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Abstract A one-dimensional stochastic wave equation driven by a general stochastic mea-
sure is studied in this paper. The Fourier series expansion of stochastic measures is considered.
It is proved that changing the integrator by the corresponding partial sums or by Fejèr sums we
obtain the approximations of mild solution of the equation.
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1 Introduction

In this paper we study the Cauchy problem for a one-dimensional stochastic wave
equation driven by a general stochastic measure. We consider solution of this problem
in the mild sense (see (12) below). Our goal is to show the convergence of solutions of
equations using the approximation of stochastic measures by partial sums of Fourier
series and Fejèr sums.

Existence and uniqueness of the solution of our equation are obtained in [2]. The
wave equation driven by stochastic measure defined on subsets of the spatial variable
was considered in [1]. Similar equations driven by random stable noises are studied
in [9, 10], where the properties of generalized solutions are investigated.
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Convergence of solutions of stochastic wave equation by using the approximation
of stochastic integrator was studied in [3, 4]. Mild solutions of equations driven by
the Gaussian random field in dimension three were considered in these papers.

Approximation of stochastic measures may be obtained by using Fourier and
Fourier–Haar series, the corresponding results are given in [15, 17]. The partial sums
of the resulting series generate random functions of sets, which are signed measures
for each fixed ω ∈ Ω . The resulting equations can be solved as a nonstochastic
equation for each ω. The results of our paper imply that we obtain in this way an
approximation of the solution of (12).

Papers [15, 17] contain examples of applying Fourier series of stochastic mea-
sures to the convergence of solutions of the stochastic heat equation. A similar appli-
cation of the Fourier transform is given in [18]. Continuous dependence of solutions
of wave equation upon the data was studied in [1, 2]. In this paper we obtain a con-
tinuous dependence upon the values of stochastic integrator of the equation.

The paper is organized as follows. In Section 2 we recall the basic facts about
stochastic measures and Fourier series. Important auxiliary lemma concerning con-
vergence of stochastic integrals is proved in Section 3. The formulation of the Cauchy
problem and theorem about approximation of the solution by using Fourier partial
sums are given in Section 4. The similar approximation that uses Fejèr sums is ob-
tained in Section 5. Section 6 contains one example with comments about the conver-
gence rate.

2 Preliminaries

Let X be an arbitrary set and let B(X) be a σ -algebra of subsets of X. Let L0(Ω,F , P)

be the set of (equivalence classes of) all real-valued random variables defined on
a complete probability space (Ω,F , P). The convergence in L0(Ω,F , P) is under-
stood to be in probability.

Definition 1. A σ -additive mapping μ : B → L0 is called a stochastic measure
(SM).

We do not assume positivity or moment existence for μ. In other words, μ is a
vector measure with values in L0.

For a deterministic measurable function g : X → R and SM μ, an integral of
the form

∫
X g dμ is defined and studied in [6, Chapter 7], see also [11, Chapter 1]. In

particular, every bounded measurable g is integrable with respect to any μ. Moreover,
an analogue of the Lebesgue dominated convergence theorem holds for this integral
(see [6, Theorem 7.1.1], [11, Corollary 1.2]).

Important examples of SMs are orthogonal stochastic measures, α-stable random
measures defined on a σ -algebra for α ∈ (0, 1) ∪ (1, 2] (see [19, Chapter 3]). Con-
ditions under which a process with independent increments generates an SM may be
found in [6, Chapter 7 and 8].

Let the random series
∑

n≥1 ξn converge unconditionally in probability, and mn be
real signed measures on B, |mn(A)| ≤ 1. Set μ(A) = ∑

n≥1 ξnmn(A). Convergence
of this series in probability follows from [21, Theorem V.4.2], and μ is a SM by [5,
Theorem 8.6].
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Many examples of the SMs on the Borel subsets of [0, T ] may be given by the
Wiener-type integral

μ(A) =
∫

[0,T ]
1A(t) dXt . (1)

We note the following cases of processes Xt in (1) that generate SM.

1. Xt – any square integrable martingale.

2. Xt = WH
t – the fractional Brownian motion with Hurst index H > 1/2, see

Theorem 1.1 [8].

3. Xt = Sk
t – the sub-fractional Brownian motion for k = H − 1/2, 1/2 < H <

1, see Theorem 3.2 (ii) and Remark 3.3 c) in [20].

