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Abstract The insurance model when the amount of claims depends on the state of the in-
sured person (healthy, ill, or dead) and claims are connected in a Markov chain is investigated.
The signed compound Poisson approximation is applied to the aggregate claims distribution
after n € N periods. The accuracy of order O (n™ Yand 0 (nil/ 2) is obtained for the local and
uniform norms, respectively. In a particular case, the accuracy of estimates in total variation
and non-uniform estimates are shown to be at least of order O(n_l). The characteristic func-
tion method is used. The results can be applied to estimate the probable loss of an insurer to
optimize an insurance premium.

Keywords Signed compound Poisson approximation, insurance model, Markov chain,
Kolmogorov norm, local norm, total variation norm, non-uniform estimate
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1 Introduction

This paper is motivated by the insurance model in which the insured is described by
arandom variable (rv) with three states (healthy, ill, dead), and rvs are connected in a
Markov chain. We assume that the insurer pays one unit of money in the case of illness
and continuously pays d € N units in the case of death. We are interested in aggregate
losses for the insurer after n € N time periods. More precisely, let &, &1, ..., &,, ...
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be a non-stationary three-state {aj, ap, a3} Markov chain. State a; corresponds to
being healthy, state a, corresponds to being ill, and state a3 is reached in the case of
death. The insurer pays nothing for healthy policy holders, one unit of money for the
ill individuals, and constantly pays d units of money (d € N) in the case of death. We
denote the distribution of S,, = f(&1) +--- + f(&) (n € N) by F,, thatis, P(S, =
m) = Fy{m} form € Z.Here f(a;) =0, f(ax) = 1, f(az) = d,d € N. We will
analyze a little simplified model by assuming that the probability of a healthy person
to die is equal to zero (i.e. we exclude the cases of sudden death). Even though this
assumption diminishes model’s universality, it is quite reasonable, because usually a
person is ill at least for one time period and dies only afterwards.
The matrix of transition probabilities P is defined in the following way

y v O
P=|1-a-8 B a |, apB,yel.
0 0 1

It is assumed that at the beginning the insured person is healthy. Hence, the initial
distribution is given by

Py =a)) =m =1, P =az) =7, =0, P(§p = a3) =73 =0.

Observe, that our Markov chain contains one absorbing state (death).

In this paper, we consider triangular arrays of rvs (the scheme of series), i.e. all
transition probabilities «, 8, y can depend on n € N. Arguably in insurance models
the triangular arrays are more natural than the more frequently studied less general
scheme of sequences, when it is assumed that the probability to become ill or to die
does not change as time passes.

All results are obtained under the condition

0<p<015, 0<y<005 a<Cy<l, a+B8<I1 (1

Here Cy € (0, 1) is any maximum possible value of «(n),n € N (strictly less
than 1), i.e. the maximum probability of an ill individual to die for all time periods
n € N. The condition (1) is not very restrictive, because 8 < 0.15 means that the
probability to remain ill during the next time period does not exceed 15%, and y <
0.05 means that the probability of a healthy person to become ill does not exceed 5%,
that is, only chronic and epidemic illnesses are excluded.

We denote by C all positive absolute constants, and we denote by 6 any complex
number satisfying |0] < 1. The values of C and 6 can vary from line to line or
even within the same line. Sometimes, as in (1), we supply constants with indices.
Let I; denote the distribution concentrated at an integer k € Z, and set I = Ij.
Let M7 be a set of finite signed measures concentrated on Z. The Fourier transform
and analogue of distribution function for M € Mz is denoted by M (t) (t € R) and
M(x) := Z;:_oo M{j}, respectively. Similarly, F,(x) := F,{(—o0, x]}. Fory € R
and j e N={1,2,3,...}, we set

1
(y.) =—y(y—1)...(y—j+1), (y) = 1.
J Jj! 0
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If N,M € Mgy, then products and powers of N and M are understood in the

convolution sense, that is, foraset A C 7Z,

NM{A}= Y N{A-kM{k}, M°=1.

k=—o00

The exponential of M is denoted by
eM = exp{M} := Z — M*.
We define the local norm, the uniform (Kolmogorov) norm, and the total-variation

norm of M respectively by

o0

IMlloo == sup |M{k}|.  [M]|k :=sup|M{(—oo.x]}l. [M]:= Y [M{j}|.
keZ xeR .
J= o0
In the proofs, we apply the following well-known relations:
MN(@t)=M@©ON@),  |MN|<IMIIN|I,  [MNx<|M|IN,
IMNlloo < IMI[INlloo,  IM®OI < IMIl, L) =¢" T =1

2 Known results

The compound Poisson approximation is frequently used to approximate aggregate
losses in risk models (see, for example, [5, 8, 9, 12, 14, 21]); however, in those
models it is usually assumed that rvs are independent of time period n € N. The
compound Poisson approximation to sums of Markov dependent rvs was investi-
gated in [6]. Numerous papers were devoted to Markov Binomial distribution, see
[1, 3, 4, 7, 10, 18, 19], and the references therein. It seems, however, that the case
of Markov chain containing absorbing state was not considered so far. Our research
is closely related to the paper [16], in which a non-stationary three-state symmetric
Markov chain &g, &1, ...&,, ... was investigated with the matrix of transition proba-
bilities

a 1—-2a a

b 1-2b b, a,be(0,0.5).

a 1—2a a

Let S, = f(E)+ -+ f (&) (n € N), f(a) = =1, f(a2) =0, f(a3) = 1 and let
the initial distribution be P~ (o =~a1)~= 7y, P(&y = ap) = mp, and P (&9 = a3) = m3.
Denote the distribution of S, by F;,. G defines the measure with the Fourier transform:

o(t) = + ﬂ + 1 —2(a —b)
g()—<”1 =2 ﬂS)l—Z(a—b)—Za(cost—l)
2nb(1 — 2a)(cost — 1)
XexP{(l “2a+2b) —2acost)}' 2
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As shown in [16], if a, b < 1/30, then
- - 1
| F, — G| <C<min{—,b}+0.2"|a—b|). 3)
n

The main part of the approximation G is a compound Poisson distribution with a
compounding symmetrized geometric distribution. The accuracy of approximation is
at least O (n~"). However, due to the symmetry of distribution and possible negative
values, it is difficult to find a compatible insurance model.

