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Abstract In this paper we consider a telegraph equation with time-dependent coefficients,
governing the persistent random walk of a particle moving on the line with a time-varying ve-
locity c(t) and changing direction at instants distributed according to a non-stationary Poisson
distribution with rate λ(t). We show that, under suitable assumptions, we are able to find the
exact form of the probability distribution. We also consider the space-fractional counterpart of
this model, finding the characteristic function of the related process. A conclusive discussion
is devoted to the potential applications to run-and-tumble models.

Keywords Telegraph equation with time-dependent velocity, run-and-tumble models, exact
marginal probability distribution
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1 Introduction

Many motile bacteria, such as the common E.coli, explore the environment perform-
ing run-and-tumble motion [5]. Helicoidal filaments, called flagella, powered by in-
ternal motors allow the cell to wander around: when flagella rotate counterclockwise
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(as seen from behind) the cell performs a straight line motion (run), while a clockwise
flagellar rotation induces a random reorientation of the cell body (tumble). In the ab-
sence of external force fields or chemicals in the bacterial solution, the swim speed c

and the rate λ at which swimmers change direction are assumed to be constant in time
and space. In the idealized one-dimensional case the corresponding run-and-tumble
equation of motion reduces to the usual telegrapher’s equation [1–3, 22, 27, 32]

∂2p

∂t2 + 2λ
∂p

∂t
= c2 ∂2p

∂x2 . (1)

However, in many interesting real situations swimmers’ speed and tumbling rate can
be spatial or time dependent quantities. Recent investigations have demonstrated that
the speed of genetically engineered bacteria, expressing proteorhodopsin protein, can
be tuned by modulating the intensity of an external light field [4, 12, 29–31]. In such
a case one can have a direct control on the swimmers speed by simply applying a
suitable external field. In particular, time-dependent external fields give rise to time
variable swimmers speed. Recent investigations have also shown that, for some ma-
rine bacteria, there is a correlation between the speed and the reorientation frequency.
More specifically one observe a linear relationship between the two quantities in the
low-speed regime [28]. In such a case it is then appropriate to make the assumption
of proportionality between λ and c.

Motivated by these interesting problems, in Section 2, we provide some gen-
eral results regarding the telegraph equation with time-dependent parameters c(t)

and λ(t). We then analyze the interesting case of proportionality between velocity
and tumbling rate, reporting exact expressions for the probability distribution and the
mean square displacement and discussing the long-time diffusive behavior for differ-
ent choice of c(t).

In Section 3 we generalize the above results to the case of the space-fractional
telegraph equation with time-dependent velocity and rate. Indeed, in the recent lit-
erature space and time-fractional generalizations of the telegraph equations have at-
tracted the interest of different authors, see for example [6, 10, 11, 15, 25, 26]. In [10]
the relationship between space-time fractional telegraph equations and time-changed
processes has been discussed. In the recent paper [23], Masoliver has introduced a
fractional persistent random walk, whose probability law is governed by the space-
time fractional telegraph equation. The physical motivation for this kind of gener-
alization is strictly related to the analysis of sub- and super-diffusive processes, as
well as the telegraph process leads to a ballistic process for short times (and a clas-
sical diffusive one for long times). We analyze here the space-fractional counterpart
of the generalized telegraph equation studied in Section 2, finding the characteristic
function of the non-homogeneous fractional telegraph process with varying velocity.

In a final section we interpret the obtained results in the context of run-and-tumble
models with time-variable swimmers’ speed. In particular, we consider genetically
engineered E.coli bacteria whose dynamics is described by run-and-tumble models in
which the value of the speed is controlled by an external field. We derive the equation
of motion in some simple situations, such as the case of a sudden switch of external
fields.
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2 Non-homogeneous telegraph process with time-varying parameters

The telegraph process has attracted the interest of many researchers, starting from
the seminal works of Goldstein [16] and Kac [19], being a relevant prototype of fi-
nite velocity random motion, whose probability law coincides with the fundamental
solution of the telegraph equation. There is a wide literature about the applications
and generalizations of the telegraph process, we refer to the recent monograph [21]
for a complete review about this topic. We also observe that the telegraph equation,
whose origin comes back to the classical equations of electromagnetism, has been
also suggested by Davydov, Cattaneo and Vernotte as an alternative to the classical
heat equation for diffusion processes with finite velocity of propagation, overcom-
ing the so-called paradox of the infinite velocity of heat propagation (we refer to the
classical review [18] and [15] about this topic).

A persistent random walk with a variable velocity is studied in [24], leading to a
generalization of the telegraph process. As discussed in [24] and [32], in few special
cases the explicit probability law of this generalized telegraph process can be found.
Some results about telegraph process with space-varying velocity have been found in
[14].