4. Xt = Zk
H (t) – the Hermite process, 1/2 < H < 1, k ≥ 1, see [7].

We will give another example. Let ζ be an arbitrary SM defined on Borel subsets
of [a, b] ⊂ R, function h : [0, T ] × [a, b] → R be such that h(0, y) = 0, and∣∣h(t, y) − h(s, x)

∣∣ ≤ L
(|t − s| + |y − x|γ )

, γ > 1/2, L ∈ R. (2)

Then h(·, y) is absolutely continuous for each y, | ∂h(t,y)
∂t

| ≤ L a. e., and we can define
SM

μ(A) =
∫

[a,b]
dζ(y)

∫
A

∂h(t, y)

∂t
dt, A ∈ B

([0, T ]), (3)

see details in [16, Section 3]. Note that Theorem 1 of [16] implies that the process

μt = μ
(
(0, t]) =

∫
[a,b]

h(t, y) dζ(y), t ∈ [0, T ], (4)

has a continuous version. In this case the process Xt = μt in (1) defines an SM.
Let B be a Borel σ -algebra on (0, 1]. For arbitrary SM μ on B we consider the

Fourier series in the following sense.
Denote

ξk =
∫

(0,1]
exp{−2πikt} dμ(t)

:=
∫

(0,1]
cos(2πkt) dμ(t) − i

∫
(0,1]

sin(2πkt) dμ(t), k ∈ Z. (5)

Definition 2. The series ∑
k∈Z

ξk exp{2πikt} (6)

is called the Fourier series of SM μ. The random variables ξk are called the Fourier
coefficients of series (6). Partial sums of series (6) are given by

Sj (t) =
∑
|k|≤j

ξk exp{2πikt}, j ∈ Z+, t ∈ [0, 1].
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Stochastic integrals on the right hand side of (5) are defined for any μ, since the
integral functions are bounded. Thus the Fourier series is well defined for every SM
on B.

We will also consider Fejèr sums for SM μ:

S̃j (t) = 1

j + 1

∑
0≤k≤j

Sk(t).

For necessary information concerning the classical Fourier series, we refer to [22].
In the sequel, C and C(ω) will denote nonrandom and random constants respectively
whose exact value is not essential.

3 Convergence of integrals

Put
�kn = (

(k − 1)2−n, k2−n
]
, n ≥ 0, 1 ≤ k ≤ 2n.

Let the function g(z, s) : Z × [0, 1] → R be such that ∀z ∈ Z : g(z, ·) is
continuous on [0, 1]. Here Z = Z0 × [0, 1], Z0 is an arbitrary set, z = (z0, t).
Denote

g(n)(z, s) = g(z, 0)1{0}(s) +
∑

1≤k≤2n

g
(
z, (k − 1)2−n ∧ t

)
1�kn

(s).

From [14, Lemma 3] it follows that the random function

η(z, t) =
∫

(0,t]
g(z, s)dμ(s), z ∈ Z,

has a version

η̃(z, t) =
∫

(0,t]
g(0)(z, s)dμ(s)

+
∑
n≥1

(∫
(0,t]

g(n)(z, s)dμ(s) −
∫

(0,t]
g(n−1)(z, s)dμ(s)

)
,

(7)

such that for all ε > 0, ω ∈ Ω, z ∈ Z∣∣̃η(z, t)
∣∣ ≤ ∣∣g(z, 0)μ

(
(0, t])∣∣

+
{∑

n≥1

2nε
∑

1≤k≤2n

∣∣g(
z, k2−n ∧ t

) − g
(
z, (k − 1)2−n ∧ t

)∣∣2
} 1

2

×
{∑

n≥1

2−nε
∑

1≤k≤2n

∣∣μ(
�kn ∩ (0, t])∣∣2

} 1
2

.