3 Measures used for approximation

For convenience we present all Fourier transforms of measures used for construction
of approximations in a separate table. Note that all measures are denoted by the same
capital letters as their Fourier transforms (for example, H (1) is the Fourier transform
of H).

The measures can be easily found from their Fourier transforms using the formula

1 [T .~
Mky=— | e "M@)dr forallk e Z.
2r J_ 5

For example,

Since 1,(t) = €', for all k € Z we have

1 T (1 — it 1— T . . e L
H{k} _ _/ e_klt( ﬂ)e dt = ﬂ e—1kte1t Z('Beu‘)]dt
o J o 1 — Bet 2 -7 0

o 1 T
— (1 _ ﬂ),Bk_l Zﬂ]_k+12_/ e—kile(j+l)ildt
j=0 TS

==Y BT k)

Jj=0
==Y Bk}
j=0

The other measures can be calculated analogously using their Fourier transforms
presented in Table 1.

4 Results

We analyze the scheme of series, when transition probabilities may differ from one
time period to another time period, that is, transition probabilities depend on n € N:
o = an), B = B(n),y = y(n). First we formulate a general approximation result
for F,,, where possible smallness of « and y is taken into account.
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Table 1. Fourier transforms of used measures.

Ho = (1:2?: Al() = li;fﬂ(%)—n

V() = % A1) = ——(l’il{_ﬂ;ﬂ CIGESNITOESY
AHoy—1= leii;eli[ A0 = B - ﬁ)((lﬁf}),__l,;)z;@(t) -1
o -1= % Aatt) = - (1(1+_yﬁ—)3g;((t1)—_ ;:j’)

0 = (1 -’ —1 s =24 (_1/?1(?(;));(11),22 (f; -1
AW =1+A4,0)y Ay = 20=B°E0 — 17

(+y —B)5(1 — pei)?
A1) = 1+ A1)y + (A2 (1) + Ag(0)y?
A0 =1+ A0y + A0y + A0y + A()y? + As()y> + As(0)y?

@@t _ B —yd—a) — € —DAW) (€~ DIyA®) -+ y( — )]

o= (A1) — edi)QA(t) — 1 +y — peil) (A1) — edi) QA1) — 1 + y — el
Py CT DBy —a) @ - DAD | @ = DIYAD) = p+y( =]

! (A1 (1) — eD) QA () — 1+ y — Beif) (A1 (1) — eB) QA () — 1 + y — pei)
P CT DBy - =@ —DAD @ = DIYAQ —p+y( -]

: (A1) — ) QA (1) — 1 + y — Bell) A1) — el QA (1) — 1 +y — Bell)

G =exp|A0) — 1= 3(Boy? 28 0E0 + Za0)r?) + § B0y}

~ —~ -~ -~ 1
Gi() =exp {Am)y + (A2 + A0 - Eﬁ%m)ﬁ}

ayeln it

E(t) = (ed=Dit — gy(edit — (1 —y)—y(l—a—p)

Theorem 1. Let condition (1) hold. Then, foralln = 1,2, ...,

|[Fn = (G"V + E)l[xk < CWd + l)(GC”V“\/ng B+ 4)/)”>, “

—Cnya

IIFn—(G”V+E)|Ioo<C(d+1)<e +(ﬁ+4y)">-

Remark 1. Observe that, since § + 4y < 0.35, the second term in (4) tends to zero
exponentially.
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Unlike (2), there are two components in our approximation: the first one contains
n-fold convolution of a signed compound Poisson measure, the second one takes into
account the probability of death (the absorbing state). The measures of approximation
are chosen in a way ensuring that the accuracy of approximation is at least as good as
in the Berry—Esseen theorem.

Corollary 1. Let condition (1) hold. Then, foralln = 1,2, ...,
Cd+1)

N/

This accuracy is reached, when oy = O(n’l). Ifa,y > C1 > 0, the accuracy
of approximation is exponentially sharp. That prompts a question: Is it possible to

simplify the structure of approximation by imposing more restrictive assumptions?
The answer is positive for o uniformly separated from zero for all n.

Theorem 2. Let condition (1) hold and o > Cy. Then, foralln = 1,2, ...,
|Fy — (G Vi + E)k < Cd+ D) (ye™ ™ + (B +4y)"). (5)

|Fn —(G"V + E)|x <

Observe that the accuracy of approximation in (5) is at least of order omnh.
This accuracy is reached if y = O(n™").

If both probabilities are uniformly separated from zero, F}, is exponentially close
to the measure E.

Theorem 3. Let condition (1) hold and o, y > C». Then, foralln = 1,2, ...,
IFy — Ell < C(d + 1)e™ ", (6)

Observe that, if the scheme of sequences is analyzed, all probabilities do not de-
pend on n and hence the conditions of Theorem 3 are satisfied as long as condition
(1) holds. Note also that in Theorem 3 the stronger total variation norm is used.

Theorem 4. Let condition (1) hold and o > Cy. Then, foralln = 1,2, ...,
IFy — (GiVa+ E)| < Cd+ D(ye S (14 B/y) +n(B+40)"). (7
Corollary 2. Let condition (1) hold and o > Cy. Then, foralln =1,2, ...,

C(d + e Cnv
|y — (GIVa+ E)|| < %(Hg) ®)

Remark 2. The local estimates in Theorem 2, 3, and 4 have the same order as in (5),
(6), and (7), hence we do no formulate them separately.

