouville and the Dzherbashyan—Caputo de-
rivative can be given as follows,

1
11

(27 1)(t) = (D2 £)(6) + —— F(0), (1.6)

ras)

from which we observe that

/OO (27 F) (0 dt =23 F (). (1.7)
0
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We remark that the problems

(27u) (1) = —z—z, t>0,y>0
and {u(0,y) =38()

1
u(t,0) = —, t>0
(r,0) —
have a unique solution given by the density law of an inverse to a stable subordinator,
say L, (see for example [2, formulas 3.4 and 3.5]). It is well known that L, (with
Lo = 0) is identical in law to a folded Brownian motion | B;| (with By = 0), that is, u
is the unique solution to the problem

1 ou
(DZM)(I) = —5, t>0,y>0
u(0,y) =48(y)

ou _ 9%u
ar  9y?’
u(0,y) =8(y),

ou
—(,0) =0.
8y( )

t>0,y>0,

Thus, by considering the theory of time changes, there exist interesting connections
between fractional Cauchy problems and the domains of the generators of the base
processes. In our view, concerning the drifted Brownian motion, the present paper
gives new results also in this direction.

We denote by

1 1
" f = e PR f) — i f (1.8)
the tempered Riemann—Liouville type derivative. The equality between definitions

(1.8) and (1.1) can be verified by comparing the corresponding Laplace transforms.
Indeed, from (1.7),

o0 1 oo 1 -
[ er gt a= [ e tmgiga- ifo)

0 0

=Vi+n /0 ey di - i)

where g(1) = e f ().
Let B represent a Brownian motion starting at the origin with generator A. In the
paper we show that the transition density # = u(x, y, t) of the 1-dimensional process

B*(t)=B(t)+ut+x, pn>0 xeR,

satisfies the fractional equation on (0, co) x R?

1 9 0
27" + Jmu =alx, y)(% + ﬁu) = —a(x, y)<£ — ﬁu),

u(x,y,0) =38 —y)

(1.9)

where
a(x,y) =L(oo,y1(x) = L(y,00) (X)
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and

n= a4
A different result concerns the reflected process

|BX (1) + ut| 4 x = | BI* (1)

whose transition density v = v(x, y, t) satisfies the equation
1 0
22"+ S = a—“ + Jitanh(JR(y —0))v, >0, y>x>0, (1.10)
X

with initial and boundary conditions

U(.X, Vs O) = 3()’ _x)?
e

v(x, x,t) =

and

The fractional equation governing the iterated Brownian motion B#2(|B*!(¢)])
(B*J being independent) has been studied in [6] and in the special case B*(|B(t)])
explicitly derived. For the iterated Bessel process a similar analysis is performed
in [3]. A general presentation of tempered fractional calculus can be found in the
paper [7].

Many processes like Brownian motion, iterated Brownian motion, Cauchy pro-
cess have transition functions satisfying different partial differential equations and
also are solutions of fractional equations of different forms with various fractional
derivatives. We here show that a similar situation arises when drifted reflecting Brow-
nian motion is considered but in this case the corresponding fractional equations in-
volve tempered Riemann—Liouville type derivatives.

2 A generalization of the tempered Marchaud derivative

In this section we study the tempered Weyl derivatives (upper and lower ones) and
construct the Riesz tempered derivative. We are able to obtain the Fourier transform of
the Riesz tempered derivatives and thus to solve some generalized fractional diffusion
equation.

We start by giving the explicit forms of the tempered Weyl derivative

(75" F) )

__ b d O e
= Fi o & /m o dr @2.1)
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o
= ;i/ JE=D g,
r-wd )y
1 d o0 . 00 1
= —-— _ -n —o—
F(l—a)dx_/o flx=ne /t aw " dw dr

1 o0 w
= —/ aw—a—l dw/ f/(x _ t)e—ﬂ[ dt
ra—oJo A

X

1 /oo el ) - ~
o [ ew™ dw [ f@eT T de
F(l - O[) X—w

= F(l—a)/ aw e ﬂx{f(l‘)e’?’x w_n/xwf(t)emdt}dw

= m/(; aqw ¢! e_ﬂx[f(x)g"x — f(x — w)en(x—w)] dw

n 00 ) X .
T aw T / (t)e_" XD qu dt
Id—a /0 ]