(8)

We note that the series with the values of SM in (8) converges a. s. (see [13, Lemma
3.1]).
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Lemma 1. Let Z be an arbitrary set, g, gj : Z × [0, 1] → R, and the following
conditions hold

(i) supz∈Z,t∈[0,1] |gj (z, t) − g(z, t)| → 0, j → ∞;
(ii) for some constants Lg > 0, β(g) > 1/2

sup
z∈Z,j≥1

|gj (z, t) − gj (z, s)| ≤ Lg|t − s|β(g) t, s ∈ [0, 1];

(iii) for some random constant Cμ(ω)

|μ((0, t])| ≤ Cμ(ω), t ∈ (0, 1].
Then for versions (7) of the processes

ηj (z, t) =
∫

(0,t]
gj (z, s) dμ(s), η(z, t) =

∫
(0,t]

g(z, s) dμ(s)

the following holds:

sup
z∈Z,t∈[0,1]

∣∣ηj (z, t) − η(z, t)
∣∣ → 0 a. s., j → ∞.

Proof. Without loss of generality, we can assume that g = 0. For ηj we will use in-
equality (8). Separating for each n intervals �kn that contain t and using the condition
(iii), we have ∑

n≥1

2−nε
∑

1≤k≤2n

∣∣μ(
�kn ∩ (0, t])∣∣2

≤
∑
n≥1

2−nε
∑

1≤k≤2n

∣∣μ(�kn)
∣∣2 +

∑
n≥1

2−nε
(
2Cμ(ω)

)2
.

Since both series in the right hand side are finite a. s., we obtain a random upper
bound uniformly in t . Condition (ii) implies that∑

1≤k≤2n

∣∣gj

(
z, k2−n ∧ t

) − gj

(
z, (k − 1)2−n ∧ t

)∣∣2 ≤ 2nLg2−2nβ(g). (9)

Let supz∈Z,t∈[0,1] |gj (z, t)| = δj , δj → 0. Then∑
1≤k≤2n

∣∣gj

(
z, k2−n ∧ t

) − gj

(
z, (k − 1)2−n ∧ t

)∣∣2 ≤ 2n · 4δ2
j . (10)

The product of (9) to the power θ and (10) to the power 1 − θ now satisfies∑
1≤k≤2n

∣∣gj

(
z, k2−n ∧ t

) − gj

(
z, (k − 1)2−n ∧ t

)∣∣2 ≤ C2n2−2nθβ(g)δ
2(1−θ)
j .

For 1
2β(h)

< θ < 1, 0 < ε < 2θβ(h) − 1 we have

sup
z∈Z,t∈[0,1]

∑
n≥1

2nε
∑

1≤k≤2n

∣∣gj

(
z, k2−n ∧ t

) − gj

(
z, (k − 1)2−n ∧ t

)∣∣2 ≤ Cδ
2(1−θ)
j .

The right hand side of the inequality tends to zero as j → ∞. Since

sup
z∈Z,t∈[0,1],j≥1

∣∣gj (z, 0)μ
(
(0, t])∣∣ → 0, j → ∞,

applying (8) completes the proof of the lemma.
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4 Approximation of solutions by using the Fourier partial sums

Consider the Cauchy problem for a one-dimensional stochastic wave equation⎧⎪⎨
⎪⎩

∂2u(t, x)

∂t2 = a2 ∂2u(t, x)

∂x2 + f (t, x, u(t, x)) + σ(t, x) μ̇(t),

u(0, x) = u0(x),
∂u(0, x)

∂t
= v0(x),

(11)

where (t, x) ∈ [0, 1]×R, a > 0, μ is an SM defined on the Borel σ -algebra B((0, 1]).
The solution of equation (11) is understood in the mild sense,

u(t, x) = 1

2

(
u0(x + at) − u0(x − at)

) + 1

2a

∫ x+at

x−at

v0(y) dy

+ 1

2a

∫ t

0
ds

∫ x+a(t−s)

x−a(t−s)

f
(
s, y, u(s, y)

)
dy

+ 1

2a

∫
(0,t]

dμ(s)

∫ x+a(t−s)

x−a(t−s)

σ (s, y) dy .

(12)

The integrals of random functions with respect to dx are taken for each fixed ω ∈ Ω .
We impose the following assumptions.

A1. Functions u0(y) = u0(y, ω) : R×Ω → R and v0(y) = v0(y, ω) : R×Ω →
R are measurable and bounded for every fixed ω ∈ Ω .

A2. The function f (s, y, v) : [0, 1] × R × R → R is measurable and bounded.
A3. The function f (s, y, v) is uniformly Lipschitz in y, v ∈ R:∣∣f (s, y1, v1) − f (s, y2, v2)

∣∣ ≤ Lf

(|y1 − y2| + |v1 − v2|
)
.