In insurance models, tail probabilities are very important, see, for example [11,
17, 20]. Therefore, we formulate some non-uniform estimates for the case when « is
uniformly separated from zero.

Theorem 5. Let condition (1) hold and o« > Cj. Then, for any integer k > 1 and
neN,

C(d+1e (B +y)
W k) — (G k) < :
|Fulk}) = (G V2 + E){k}| < n+ &+ ) €)]
Cd*eCry

n(l+ky2)’

|Fu(k) = (G{ V2 + E)(K)| < (10)
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Remark 3. The non-uniform estimate for distribution functions (10) is quite inac-
curate if y is small. On the other hand, the local non-uniform estimate is at least of
order O(n— k1), when B is of the same order as y.

When y is uniformly separated from zero and « is small, estimate (4) could not
be simplified.
5 Auxiliary results

We begin from the inversion inequalities.
Lemma 1. Let M € My. Then

1 (7 M@
Mk < — | ———dt, (11)
21 ) leit — 1]

1 [7 -
Moo < 2—/ |M(1)] dz. 12)
T J-n

If, in addition, ", ., |k||M{k}| < oo, then
1/2 1 [ v 2 1 ita 3z 12 12
IM|| < (1 +bm)!/ (E / IM@®)|” + ﬁ|(e_lmM(t)) | dl‘) , (13)
—7T

and, foranya € R, b > 0,

1 T .

|k —alM{k}| < — |(M (t)e™"¢)'|dr, (14)
27 J_»
1 [T/ M@ N\

|k —al||Mk)| < — : @ e ) |dr. (15)
2 J_p|\e ¥ —1

Observe that (11) and (15) are trivial if integrals on the right-hand side are infinite.
All inequalities are well-known and can be found in [2] Section 6.1 and Section 6.2;
see, also [13] and Lemma 3.3 in [15].

The characteristic function method is used for the analysis of the model. Therefore
our next step is to obtain fn ).
Lemma 2. Let condition (1) hold. Then the characteristic function fn (t) can be
expressed in the following way:

Fo(t) = AT(0)W1 (1) + AL(0)Wa(r) + AL(6)W5(2). (16)

Here

. Asr) =ed

- 1— i+ ./D
At = v+ /362 ®)

D(t) = (1 —y + pel)? —4e" (B — y (1 — ),
@D 1) (B — y (1 — @) — (% — 1) A1 2(r)

Wia@) = >~ :
" +(A12(0) — edit)/D(1)
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N € — Dy A2 — B+y (1 —a)]
(A1 2(t) — edit)y/D(r)
otyedi’
(eld=Dit — Byt — (1 —y) —y(l—a—p)

Wi(r) =

Proof. The characteristic function fn (1) can be written as follows, see [16]:

Fu(t) = (1, o, 1) (AL 0127 + Ab 03225 + Ai0y:20)a, 1, nT. a7

Expression (16) is known as Perron’s formula. Similar expression was used for
Markov binomial distribution; see, for example, [3]. A;(¢) (j = 1, 2, 3) are eigenval-
ues of the following matrix:

1—y yel! 0
Piy=| 1—a—p Be' ac't
0 0 et
We find the eigenvalues by solving the following equation:
|P(t) — A(t)I| = 0.
It is not difficult to prove that

A2 = A1 —y + pe) +e' (B —y(1 —a)) =0, (18)

and
edit — A5(t) = 0.

Hence,
1—y + el £ DV2(r)
2
D(t) = (1 —y + ")’ — 4" (B — y(1 — ),
As(t) = e,

Aa() =

)

Eigenvectors y; and Z; are obtained by solving the following system of equations:

P®)y; = A1),
TP = A7), (19)
dyi=1

From the first equation of system (19) we get that y; 3 = 0, hence the other two
equations are equivalent because of equation (18). Therefore,

l—a—-p
=T P
. - —v:1,0]), 1,2. 20
yj <YJ,1 Aj(t) ﬂe‘tyj’l ) J (20)
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Similarly, from the second equation of system (19) we get

.7 Aj(1) = (1—y) aedt(A;(1) — (1—y)) .
Zit =\zj1, Zj,1, —= )T zji1), Jj=12
l—a—-p (Aj@) —ed)(1 —a—B)
(21)
The third equation of system (19) can be written as
'y =1,

Yi1zj1 +yj2zj2+ 323 =1,
A —(1-y)
Aj() — et

ye'l—a—p) 1

(Aj(t) — Be)? — yjazin
According to assumption, (71, 72, 73) = (1, 0, 0). Substituting (20), (21), and (22)
into (17), we obtain

Yja1zj1+ yi1zj1+0=1,

(22)

A () —(1— di
~ e ==
Wia@) = (1,0,0)y;,z; 1 | = yei’(l—a—ﬁ)] , j=12
1 U+ To—pary

From equation (18) we get

A —(—y)  ye"
l—a—B  Aj() — Belt’

Hence,

yelt edit
1+ I+ Al.z(t)*ed“)

= A1 2(n)—Bel
= - . 2
Wi2() |+ o e (23)
(A1 2(1)—feih)?
Applying equation (18), we prove that the numerator of VT/LZ(I) is equal to
T —1)(B - y(1 — @) = ' = DA 20)
(A12(0) = Be)(A12(1) — i)
(" = Dy Ai2(t) — (B—y(l —a))] 24)
(A12(t) = Bel)(Aq2(r) — edif)
It is easy to check that
(1—y = Be)? +4dye'(1—a —B) = D). (25)
Similarly
(A12(0) — ﬁeit)z
_(I—y = B2 £2(1—y — Be)y/D(t) + D(1) 6)

4
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Using (25) and (26), we obtain

(A1200) — Be') + (1 —a — B)ye”

_ VDOWD@) £ 1~y — pe'))
5 .