= ﬁ /Oooaw_“—l [f(x) - flx— w)e_"w] dw

n 00 L
T — o) aw ™" (x = l‘)e_m dw dt
T —Ol)/o /0 f

B ﬁ /oooawal [f) 4+ f)e™™ = f)e™ — fx —w)e™™ ] dw

- n+_)/ f(x—f)e_m/t cw™ ! dwdr

e~

)/ (fo) = f(x—w)) — dwdr

f(x) * —a—1(1 _ ,—nw _
+ Ta—o J; aw (1—e™)dw
00 o) e
= /0 () = f(x — w)) [T (dw) + n/o () = foxr = w)) oo dw

The derivative .@_‘i" can be expressed in terms of 2% as follows:
GLf = 9N f — gy,
In the same way we can obtain the upper Weyl derivative in the Marchaud form as

(7%" f)(x)

= ;i > ﬂ —n(x—1)

T I(l—a)dx /X Gonet & 2.2)
o) o{w_“_l _ oo enu)f(x+w)

— - nw _ e flx +w)

_/0 T ){e flx+w) f(x)}dw+n/0 i —ae

e”w

F(l—a)/ [ +w) - f(x)]
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f(x) o0 Ca1 /OO —nw
+7F(l—a) ; aw (e 1)dw+n A f(x—i—t)ip(l_a)ta dr
9] 0 —nw
=/0 [f (x4 w) —f(x)]H(dw)—i—n/O [f(x+w) —f(x)]mdw
For 0 < o < 1 the Riesz fractional derivative writes
o —+00

o / FO_ 4 2.3)
a]x|* " 2cos & ‘” F(l—(x) [x — ]

_ 1 [d/X fo 4 [T _f@ dt]‘
" 2cos & 1"(1—05) 0o (x — 1)« dx J, (@ —x)~

In the same way we define the tempered Riesz derivative as

o, X —n(x—t) 00 —n(t—x)
Gl "f:cn[i/ fO e g4 fo e dt}
x| dr oo =0T (1 —a) dx J, ¢t—x°Trd-—o

where Cy, ;, is a suitable constant which will be defined below. In view of the previous
calculations we have that

vy c *© ae "™dw
S = n[/o R
*° e Mdw
+77/(; (f(x)—f(X—w))m 2.4
o ae ™dw
_/0 (f(x‘l'w)—f(x))m
o e M™dw
—77/0 (f(x‘f‘w)—f(x))m}
o ae ™ dw
= Ca,n|:/(; (Zf(x) - fx—w) —f(x‘i‘w))m
o e ™dw
+77/0 (Zf(x)—f(X—w)—f(x+w))m:|-
We now evaluate the Fourier transform of the tempered Riesz derivative
+oo | aa,nf R [e%e} . ae ™dw
iyx — _ plYw -
/;OO e oIx ] dx = Co,,,,{F(y)/(; (1 e )1"(1 Epm—— 2.5)
A o0 _ iyw e M™dw
b [ (1) S
R )/ v _ ae "dw
v F(l rd—o)wet!
—nF iyw _ M;dw
"F(y)/o S }
= ConF 2/00 - _aeMdw
= Cuy (y){ [0 —cosyu) m i e
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OO e M™dw
2 1— -
" 7]/0 ( Cosyw)r(l—a)wa}

a —a e M o
= Ca,nF(V){—2w (1 —cos yw)mb
S e~ dw

-2 1— -
TI/O ( cosyw)war(l_a)
+2y / T Msinyw g,
o w'l'(l —a)
2 1— - d
+ 77/0 ( cosyw)wap(l_a) w}
= CanP(y)2] l/oo e sin |y jw
= Can ' (Y)Y y wil(—a)
A 2
= Ca,nF(V)LH sin((l — o) arctan m>
P +yH 7 1

In the last step we used the following formula ([5], p. 490, formula 5)

o r 1)
/ xH# e P ginsx dx = iﬂ sin(u arctan —>
0 (B* 44622 K
with Re u > —1,Re 8 > Im .

Remark 1. For » — 0 we have that

o Yl o
lim sin{ (1 — @) arctan — | = cos| — ).
n—0 n 2

Therefore
+oo | 8a,nf To R
lim Hrx dx =2C “cos| — | F
im | ane & @0 V1 ( > ) )
and thus the normalizing constant must be Cy,0 = —(2cos %)_1.

This means that for n — 0 we obtain from (2.5) the Fourier transform of the
Riesz fractional derivative (2.3). This result shows that symmetric stable processes

are governed by equations

ou 0%u

ar  dx|@
see, for example, [4], where the interplay between stable laws, including subordina-
tors and inverse subordinators, and fractional equations is considered.