A4. The function σ(s, y) : [0, 1] × R → R is measurable and bounded.
A5. The function σ(s, y) is Hölder continuous:∣∣σ(s1, y1) − σ(s2, y2)

∣∣ ≤ Lσ

(|s1 − s2|β(σ ) + |y1 − y2|β(σ )
)
, 1/2 < β(σ) ≤ 1.

A6. For some random constant Cμ(ω) |μ((0, t])| ≤ Cμ(ω), t ∈ (0, 1].
From A1–A5 it follows that equation (12) has a unique solution (see Theorem

2.1 [2]). The Hölder continuity condition was imposed on u0 in [2], but was not used
in proof of existence and uniqueness of the solution.

Note that the processes Xt in examples 2–4 of SMs and μt in (4) are continuous,
therefore A6 is fulfilled in these cases.

Consider the following equations:

uj (t, x) = 1

2

(
u0(x + at) − u0(x − at)

) + 1

2a

∫ x+at

x−at

v0(y) dy

+ 1

2a

∫ t

0
ds

∫ x+a(t−s)

x−a(t−s)

f
(
s, y, uj (s, y)

)
dy

+ 1

2a

∫
(0,t]

Sj (s) ds

∫ x+a(t−s)

x−a(t−s)

σ (s, y) dy .

(13)
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Theorem 1. Let A1–A6 are fulfilled, and assume that the following conditions hold:
if h ∈ L2((0, 1]) then h is integrable with respect to μ, and

if
∫

(0,1]
∣∣hj (x)

∣∣2
dx → 0, j → ∞ then

∫
(0,1]

hj (x) dμ(x)
P→ 0, j → ∞.

(14)
Then u from (12) and uj from (13) have versions such that for every 0 < δ < 1

sup
x∈R,t∈[0,1−δ]

∣∣uj (t, x) − u(t, x)
∣∣ P→ 0, j → ∞. (15)

Proof. The outline of the proof is the following. Denote

g(t, x, s) =
∫ x+a(t−s)

x−a(t−s)

σ (s, y) dy, 0 ≤ s ≤ t.

Step 1 – using the Gronwall’s inequality, we will estimate supremum in (15) by the
value

sup
t,x

∣∣∣∣
∫

(0,t]
g dμ −

∫
(0,t]

gSj ds

∣∣∣∣ .
Further (Step 2), we consider the continuation of g(t, x, s), 0 ≤ s ≤ t, to the function
gδ(t, x, s), 0 ≤ s ≤ 1, and estimate

sup
t,x

∣∣∣∣
∫

(0,t]
g dμ −

∫
(0,1]

gδ dμ

∣∣∣∣ .
In Step 3 we consider

sup
t,x

∣∣∣∣
∫

(0,1]
gδ dμ −

∫
(0,1]

gδSj ds

∣∣∣∣ ,
and in Step 4 we estimate

sup
t,x

∣∣∣∣
∫

(0,1]
gδSj ds −

∫
(0,t]

gSj ds

∣∣∣∣
and make the concluding remarks.

Step 1. We will take versions (7) for all integrals with respect to μ. We have∣∣u(t, x) − uj (t, x)
∣∣

≤ 1

2a

∣∣∣∣
∫ t

0
ds

∫ x+a(t−s)

x−a(t−s)

f
(
s, y, u(s, y)

)
dy

−
∫ t

0
ds

∫ x+a(t−s)

x−a(t−s)

f
(
s, y, uj (s, y)

)
dy

∣∣∣∣
+ 1

2a

∣∣∣∣
∫

(0,t]
g(t, x, s) dμ(s) −

∫
(0,t]

Sj (s)g(t, x, s) ds

∣∣∣∣
A3≤ C

∫ t

0
ds

∫ x+a(t−s)

x−a(t−s)

∣∣u(s, y) − uj (s, y)
∣∣ dy

+ 1

2a

∣∣∣∣
∫

(0,t]
g(t, x, s) dμ(s) −

∫
(0,t]

Sj (s)g(t, x, s) ds

∣∣∣∣.