@7

Notice that
2(21,2(t) —Bell)=1—y —gel' £ D).

Substituting (24), (26), and (27) into (23), we complete the proof for A 5 and Wy (1)
Similarly, system (19) is solved with A3(r) = e4. We get

dit dit it
. e —(1-y) e —Be)yso— (1 —a—B)ysi
»= <y3,1, 31 ), (28)

yeil L wedit
37 =10,0,233). (29)
Hence,
v _ (=Dt — B)(e®! — (1 —y)) —yd —a—ﬂ). (30)
¥3.123.3 ayedit

Substituting (28), (29), and (30) into (17), we get

W) = (1,0,0)73237 | 1 | = y3.1233
1

dit
_ aye
S =B — (I —y) —y(l—a—B) .

It is not difficult to notice that |VT/3 (#)] is equal to 1 at some points, for example,
W5(0) = 1, since

ay ay

= =1.
I-80-0=y)—yU-a—=p) ay

W3(0) =

Therefore, one cannot expect that //fgl (I)W3 be small. Therefore we foncentrate our
research on possible asymptotic behavior of other components of F, (t). We begin
from a short expansion of v/ D(%).

Observe that 5(1‘) can be written in the following way:

4y((1 — a)el’ — 1))_ a0

(1+y — Beif)?

Lemma 3. Let condition (1) hold, |t| < w. Then

VD) =14y — e’ +5.810y.

DH=0+y— ,Bei’)2<l +
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Proof. / D(¢) can be expanded and written as

N o (172 4y (1 —a)e — 1))/
wDaw=a+y—ﬂ&0§j<.>< i )
= (1+y — pei)?

J

2y ((1 —a)e’ — 1)
1+y _Igeit

1672((1 — a)el’ — 12 & (172 4y (1 — a)el — 1)\ /2
(14+y — Bei)3 2(1)( (1+y — Bei)? )

= (+y—pe)+

2y((1 —a)e — 1)

= (I+y — ) +

14y — el
20721 — a)el” — 112 o 4y (1 —a)el — D | 32
T+y =B | 4y —pei?
Observe that
_ it _ .
4y (1 —a)e . 1) < 8-0.05 <05,
(1+y — Bei")? (0.85 + 0.05)2
921_ it_12oo4 1— it_l./
Yol —a)e ‘ | Z y (1 —a)e A ) < 0.550y.
Ty =B | (L+y—pe)?
Therefore
~ . 40y
D(t) =1 — Be" + —— +2-0.550
VD@ =14y —pe toss T Y
=14y —Be’ +5810y. O
Next we prove that Xz(t) is always small.
Lemma 4. Let condition (1) hold, |t| < w. Then
| A2(0)] < B +4y.
Proof. From Lemma 3 we get
- 1 —y + Bel" — /D)
[A2(t)] = ‘ 5
1 . .
:—'1—y+ﬂe”—(1+y—,Be"+5.819)/) < B +4y. O

2
Corollary 3. Let condition (1) hold, |t| < . Then
| A2(1)] < 0.35.

The following estimate shows that A behaves similarly to the compound Poisson
distribution.
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Lemma 5. Let condition (1) hold, |t| < . Then
|A1@0)] < 1+0.4(1 — @)y Re(H (1) — 1) —0.2ay
< exp{0.4(1 — @)y Re(H (1) — 1) — 0.2ay ).
Proof. It is not difficult to check that

1 _1-8 1 By el — 1 1 33)
I+y—Bel  14+y—Bl—pe 1+y—pel'l—pel1+y—p

From (32) and (33) it follows that

1—y+Be' + D)

|/Tl<r>|=‘ >
y(1—pB) ~ By: = it
<1+ = |+ — — 1l — 1
<‘ iy o )‘+(1+y—ﬂ)2|wm e =1l
. (1+p8)?
292 P 4
2P0 1P s (34)
Notice that
2
T = (Re@(t))2 + (Im@(t))2 < (1 -3 iﬂ) <1,
T — 112 <2(1 = ReW (1)) — — <2— i ) (35)
1-8 I-8
For all 0 < v < 1, we have
N+v@@) - 1) = \/(1 — V) + vReW (t) + ivIim¥ (1)
< 1+ v(l —v)(Re® (1) — 1). (36)
Let
_yad-=p
14y =8

Substituting (35) into (34) and applying inequality (36), we get

2
|Xl(t)| < 1+V(1 - V)(Rea(t) — 1) —+ a;j/%ﬂ)zla([) _ 1||eif _ 1|
2 2 2 2
LB (o)~ 22 _UEP) (2_ o )
(I+y—p) I—B+y—p3\" 1-8

|l17(t) — 1| can be estimated as

2

@) —1] < e
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and |e” — 1| can be estimated as

I(1 — el — 1]

NS g AR SO 1A+ ) e
Then
A v y{d—8)
[A1(D)] < l+(Rel1/(t)—1) ,3(( _ﬁ)< i ﬂ)

CBUHP) 4y(1 +8)° >
Il+y -8 (A+y—p)?