Remark 2. For fractional equations of the form

du 9en
M 20 xeR,
ar  Olx|* (2.6)

ulx,0)=46(x), xekR,
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the Fourier transform of the solution reads

+o0
/ e’ u(x,t)dx

—00

2
= exp{t CW]% sin((l — o) arctan m)}
m*+y?)z 7

2yl Iyl . Yl

=expy! Co.n—————=| |yl cos| o arctan — ) — 7 sin| o arctan —
M s PN

m=+ys) 2 n 1

3 Fractional equations governing the drifted Brownian motion
The law of the drifted Brownian motion started at x satisfies the equations

ou 9%u u f=0.veR
= T 5 PR >0, )
ar a2 Moy Y

and
u 82u+ ou 120 R
— = — >0, x .
ot ox2  Mox

)]}

We show here that the drifted Brownian motion is related to time fractional equations

with tempered derivatives. Let us consider the process
B*(t)=B@)+ut+x, peR, xeR

The law u = u(x, y, t) of the process B* is given by

_ G—x—ut)? _ =02
e 4t e 4t 21, 1
— — A Ca))
ulx,y,t) = = e M a2V Y 150, x,y e R
VAt VAt

Theorem 1. The law of B" solves the Cauchy problem

1 a
.@,z’nu+«/ﬁ”=a(x’y)<a_u +ﬁu>, t>0, x,y,eR,
X

=—a(x,y)(g—z—ﬁ ), t>0, x,y, €R,
u(x,y,0) =38 —y)
with
p=t
4

Proof. We start by computing the Laplace—Fourier transform of the function
_o=0?
e 4t

(x,y,1) = ,
gLy Vamt

3.1

(3.2)

(3.3)
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that is,
“ o0 +oo |
8.6, 2) = / e*“/ e g(x, y, 1) dx dr
0 —00
o0 X 5
:/ e—ktezSy—’;‘ tdt
0
P
A+ &Y
By using the fact that
e~ =0V
—ly— — = Y =X,
fn= ) (3.4)
24/ e~ =V
- = y S xs
24/
we now compute the double transform of a(x, y) g—f.
* iEx 8§
e []l(,oo,y](x) — Jl(y,oo)(x)]a(x, v, A)dx 3.5)
_ l(/y iy O—OVI gy 1 /oo N dx)
2\J s y
i§
_ PU (/00 e_igxe—xﬁdx n /00 e,‘gxe—x«/xdx>
2 \Jo 0
ety 1 1
Htnr )
2 \is+va —ig+Va
i&y A
= Vi =23
ht &2 ¢
This implies, by inverting the Fourier transform, that
g 8
a(x,y)— = «/Xg. (3.6)
ax
We recall that ~ |
/ e MPrgdt = VAg, (3.7)
0
thus by inverting the Laplace transform in (3.6) we obtain
1 ag
778 =ax,y)-~ (3.8)
ax

and, by considering the same arguments (see (3.4)),

l—

R
97 g = —al(x, y)a—g.
y
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Returning to our initial problem, by using (3.8) and (1.8) we have that

u? 2
7

2
N 23
D7 Y u

B|—

6771@1% (euTtu) — %u

1

I
2
—=u
§75

,4.2 (L
e Tl T a(x, y)a—g _E,
ax 2

2
= e+%(y_x)_ MTI ‘@l‘

0 2
and
1 p? 2 1 2
27 Y u= e_MTt.@tz (eﬂTu) — %u
_ e+%(y—x) - Mth @t%g %u
- g u
— —e Tz X e _ P
e e a(x, y)a 2u
" w
—a(x,y)< 3y+2u> 2u
This completes the proof. O

The drifted Brownian motion has therefore a transition function satisfying a time
fractional equation where the fractional derivative is a tempered Riemann-Liouville
derivative with parameter 1 which is related to the drift by the relationship /57 = %

4 Fractional equation governing the folded drifted Brownian motion

We here consider the process

|B(t) + ut| +x = |B*(#)| +x, x>0. 4.1

This process has distribution

P(IB(t) + utl+x <y)=P(x—y—put < B(t) <y —x — ut)
2
y—x—pt =Y
/ e—dw
x—y—ut 47Tt

_ —x—ut)? _ (—x+un)?
e 4t

e
P(|B*(t)| +x e dy)/dy = + “4.2)
( ) 4t 4t
_(y;x)z
e 1 21 n I
— e W a[emz (1) +65()7—X)
a4t [ ]

=v(x,y,t)

for y > x and t > 0. We now prove the following theorem.

and therefore its transition function is
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Theorem 2. The law v of | B*(t)| + x satisfies the fractional equation