(16)
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Denote

ξj (t) = sup
x∈R

∣∣u(t, x) − uj (t, x)
∣∣,

ηδj = 1

2a
sup

x∈R, t∈[0,1−δ]

∣∣∣∣
∫

(0,t]
g(t, x, s) dμ(s) −

∫
(0,t]

Sj (s)g(t, x, s) ds

∣∣∣∣ .
Then

ξj (t) ≤ C

∫ t

0
ξj (s) ds + ηδj , t ∈ [0, 1 − δ]. (17)

Applying the Gronwall’s inequality, we get

ξj (t) ≤ ηδj + C

∫ t

0
exp

{
C(t − s)

}
ηδj ds ≤ Cηδj , t ∈ [0, 1 − δ]. (18)

Further, we will estimate ηδj . In particular, we will get that ηδj < +∞ a. s. From
this, A2 and first inequality in (16) it follows that ξj (t) ≤ C(ω) < ∞ a. s.

Step 2. Note that g(t, x, t) = 0. We define the function

gδ(t, x, s) = g(t, x, s), 0 ≤ s ≤ t, gδ(t, x, s) = 0, t ≤ s < 1 − δ.

Put gδ(t, x, 1) = g(t, x, 0) and extend gδ(t, x, s) for s ∈ [1 − δ, 1] in a linear way
such that the function is continuous on [0, 1]. Also, gδ(t, x, s) has a continuous peri-
odic extension on R in a variable s for fixed x ∈ R, t ∈ [0, 1).

First, consider

Aδ := sup
t,x

∣∣∣∣
∫

(0,t]
g(t, x, s) dμ(s) −

∫
(0,1]

gδ(t, x, s) dμ(s)

∣∣∣∣ .
By the definition of the function gδ , we have∫

(0,1]
gδ(t, x, s) dμ(s) −

∫
(0,t]

g(t, x, s) dμ(s) =
∫

(1−δ,1]
gδ(t, x, s) dμ(s)

=
∫

(1−δ,1]
gδ(t, x, 0)

s + δ − 1

δ
dμ(s) = gδ(t, x, 0)

∫
(1−δ,1]

s + δ − 1

δ
dμ(s)

By the analogue of the Lebesgue theorem,∫
(1−δ,1]

s + δ − 1

δ
dμ(s)

P→ μ
({1}), δ → 0. (19)

Condition (14) provides that μ({1}) = 0 a. s., also |gδ(t, x, 0)| ≤ C. Therefore,

Aδ
P→ 0, δ → 0. (20)

Step 3. Further, we will estimate

Bδj := sup
t,x

∣∣∣∣
∫

(0,1]
gδ(t, x, s) dμ(s) −

∫
[0,1]

gδ(t, x, s)Sj (s) ds

∣∣∣∣ .
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We have∫
[0,1]

gδ(t, x, s)Sj (s) ds =
∫

[0,1]
gδ(t, x, s)

( ∑
|k|≤j

ξk exp{2πiks}
)

ds

=
∫

[0,1]
gδ(t, x, s)

( ∑
|k|≤j

exp{2πiks}
∫

(0,1]
exp{−2πikr} dμ(r)

)
ds

=
∑
|k|≤j

∫
[0,1]

gδ(t, x, s)

(
exp{2πiks}

∫
(0,1]

exp{−2πikr} dμ(r)

)
ds

(∗)=
∑
|k|≤j

∫
(0,1]

exp{−2πikr} dμ(r)

∫
[0,1]

exp{2πiks}gδ(t, x, s) ds

=
∫

(0,1]

( ∑
|k|≤j

exp{−2πikr}
∫

[0,1]
exp{2πiks}gδ(t, x, s) ds

)
dμ(r).

(21)

(We can change the order of integration in (*) due to Theorems 1 and 2 [12].) Partial
sums of Fourier series of functions gδ(t, x, r) in variable r are given by

gδj (t, x, r) =
∑
|k|≤j

exp{−2πikr}
∫

[0,1]
exp{2πiks}gδ(t, x, s) ds.

We will demonstrate that for fixed δ for functions gδj , gδ and z = (t, x) the conditions
of Lemma 1 hold.

Consider the Fourier coefficients

a−k(t, x) =
∫

[0,1]
exp{2πiks}gδ(t, x, s) ds,

a′−k(t, x) =
∫

[0,1]
exp{2πiks}∂gδ(t, x, s)

∂s
ds = −2πika−k(t, x).