2ay? ( B (+p? (2_ o ))
TA=paty-p\Tty—p (+r-pP\ 1-5))

Notice that

o —ap cos(t)

ReW (1) — 1= (1 —a)Re(H(r) — 1) — TR

Finally,

|A1(1)] < 1+ Re(H(t) — 1)%((1 _ﬁ)<1 B IVJ(ry ﬂ;)

2B+ B) Ay +B) >
I+y—-8 (A+y—-p)?
_ ay [l—ﬁcos(t)<(l_ﬁ)< y(a— ﬂ))
Ly —BL 11— pei? I+y -8
2B+ B Ay +B)? >
Il+y—-8 (d+y—p)72

~ 5= )
I=B\l+y -8 (A+y-p2 1-§

<1+04(1 —a)yRe(H(r) — 1) — 0.2ay
< exp{0.4(1 — @)y Re(H (1) — 1) — 0.2ay}. 37

Corollary 4. Let condition (1) hold, |t| < 7. Then
|41 < 1+ Cy(ReH(t) — 1 —a) <exp{Cy(ReH(t) — 1 —a)}.

Next we demonstrate that |W2 (t)| is always small.

Lemma 6. Let condition (1) hold, |t| < w. Then

[Wa(1)] < 2(d 4 1)le" — 1].
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Proof. From Lemma 3 we have

‘,/ﬁ(z)‘ >14+y—B—58ly >1-481-005-0.15>06.  (38)

By applying Corollary 3, we get

| Aa(t) — e > 1 — |Ax(t)| = 1 — 0.35 = 0.65. (39)
Hence,
~ @+ D" — 11218 — y(1 — )| + (1 + Y| A2(1)])
‘WZ(’)‘ S 0.65 - 0.6
o @+ Dle’ — 1@max{, y(1 - @)} + (1 +y) - 0.35)
= 0.39
<23 + De" —1). (40)

To approximate |W1 (t)], we need a longer expansion for / D(t).
Lemma 7. Let condition (1) hold, |t| < 7. Then
D) =2A40) — 1 +y — Be + Coy*((1 — ReH (1)) + o).

If also o > C», then

(\/%)/ = (A1) — 1+y — ") + Coy>.

Proof. The expansion of 5(t) follows from equations (31) and (33). The second
equation of this lemma is proved similarly. O

Corollary 5. Let condition (1) hold, |t| < w. Then
A1) = A(t) + COY* (1 — ReH (1)) + o).
Corollary 6. Let condition (1) hold, a > C, |t| < w. Then
A1) = 1+ A0y + (A2(0) + A4()y* + COY°.

The following three lemmas are needed for the approximation of Wj.
Lemma 8. Let condition (1) hold, |t| < . Then

A0 < 1+ Cy(ReH (1) — 1 — a).
If also a > C», then there exists C such that
A1) < 1-Cy.

Proof. The proof is very similar to the proof of Lemma 5 and, therefore, is omitted.
O
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Lemma 9. Let condition (1) hold, |t| < . Then
IWi(t) = V()] < C(d + Dyle" —11.
Proof. From Corollary 4 and Lemma 8 it follows that

| A1 (1) — e

> Cy(1 - ReH(t) + a),
A1) — el > C

y(1 = ReH () + a).

Applying (38), (41), (42), Lemma 7 and Corollary 5, the result follows.

Lemma 10. Let condition (1) hold, a > C», |t| < 7. Then
IWi(6) = Vi) < Cd + Dyle" — 1.
Proof. Since o > C»,
A1) — el > Cy(1 — ReH (1) + @) = Cy(0+C2) = C
From Corollary 6 it follows that
1 A1(1) = Ay = Cy°.
Also, from Lemma 8 it follows that
14—z 1-(-Cy) =
Hence, it is easy to check that the inequality of the lemma is correct.

Lemma 11. Let condition (1) hold, |t| < w. Then

/” A0 0=Vl C(d+1)\/7 ~Cayar

- leit — 1]
—Cnyot
/ AL O Wi () — V()ldr < Cd + 1)
-7
Proof. It is obvious that
1 -1
Rel(r) —1= L FEACSO =D i),

1= pe'P

We will use the following simple inequality

fﬂ | sin(r/2)[¥ exp{—24sin®(1/2) }dt < C(k)r~*F1/2,

-7

123

(41)
(42)

(43)

(44)

(45)

(46)

(47)
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By applying Lemma 5, Lemma 9, (46), and (47), we get

/” | AL ()" Wi (£) — V(mdt

_7, el — 1]

< /n C(d + Dy exp{n(0.4(1 — @)y (ReH (1) — 1) — 0.2y«) }dt

-7

/g
< / C(d + 1)y exp{Cny (ReH () — 1) }e=C"rdr

T
<Cd+ 1)\/Ze—C"W.
n

The second inequality of the lemma is proved similarly. g

Lemma 12. Let condition (1) hold, a > C», |t| < 7. Then

dt < C(d+ 1)ye .

/” |AL @) | Wi (1) = Vi(0)]

. lei — 1|

Proof. From Lemma 5 and Lemma 10 it follows that
AW @) — Vi@ m
/ 41 @] || itl()u ‘()|dr</ C(d + 1)y exp{—0.2Coyn}dt
—r e’ — -

< Cd+ ye e, O

Lemma 13. Let condition (1) hold, |t| < w. Then

/” Vondio -6ol, C(dH)y\/Ze_cnya, 48)
n leit — 1] n
/ V)| AT (1) — G" (1)|dr < C(d + 1)%&0"”. (49)

Proof. Notice that
C(d+ el — 1]
y(I = ReH(1) + )’
|AT () — G™"(1)] < |A1(t) — G| - n-max{|A; ()", IG@)"!).

V()| < (50)

From Corollaryj we have |/Tl | <exp{Cy (Reﬁ(t) —1—a)}. Taking into account
that |e®t?1| = ¢4, |G ()| can be estimated as

IG(1)| < exp{Cy(ReH(t) — 1 —a)).
Using Corollary 5, we have that

|A1(1) — G(1)| = |exp{ln A} (1)} — exp{In G (1)}
< CllnAy(t) —InG (1)



Asymptotics for the sum of three state Markov dependent random variables 125

~ A1) — 1)?
=C’(A1(t)—1)—7( 1(”2 )

(Ar(r) — 1)} N COIA (1) — 1]*
3 4

=C‘(Z(t)—1)—

—InG®)

(A2(1)y? + 241 (1) (A2 (1) + As())y?)