On the other hand, some recent studies have been devoted to a non-homogeneous
version of the telegraph process, where the particle changes directions at times dis-
tributed according to a non-stationary Poisson distribution with rate λ(t). An interest-
ing case was considered by Iacus in [17] and more recently a special case related to
the Euler–Poisson–Darboux equation has been considered in [13], see also [9]. More-
over, in [7], large deviations principles have been applied to the non-homogeneous
telegraph process. More general and relevant models of finite velocity diffusion pro-
cesses are the so-called Lévy walks, we refer for example to the recent review [33]
about this topic.

Here we consider the persistent random walk of a particle moving on the line and
switching from the time-varying velocity c(t) to −c(t) at times distributed according
to a non-stationary Poisson distribution with rate λ(t). Therefore, here we consider
both the generalizations recently suggested in the literature and we show that, in a
special case, this can help to find the explicit probability law. We assume that c(t) ∈
L1[0, t]. According to the classical treatment of the two-direction persistent random
walk given for example by Goldstein [16] (see also [24]), for the description of the
position X(t) of the particle at time t > 0, we use the probabilities

a(x, t)dx = P
{
X(t) ∈ dx, V (t) = c(t)

}
, (2)

b(x, t)dx = P
{
X(t) ∈ dx, V (t) = −c(t)

}
, (3)

satisfying the system of partial differential equations⎧⎪⎨
⎪⎩

∂a

∂t
= −c(t)

∂a

∂x
+ λ(t)(b(x, t) − a(x, t)),

∂b

∂t
= c(t)

∂b

∂x
+ λ(t)(a(x, t) − b(x, t)),

(4)

subject to the initial conditions a(x, 0) = b(x, 0) = 1
2δ(x − x0). The functions

a(x, t) and b(x, t) denote the probability density functions for the position of the
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random walker at time t > 0 while moving respectively in the positive or negative
x direction. These equations can be simply combined in a single equation for the
total probability p(x, t) = a(x, t) + b(x, t). Let us introduce the auxiliary function
w(x, t) = a(x, t)−b(x, t). By adding and subtracting the equations in (4), we obtain⎧⎪⎨

⎪⎩
∂p

∂t
= −c(t)

∂w

∂x
,

∂w

∂t
= −c(t)

∂p

∂x
− 2λ(t)w,

(5)

and finally the following telegraph equation with time-varying coefficients

1

c(t)

∂

∂t

1

c(t)

∂p

∂t
+ 2λ(t)

c2(t)

∂p

∂t
= ∂2p

∂x2 . (6)

We observe that, from the physical point of view, in the context of the hyperbolic
formulation of the heat wave propagation, equations (5) are formally equivalent to
the heat balance equation with a time-dependent diffusivity coefficient coupled with
a Cattaneo law with time-varying relaxation.

As pointed out by Masoliver and Weiss in [24], equations like (6) are generally
difficult to be handled analytically. However, we observe that, taking c(t) = c0w(t),
by means of the change of variable (see also [32])

τ =
∫ t

0
w(s)ds, (7)

equation (6) is reduced to a simpler telegraph-type equation[
∂2

∂τ 2 + 2λeff(τ )
∂

∂τ

]
p(x, τ ) = c2

0
∂2p

∂x2 , (8)

where

λeff(τ ) = λ(t (τ ))

w(t (τ ))
. (9)

This is a general scheme that allows to find, in some cases, the explicit form of the
probability law (see also the discussion in [32]).

We now consider in detail the case λeff = const. (i.e. λ(t) ∼ λ0 w(t)) admitting an
exact solution. This means that the rate of changes of directions follows the velocity-
dependence in time. In this case we have that equation (6), by means of the change of
variable (7), is reduced to[

∂2

∂τ 2 + 2λ0
∂

∂τ

]
p(x, τ ) = c2

0
∂2p

∂x2 , (10)

corresponding to the classical telegraph equation with velocity c0 and changing di-
rection rate λ0.