For any set of indices M ⊂ Z \ {0} we have

sup
t,x

∑
k∈M

|ak| = 1

2π
sup
t,x

∑
k∈M

|a′
k|

|k| ≤ 1

2π
sup
t,x

(∑
k∈M

∣∣a′
k

∣∣2
)1/2(∑

k∈M

1

k2

)1/2

≤ 1

2π
sup
t,x

∥∥∥∥∂gδ(t, x, s)

∂s

∥∥∥∥
L2

(∑
k∈M

1

k2

)1/2

.

(22)

Obviously, the supremum of L2-norms (taken in the variable s) will be finite for
fixed δ. Thus,

sup
t,x,r

∣∣gδj (t, x, r) − gδl(t, x, r)
∣∣ ≤ sup

t,x

∑
l<|k|≤j

|ak| → 0, l, j → ∞,

and sequence gδj (t, x, r), j ≥ 1, converges uniformly in (t, x, r). Also, it is well
known that for our piecewise smooth function gδ the pointwise convergence
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gδj (t, x, s) → gδ(t, x, s), j → ∞, holds. Therefore, condition (i) of Lemma 1 is
fullfiled.

Further, we will check condition (ii) for β(g)= 1. Using the periodicity of gδ(t, x, s)

in s, for ρ ∈ R we obtain

gδj (t, x, r + ρ) =
∑
|k|≤j

exp{−2πikr}
∫

[0,1]
exp{2πiks}gδ(t, x, s + ρ) ds.

Therefore, gδj (t, x, r + ρ) − gδj (t, x, r) are partial sums of the Fourier series of the
function gδ(t, x, s+ρ)−gδ(t, x, s). We can repeat the reasoning from (22) for M = Z

and

a−k =
∫

[0,1]
exp{2πiks}(gδ(t, x, s + ρ) − gδ(t, x, s)

)
ds.

It is easy to see that

sup
t,x

∥∥∥∥∂(gδ(t, x, s + ρ) − gδ(t, x, s))

∂s

∥∥∥∥
L2

≤ Cρ.

Since ∣∣gδj (t, x, r + ρ) − gδj (t, x, r)
∣∣ ≤

∑
k∈Z

|ak|,

we get (ii).
Lemma 1 implies that

Bδj → 0 a. s., j → ∞, (23)

for each fixed δ.
Step 4. It remains to consider

Cδj := sup
t,x

∣∣∣∣
∫

(0,1]
Sj (s)gδ(t, x, s) ds −

∫
(0,t]

Sj (s)g(t, x, s) ds

∣∣∣∣
= sup

t,x

∣∣∣∣
∫

(0,1]
Sj (s)gδ(t, x, s) ds −

∫
(0,t]

Sj (s)gδ(t, x, s) ds

∣∣∣∣
= sup

t,x

∣∣∣∣
∫

(1−δ,1]
Sj (s)gδ(t, x, s) ds

∣∣∣∣
= sup

t,x

∣∣∣∣
∫

(1−δ,1]
Sj (s)g(t, x, 0)

s + δ − 1

δ
ds

∣∣∣∣
= sup

t,x

∣∣g(t, x, 0)
∣∣ ∣∣∣∣

∫
(1−δ,1]

Sj (s)
s + δ − 1

δ
ds

∣∣∣∣
≤ C

∣∣∣∣
∫

(1−δ,1]
Sj (s)

s + δ − 1

δ
ds

∣∣∣∣ =: C|C̃δj |.

(24)

If we consider the function hδ(s) = s+δ−1
δ

1[1−δ,1] and its corresponding j -th Fourier
sum hδj (s), then, as in (21), we have∫

(1−δ,1]
Sj (s)

s + δ − 1

δ
ds =

∫
(0,1]

hδj (s) dμ(s). (25)
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By the standard properties of Fourier sums,

hδj (s) → hδ(s), j → ∞,

in L2([0, 1]). From (14) we get

C̃δj =
∫

(0,1]
hδj (s) dμ(s)

P→
∫

(0,1]
hδ(s) dμ(s) := Dδ, j → ∞. (26)

We have already noticed in (19) that

Dδ
P→0, δ → 0. (27)

Finally, we have
ηδj ≤ Aδ + Bδj + Cδj . (28)