N =

—A 0y + oy (1 — ReH®))’ + %) —InG (1)

< Cy*((1 = ReH®))* +o*). (51)

By applying (50), (51), and the inequality xe™ < 1, for all x > 0, we can
estimate the following integral:

/” IV(t)IIA"(t)—G”(t)I

. lelf — 1|

<CUd+1) nexp{nCy(Reﬁ(t) —1—-a)}y3((1 = ReH(®) + 1)dr

-

i ny3exp{n 0. SCy(ReH(t) -} o—Cnya

<Cd+1
( ) o n-05Cy(— ReH(t)+l)

(2 — ReH (1))dr

T
<Cd+1) yzexp{—ZCny sin (t/2)}e_c"y"‘dt

-7

<Cd+ l)y\/ze_c'”’“. (52)
n

The second inequality of this lemma is proved similarly. 4

Lemma 14. Let condition (1) hold, @ > Cy, |t| < w. Then

dt < C(d + Dye .

/” Vi) AT (1) — GT (1))

—x el — 1]

Proof. Since o > C»,

—~ C(d+1)el" —1
Py <S4 DI — 1 (53)
Y
and
(A1) — G| < [A1(1) — G1 ()] - n - exp{—Cy(n — D). (54)

|A1(t) — G ()] is estimated by applying Corollary 6:

1A1(1) = Gi(1)] < ClIn A1 (1) = In G (1)]

2 SN 113
_C(Xl(l)—l)—(Al(t)z 1) +C9|A1(31) 1

—InGi(t)
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= C|A1(Oy + (A2(1) + A1)y —

+COy> —InG (1)

<y
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A2(1)y?

(55)

By applying (53), (55), and the inequality xe™ < 1, for all x > 0, we can

estimate the following integral:

/” Vi) AT (1) — G (1)) .

dt<Cd+1)

T

nyzexp{—nCy}dt

—T |eit - 1| -7
T —n0.5C
<c@d+) [ R0,
x n0.5Cy
< CWd+ Dye v, O
Lemma 15. Let condition (1) hold, a > C», |t| < 7. Then
_ Cd+1) - Cd+ 1)1+ B/y)
W< S W0l < /v
IWa(1)] < C(d + 1), |Ws(1)] < C(d + 1),
. Cd+1) ~ Cd+ 1)1+ B/y)
Wy < S4D Vi) < . Plv)
W1 (1) — Va(0)] < C( + Dy, Wi (1) — V3] < C(d + Dy +B/y),
|A1(1)] < e, 1G1(t)] < e °7,
|A} (1) < Cy, G| (1)] < Cy,
| A2(0)| < B + 4y, | AL (1) < C(B + 4y),
|A1(t) — G1(0)] < Cy3, [(A%(1) — G ()| < Cy2e=Cm
|1_ed11| |1_ed1t|
| A1 (1) —edit] |Ay(r) —edit] =

Proof. All inequalities are based on the previously obtained estimates of |/T 1],
@2(1”’ [Wa ()], |G1(t)], and the expg\nsion of +/ D(t). The inequalities containing
Va(t) are proved similarly to those of Vi (¢) (see Lemma 10). O

6 Proofs

Proof of Theorem 1. Applying inversion formula (11), Lemma 11, and Lemma 13
we prove
|Fn — (G”V + E)lk
<L /” |Fa(t) = G"()V (1) — E(t)l
2

et — 1
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1T IAOIM©O-Vol, 1T VoI - 60
S ), leir — 1] 2 ), lel — 1]
[T A OW )]
2 J_p el — 1]

dr

dr

<C(d+ 1)\/ge‘c"y“ +Cd+1D(B+4y)".
The local estimate is obtained analogously by applying inversion formula (12).
|

Proof of Theorem 2. The proof is similar to the proof of Theorem 1. Lemma 12 and
Lemma 14 are applied instead of Lemma 11 and Lemma 13, since @ > C». O

Proof of Theorem 3. Taking into account Corollary 3 and Lemma 15, we get

C(d+ e ",

(AL ) || Wial + |AY 1] 5
nCd+ e =D 4 cd+ 1)e= "
C(d + Dne ",

|Ar1l,2Wl,2

|
(AT, W12)|

<
<
<
<

From inversion formula (13) applied witha = O and b = 1 we get

[ Fn — E|l = |ATW1 + ASWa || < AW+ [[A3 W2l

m
1 —~ o~ ~ o~ 172
<(1+n)‘/2<§/|A’1’W1|2+|(A’IW1)’|2dt>
—TT

T
1 o~ ~ o~ 1/2
+d +n>‘/2(§ / | AL Wa|* + |<A3’Wz)’|2dr>
—TT

< Cd+ e . O
Proof of Theorem 4.
1F — (GiVa+ E)|| < (A7 = GDWill + IGT (W) = V)|l + | AS W2l

From Lemma 15, we get

| AL Wa ()] < C(d + 1)(B +4y)",
[(AL(OWa(1))| < [(AL(1)) Wa(t)| + | AL () WS ()]

Cd+ Dn(B+4y)" +Cd+ (B +4y)"

C(d+ Dn(B +4y)",

C(d + Dye ",

(G0 (Wi (1) = Vo) + |G (Wi (1) — Va(1))|
C(d+ Dny?e €= 4+ Cd + 1ye " (1 + B/y)