1 av
27"y = e + v./ntanh(/n(y — x)) — %v, y>x>0,
y
with initial and boundary conditions

v(x,y,0) =68y —x),
e M
vix,x,t) =

and

Proof. From (4.2) and (1.8) we have that
_ =02
4t

7o)

Let £ 1 be the Mittag-Leffler function of order 1/2 and g be the function

2

Loy 1
D? (e}T v) = 2cosh<%(y - x)) D? (e

_ -2
( 1) ¢ = y>x>0
glx,y, 1) = , .
VAt
Since
o o o0 1
/ e_)‘tf e_éyg(x,y,t)dydtze_sx/ e_)"El(—éﬂ)dt
0 x 0 2
Azl
= e_sx 1
E4+ A2

we obtain that

1 ag 1
27g(x,y,t) = ——= with boundary condition g(x, x, 1) = .
‘ 3y Y 7=

Then, for y > x,

o—0?

_ Koo _ (e
=zeon(50-0) (557 ))

o—0? o-—0?
P

__9 TR T Kosannl Py — oy )
= 8y<2cosh<2(y x)) M)—i-z 251nh<2(y x)) Nz

455

(4.3)
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-2
Q. w2, . e
=——(e*v(x,y, 1)+ n smh(—(y —x)>7
3)’( ) 2 Vant
with boundary condition
u?, 1 1
eT'v(x,x,t)= +
4t 4t
In view of (1.8) we obtain that
1 21 2
22"+ S = e_%t@f (euTtv)
-n?
av _M_Zt . (l’L e H
=—— —pe ' sinh| = (y —x) | —
ay 2 4t
0l
=20 2 tann ﬁ(y—x) v. |
ay 2 2

This result shows that the structure of the governing equation of the process

|B(t) + ut| + x is substantially different from that of B(¢) + ut + x. The difference
between (3.3) and (4.3) consists in the non-constant coefficient tanh %( y — x) which
converges to one as the difference |y — x| tends to infinite. Thus the two equations
emerging in this analysis coincide for |x — y| — oo.

References

(1]

(2]

(3]

[4

—

(5]

(6]

(7]

Beghin, L.: On fractional tempered stable processes and their governing differential
equations. J. Comput. Phys. 1, 29-39 (2015). MR3342454. https://doi.org/10.1016/
jjcp-2014.05.026

D’Ovidio, M.: On the fractional counterpart of the higher-order equations. Stat. Probab.
Lett. 81, 1929-1939 (2011). MR2845910. https://doi.org/10.1016/j.spl.2011.08.004

D’Ovidio, M., Orsingher, E.: Bessel processes and hyperbolic Brownian motions stopped
at different random times. Stoch. Process. Appl. 121, 441-465 (2011). MR2763091.
https://doi.org/10.1016/j.spa.2010.11.002

D’Ovidio, M., Orsingher, E., Toaldo, B.: Time changed processes governed by space-time
fractional telegraph equations. Stoch. Anal. Appl. 32, 1009-1045 (2014). MR3270693.
https://doi.org/10.1080/07362994.2014.962046

Gradshteyn, 1., Ryzhik, I.: Table of Integrals, Series, and Products. Academic Press, New
York (1999). MR0669666

Iafrate, F., Orsingher, E.: Last zero crossing of an iterated Brownian motion with drift.
https://arxiv.org/abs/1803.00877. Accessed 2 Mar 2018.

Sabzikar, F., Meerschaert, M.M., Chen, J.: Tempered fractional calculus. J. Comput. Phys.
121, 14-28 (2015). MR3342453. https://doi.org/10.1016/j.jcp.2014.04.024


http://www.ams.org/mathscinet-getitem?mr=3342454
https://doi.org/10.1016/j.jcp.2014.05.026
https://doi.org/10.1016/j.jcp.2014.05.026
http://www.ams.org/mathscinet-getitem?mr=2845910
https://doi.org/10.1016/j.spl.2011.08.004
http://www.ams.org/mathscinet-getitem?mr=2763091
https://doi.org/10.1016/j.spa.2010.11.002
http://www.ams.org/mathscinet-getitem?mr=3270693
https://doi.org/10.1080/07362994.2014.962046
http://www.ams.org/mathscinet-getitem?mr=0669666
https://arxiv.org/abs/1803.00877
http://www.ams.org/mathscinet-getitem?mr=3342453
https://doi.org/10.1016/j.jcp.2014.04.024

	Introduction
	A generalization of the tempered Marchaud derivative
	Fractional equations governing the drifted Brownian motion
	Fractional equation governing the folded drifted Brownian motion