In order to explain that ηδj
P→ 0, we will use the seminorm

‖η‖ = sup
{
α : P

(|η| ≥ α
) ≥ α

}
,

that corresponds to the convergence in L0. If (15) does not hold then

‖ηδj‖ ≥ α0 (29)

for some δ, α0 > 0 and infinitely many j .
We have

‖ηδj‖
(28)≤ ‖Aδ‖ + ‖Bδj‖ + ‖Cδj‖

(24)≤ ‖Aδ‖ + ‖Bδj‖ + ‖CC̃δj‖
≤ ‖Aδ‖ + ‖Bδj‖ + ∥∥C(C̃δj − Dδ)

∥∥ + ‖CDδ‖.
From (23) and (26) it follows that for each δ

lim sup
j→∞

‖ηδj‖ ≤ ‖Aδ‖ + ‖CDδ‖,

(20) and (27) imply that
lim
δ→0

lim sup
j→∞

‖ηδj‖ = 0.

This contradicts to (29) (the reduction of δ given in the formulation of the theorem
reinforces the assertion).

Remark 1. Note that condition (14) holds for examples of SMs 2 and 3 (see [8,
20]). If (14) is fulfilled for SM ζ in (3) then it holds for μ. This follows from the
boundedness of ∂h(t,y)

∂t
and properties of the integral, see [11, Chapter 1].

In our proof condition (14) was used only for convergence in (26) and for equality
μ({1}) = 0 a. s. If for given hδj and μ these statements hold true then the general
condition (14) can be discarded.

In the next section, we will demonstrate that replacing partial sums of the Fourier
series by the corresponding Fejèr sums, we can omit condition (14).
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5 Approximation of solutions by using the Fejèr sums

Consider the following equations that use the Fejèr sums S̃j (s) of SM μ:

ũj (t, x) = 1

2

(
u0(x + at) − u0(x − at)

) + 1

2a

∫ x+at

x−at

v0(y) dy

+ 1

2a

∫ t

0
ds

∫ x+a(t−s)

x−a(t−s)

f
(
s, y, ũj (s, y)

)
dy

+ 1

2a

∫
(0,t]

S̃j (s) ds

∫ x+a(t−s)

x−a(t−s)

σ (s, y) dy .

(30)

We show that the functions ũj also approximate the solution u of equation (12).
Here we impose weaker conditions on μ than in Theorem 1.

Theorem 2. Let A1–A6 hold. Then u from (12) and ũj from (30) have versions such
that for every 0 < δ < 1

sup
x∈R,t∈[0,1−δ]

∣∣ũj (t, x) − u(t, x)
∣∣ P→ 0, j → ∞. (31)

Proof. We use the notation from the proof of Theorem 1. As in (17), we get

ξ̃j (t) ≤ C

∫ t

0
ξ̃j (s) ds + η̃δj , t ∈ [0, 1 − δ],

where

ξ̃j (t) = sup
x∈R

∣∣u(t, x) − ũj (t, x)
∣∣,

η̃δj = 1

2a
sup

x∈R, t∈[0,1−δ]

∣∣∣∣
∫

(0,t]
g(t, x, s) dμ(s) −

∫
(0,t]

S̃j (s)g(t, x, s) ds

∣∣∣∣ .
The Gronwall’s inequality implies that

ξ̃j (t) ≤ Cη̃δj , t ∈ [0, 1 − δ]. (32)

We will estimate η̃δj . Consider∫
(0,t]

g(t, x, s) dμ(s) −
∫

(0,t]
S̃j (s)g(t, x, s) ds

= 1

j + 1

∑
0≤k≤j

(∫
(0,t]

g(t, x, s) dμ(s) −
∫

(0,t]
Sk(s)g(t, x, s) ds

)
.

Similarly to the estimates of ηδj in Theorem 1, we have

η̃δj ≤ 1

j + 1

∑
0≤k≤j

(Aδ + Bδk)

+ sup
t,x

∣∣∣∣
∫

(0,1]
S̃j (s)gδ(t, x, s) ds −

∫
(0,t]

S̃j (s)g(t, x, s) ds

∣∣∣∣ .
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As in (24), we obtain

sup
t,x

∣∣∣∣
∫

(0,1]
S̃j (s)gδ(t, x, s) ds −

∫
(0,t]

S̃j (s)g(t, x, s) ds

∣∣∣∣
≤ C

∣∣∣∣
∫

(1−δ,1]
S̃j (s)

s + δ − 1

δ
ds

∣∣∣∣ .
Taking the sum of terms (25), we get∫

(1−δ,1]
S̃j (s)

s + δ − 1

δ
ds =

∫
(0,1]

h̃δj (s) dμ(s).