IG2 (1) (Wi (1) — Va (1))
(G () (Wi (t) — Va(1)))|

INCINCININ IN NN
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<Cd+Dye (1 +B/y),
~ ~ —~ —~ ~ oo, Cld+1
(A1) — G Wi ()] < nlA1 (1) — G (t)]e” € ny €@t
< CWd + lyye 7,
(AT () = G Wi (1) < [(AT (1) — () Wi(0)] + [(AT (1) — G (1) W, (1)
< Cd+ Dye 7 (1+B/y).
By applying inversion formula (13) witha = 0 and b = 1, we prove

IFy = (GiVa+ E)| < Cd+ D(ye " (14 B/y) +n(B+4p)"). O

Proof of Theorem 5. We use the inequalities obtained in the proof of Theorem 4 and
inversion formula (14) with @ = 0. We have

k|Fy — (G}V2 + E){k}|

1 (7 ~ -~ -~
S5 (Wi (0)(AT (1) — G’ (1)) |dt

Som ),
| Y PN ~ ~ 1 [ ~
+ —/ (GO Wi () — Vo)) |dr + —/ |(A2(0)Wa (1)) |dt
2w — 2z -
g C(d + 1)(ye—0.5Cn)/e—O.5Cn)/(1 + ,B/V) +neﬂln(ﬂ+4)/)).

Hence,

C(d + e Cnr
k(1 + B/y) Y F, — (GiVa + E){k}| < %

and c
Cd+ e "
|Fn — (G1V2 + E){k}| < — Y
since [M| < [M|loo < [[M].
Summing those inequalities, we get

Cd+De ™  Cd+1)e (B +y)
n(+k(1+8/y)"H)  nB+k+Dy)

In order to prove the second inequality of the theorem, we apply the inversion
formula (15) with a = 0:

|Fn — (G} V2 + E){k}| <

k|Fy — (G{V2+ E) (k)|

1 g Wl(t) an An '
<o/ (eit — 1(Al(t)—Gl(t))>

L (" gnn (0@ a0 Y
+ 2 /_ﬂ (Gl(r)<e_“ -1 eir— 1))

! (/Tzu) Wa(e) )

e i — 1

dt

dt

dr.

+1
27 J_»
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The summands can be estimated by using the inequalities from the proof of The-
orem 4:

‘ W0 ‘|<A"<t)— G (0)| < Cd + Dy2e

(d+1it it dit
e —1 (@ —DU+e"+---+e ) _ it dit
e—it — 1 = e_”(l _ eit) —e (I4+et 4. +e),

Wi '\ Wa(r) '\
e it — 1 eit — 1

‘(e‘_/vﬂ) '|An(t) _ Gn(t)| Cn]/ e—Cnyi < Cd2 —Cny

2
< C‘i : < Cd?,

14

. Wi(t) — Vot
‘G’f(r)’(—l()», f”) < Cd+ Dye e,
e 1 —
N Wit) — Va()\'|  Cd?e=Cnr
G| ————) | <« ———,
‘ 1()( e —1 ) y?
w t
‘A"() SO < e neer,
Ws(t
’A"()(z—(_)l) < CdX(B+4y)".
Thus, we get

Cd*eCnr
ky?|Fy — (G'Va + E) (k)| < ———

and

C(d + 1)eCny
Fy— (G + E) (k) < 4D

By summing the above inequalities we arrive at

|Fp — (G1V2+ E)(k)| < Cde U
n 1v2 B n(l +k)/2)

References

[1] Barbour, A.D., Lindvall, T.: Translated Poisson approximation for Markov chains.
J. Theor. Probab. 19(3), 609-630 (2006). MR2280512. https://doi.org/10.1007/
$10959-006-0047-9

[2] Cekanavicius, V.: Approximation methods in probability theory. Universitext, Springer
(2016). MR3467748. https://doi.org/10.1007/978-3-319-34072-2

[3] Cekanavitius, V., Roos, B.: Poisson type approximations for the Markov bi-
nomial distribution. Stoch. Process. Appl. 119, 190-207 (2009). MR2485024.
https://doi.org/10.1016/j.spa.2008.01.008


http://www.ams.org/mathscinet-getitem?mr=2280512
https://doi.org/10.1007/s10959-006-0047-9
https://doi.org/10.1007/s10959-006-0047-9
http://www.ams.org/mathscinet-getitem?mr=3467748
https://doi.org/10.1007/978-3-319-34072-2
http://www.ams.org/mathscinet-getitem?mr=2485024
https://doi.org/10.1016/j.spa.2008.01.008

130

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

G. Liaudanskaité, V. Cekanavicius

Cekanavitius, V., Vellaisamy, P Compound Poisson and signed compound Pois-
son approximations to the Markov binomial law. Bernoulli 16(4), 1114-1136 (2010).
MR2759171. https://doi.org/10.3150/09-BEJ246

De Pril, N., Dhaene, J.: Error bounds for compound Poisson approximations of the
individual risk model. ASTIN Bull. 22(2), 135-148 (1992). https://doi.org/10.2143/
AST.22.2.2005111

Erhardsson, T.: Compound Poisson approximation for Markov chains using Stein’s
method. Ann. Probab. 27(1), 565-596 (1999). MR1681149. https://doi.org/10.1214/aop/
1022677272

Gani, J.: On the probability generating function of the sum of Markov-Bernoulli ran-
dom variables. J. Appl. Probab. (Special vol.) 19A, 321-326 (1982). MR0633201.
https://doi.org/10.2307/3213571

Gerber, H.U.: Error bounds for the compound Poisson approximation. Insur. Math. Econ.
3, 191-194 (1984). MR0752200. https://doi.org/10.1016/0167-6687(84)90062-3