Here the functions

h̃δj (s) = 1

j + 1

∑
0≤k≤j

hδk(s)

are the Fejèr sums of function hδ(s) = s+δ−1
δ

1[1−δ,1]. By well-known properties,
h̃δj (s) are uniformly bounded for every δ and h̃δj (s) → h̃δ(s) for every s ∈ (0, 1).
Therefore, ∫

(0,1]
h̃δj (s) dμ(s)

P→
∫

(0,1]
h̃δ(s) dμ(s), j → ∞,

(here we used the condition μ({1}) = 0 a. s.). It remains to repeat the reasoning in
the proof of Theorem 1 carried out after (25).

6 Example

We obtained that solution of (12) is approximated by solutions of (13) and (30). Equa-
tions (13) and (30) may be considered as nonstochastic for each fixed ω, properties
of the solutions uj and ũj follows from the theory of deterministic wave equation.

Also, in some cases the rate of convergence in (15) and (31) may be estimated.
By (18) and (32), we need to estimate ηδj and η̃δj respectively.

As an example, consider SM μ given by (3) and (4) provided that condition (2)
holds. Assumption A6 is fulfilled in this case because μt has a continuous version,
A1–A5 are assumed as before. Recall that if (14) is fulfilled for SM ζ in (3) then it
holds for μ (see Remark 1).

In addition, assume that for some L > 0, γ > 1/2 and all t, y1, y2∣∣∣∣∂h(t, y1)

∂t
− ∂h(t, y2)

∂t

∣∣∣∣ ≤ L|y1 − y2|γ .

Then from Theorems 1 and 2 [12] we obtain that we can change the order of integra-
tion in (3), and

μ(A) =
∫

A

dt

∫
[a,b]

∂h(t, y)

∂t
dζ(y). (33)
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The Fourier coefficients of μ are

ξk =
∫

(0,1]
exp{−2πikt} dμ(t) =

∫
(0,1]

exp{−2πikt} dt

∫
[a,b]

∂h(t, y)

∂t
dζ(y)

(∗)=
∫

[a,b]
dζ(y)

∫
(0,1]

exp{−2πikt}∂h(t, y)

∂t
dt =

∫
[a,b]

ck(y) dζ(y)

where in (*) we again use Theorems 1 and 2 [12], ck(y) denotes the Fourier series
coefficient of ∂h(·,y)

∂t
.

Therefore, the partial Fourier sums and Fejèr sums for this SM are

Sj (t) =
∫

[a,b]
S

(h)
j (t, y) dζ(y), S̃j (t) =

∫
[a,b]

S̃
(h)
j (t, y) dζ(y), (34)

where S
(h)
j (·, y) and S̃

(h)
j (·, y) are respectively Fourier and Fejèr sums of function

∂h(·,y)
∂t

for each fixed y. To estimate ηδj , consider∫
(0,t]

g(t, x, s) dμ(s) −
∫

(0,t]
Sj (s)g(t, x, s) ds

(33),(34)=
∫

(0,t]
g(t, x, s) ds

∫
[a,b]

∂h(s, y)

∂s
dζ(y)

−
∫

(0,t]
g(t, x, s) ds

∫
[a,b]

S
(h)
j (s, y) dζ(y)

=
∫

(0,t]
g(t, x, s) ds

∫
[a,b]

(
∂h(s, y)

∂s
− S

(h)
j (s, y)

)
dζ(y).

The integral with respect to ζ may be estimated by (8). For the value of

∂h(s, y)

∂s
− S

(h)
j (s, y)

we can find numerous results in the theory of classical Fourier series. For example, if
h is smooth enough, we obtain O(j−1 ln j), see [22, Theorem (10.8) of Chapter II].
The detailed calculations is not the subject of this paper.

Analogous considerations may be carried out for Fejèr sums, η̃δj , and S̃
(h)
j (t, x).
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