Hipp, C.: Approximation of aggregate claims distributions by compound Poisson distri-
bution. Insur. Math. Econ. 4(4), 227-232 (1985). MR0810720. https://doi.org/10.1016/
0167-6687(85)90032-0

Hirano, K., Aki, S.: On number of success runs of specified length in a two-state
Markov chain. Stat. Sin. 3, 313-320 (1993). MR1243389. https://doi.org/10.1239/aap/
1029955143

Leipus, R., Siaulys, J.: On the random max-closure for heavy-tailed random vari-
ables. Lith. Math. J. 57(2), 208-221 (2017). MR3654985. https://doi.org/10.1007/
s10986-017-9355-2

Pitts, S.M.: A functional approach to approximations for the individual risk
model. ASTIN Bull. 34, 379-397 (2004). MR2086451. https://doi.org/10.1017/
S051503610001374X

Presman, E.L.: Approximation in variation of the distribution of a sum of independent
Bernoulli variables with a Poisson law. Theory Probab. Appl. 30(2), 417-422 (1986).
MR0792634. https://doi.org/10.1137/1130051

Roos, B.: On variational bounds in the compound Poisson approximation of the indi-
vidual risk model. Insur. Math. Econ. 40, 403—414 (2007). MR2310979. https://doi.org/
10.1016/j.insmatheco.2006.06.003

Sliogere, J., éekanaviéius, V.. Two limit theorems for Markov binomial distribu-
tion. Lith. Math. J. 55(3), 451-463 (2015). MR3379037. https://doi.org/10.1007/
$10986-015-9291-y

Sliogere, J., Cekanavitius, V.: Approximation of symmetric three-state Markov chain
by compound Poisson law. Lith. Math. J. 56(3), 417-438 (2016). MR3530227.
https://doi.org/10.1007/s10986-016-9326-z

Wang, K., Gao, M., Yang, Y., Chen, Y.. Asymptotics for the finite-time ruin
probability in a discrete-time risk model with dependent insurance and financial
risks. Lith. Math. J. 58(1), 113-125 (2018). MR3779067. https://doi.org/10.1007/
s10986-017-9378-8

Xia, A., Zhang, M.: On approximation of Markov binomial distributions. Bernoulli 15,
1335-1350 (2009). MR2597595. https://doi.org/10.3150/09-BEJ 194

Yang, G., Miao, Y.: Moderate and Large Deviation Estimate for the Markov-
Binomial Distribution. Acta Appl. Math. 110, 737-747 (2010). MR2610590.
https://doi.org/10.1007/s10440-009-9471-z


http://www.ams.org/mathscinet-getitem?mr=2759171
https://doi.org/10.3150/09-BEJ246
https://doi.org/10.2143/AST.22.2.2005111
https://doi.org/10.2143/AST.22.2.2005111
http://www.ams.org/mathscinet-getitem?mr=1681149
https://doi.org/10.1214/aop/1022677272
https://doi.org/10.1214/aop/1022677272
http://www.ams.org/mathscinet-getitem?mr=0633201
https://doi.org/10.2307/3213571
http://www.ams.org/mathscinet-getitem?mr=0752200
https://doi.org/10.1016/0167-6687(84)90062-3
http://www.ams.org/mathscinet-getitem?mr=0810720
https://doi.org/10.1016/0167-6687(85)90032-0
https://doi.org/10.1016/0167-6687(85)90032-0
http://www.ams.org/mathscinet-getitem?mr=1243389
https://doi.org/10.1239/aap/1029955143
https://doi.org/10.1239/aap/1029955143
http://www.ams.org/mathscinet-getitem?mr=3654985
https://doi.org/10.1007/s10986-017-9355-2
https://doi.org/10.1007/s10986-017-9355-2
http://www.ams.org/mathscinet-getitem?mr=2086451
https://doi.org/10.1017/S051503610001374X
https://doi.org/10.1017/S051503610001374X
http://www.ams.org/mathscinet-getitem?mr=0792634
https://doi.org/10.1137/1130051
http://www.ams.org/mathscinet-getitem?mr=2310979
https://doi.org/10.1016/j.insmatheco.2006.06.003
https://doi.org/10.1016/j.insmatheco.2006.06.003
http://www.ams.org/mathscinet-getitem?mr=3379037
https://doi.org/10.1007/s10986-015-9291-y
https://doi.org/10.1007/s10986-015-9291-y
http://www.ams.org/mathscinet-getitem?mr=3530227
https://doi.org/10.1007/s10986-016-9326-z
http://www.ams.org/mathscinet-getitem?mr=3779067
https://doi.org/10.1007/s10986-017-9378-8
https://doi.org/10.1007/s10986-017-9378-8
http://www.ams.org/mathscinet-getitem?mr=2597595
https://doi.org/10.3150/09-BEJ194
http://www.ams.org/mathscinet-getitem?mr=2610590
https://doi.org/10.1007/s10440-009-9471-z

Asymptotics for the sum of three state Markov dependent random variables 131

[20] Yang, Y., Wang, Y.: Tail behavior of the product of two dependent random vari-
ables with applications to risk theory. Extremes 16(1), 55-74 (2013). MR3020177.
https://doi.org/10.1007/s10687-012-0153-2

[21] Zhang, H., Liu, Y., Li, B.: Notes on discrete compound Poisson model with ap-
plications to risk theory. Insur. Math. Econ. 59, 325-336 (2014). MR3283233.
https://doi.org/10.1016/j.insmatheco.2014.09.012


http://www.ams.org/mathscinet-getitem?mr=3020177
https://doi.org/10.1007/s10687-012-0153-2
http://www.ams.org/mathscinet-getitem?mr=3283233
https://doi.org/10.1016/j.insmatheco.2014.09.012

	Introduction
	Known results
	Measures used for approximation
	Results
	Auxiliary results
	Proofs