Therefore, considering the initial conditions p(x, 0) = δ(x) and ∂τp(x, τ )|τ=0 =
0 and going back to the variable t , we have that the absolutely continuous component
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of the probability distribution of the non-homogeneous telegraph process, in this case
is given by

P
{
X(t) ∈ dx

} = dx
e−λ0

∫ t
0 w(s)ds

2

[
λ0

c0
I0

(
λ0

c0

√√√√(
c0

∫ t

0
w(s)ds

)2

− x2

)

+ 1

c0w(t)

∂

∂t
I0

(
λ0

c0

√√√√(
c0

∫ t

0
w(s)ds

)2

− x2

)]
, |x| <

(
c0

∫ t

0
w(s)ds

)
, (11)

where

I0(t) =
∞∑

k=0

(
t

2

)2k 1

k!2 , (12)

is a modified Bessel function. The component of the unconditional probability dis-
tribution that pertains to the probability of no-changes of direction according to the
Poisson distribution with time-dependent rate λ(t) is concentrated on the boundary
x = ± ∫ t

0 c(s)ds and it is given by

P

{
X(t) = ±

∫ t

0
c(s)ds

}
= e−λ0

∫ t
0 w(s)ds

2
. (13)

Observe that, in the case c(t) = c0 (i.e. w(t) = 1), we recover the probability distri-
bution of the classical telegraph process with rate λ0.

An interesting quantity describing the spatial extent of the random motion is the
mean square displacement r2, i.e. the second moment of the probability distribution
(11):

r2(t) = c2
0

2λ2
0

[
2λ0

∫ t

0
w(s)ds − 1 + e−2λ0

∫ t
0 w(s)ds

]
. (14)

The asymptotic behavior of r2, which is linear in t in the classical persistent random
walk, now depends on the long time behavior of the velocity function c(t) = c0w(t).
We can distinguish different regimes. Assuming a power-law behavior of w(t) at long
time, w(t) ∼ t−β , we have the following cases:

– β > 1

The integral of w, i.e. τ(t), is finite for t → ∞, resulting in a finite asymp-
totic mean square displacement, r2(t) → const. The motion is confined in a
finite space domain whose boundaries are at xB = ± ∫ ∞

0 c0w(t)dt . A finite
stationary probability distribution, given by (11) in the limit t → ∞, exists.

– β = 1

In such a case we have logarithmic diffusion, r2(t) ∼ ln(t)

– 0 < β < 1

The mean square displacement grows as a power of time, r2(t) ∼ tα , with
α = 1 −β < 1. The random walk exhibits anomalous diffusion (subdiffusion).
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– β = 0

In this case the asymptotic velocity is finite, resulting in a linear time depen-
dence of the mean square displacement, r2(t) ∼ t (normal diffusion).

– β < 0

The velocity grows with time and the random walk is superdiffusive, i.e. r2(t) ∼
tα , with α = 1 − β > 1.

We can also observe that, assuming an exponential decay w(t) ∼ e−γ t a finite
stationary probability distribution exists for t → +∞, while if w(t) is a bounded
function, the normal diffusive behaviour is recovered.

3 The space-fractional telegraph equation with time-varying coefficients

The space-fractional telegraph equation was firstly considered by Orsingher and Zhao
in [26] and more recently studied by Masoliver in [23] in the context of the fractional
generalization of the persistent random walk. The relationship between space-time
fractional telegraph equations and time-changed processes have been obtained by
D’Ovidio et al. [10]. We here consider the space-fractional telegraph equation with
time-dependent rate and velocity

1

c(t)

∂

∂t

1

c(t)

∂p

∂t
+ 2λ(t)

c2(t)

∂p

∂t
= ∂2αp

∂|x|2α
, 0 < α ≤ 1. (15)

The space-fractional derivative appearing in (15) is the Riesz derivative [20]

∂2αf

∂|x|2α
= − 1

2 cos απ

1

Γ (1 − 2α)

d

dx

∫ +∞

−∞
f (z)

|x − z|2α
dz, α ∈ (0, 1), (16)

whose Fourier transform is given by (see e.g. [10] for details)

F
[

∂2αf

∂|x|2α

]
(k) = −|k|2αf̂ (k), (17)

where we denote by f̂ (k) the Fourier transform of the function f (x). We here con-
sider in detail the space-fractional counterpart of the case considered in the previous
section, i.e. by taking c(t) = c0w(t) and the change of variable τ = ∫ t

0 w(s)ds, we
obtain the following equation

∂2p

∂τ 2 + 2λeff(τ )
∂p

∂τ
= c2

0
∂2αp

∂|x|2α
, (18)

where λeff(τ ) = λ(t (τ ))/w(t (τ )).
Considering the special case λ(t) ∼ λ0 w(t), we can obtain the characteristic

function of the non-homogeneous space-fractional telegraph process with time-var-
ying velocity. Indeed, we obtain in the Fourier space

∂2p̂

∂τ 2 + 2λ0
∂p̂

∂τ
= −c2

0|k|2αp̂, 0 < α ≤ 1. (19)
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Therefore, we obtain the characteristic function of the space-fractional telegraph
process by means of simple calculations and going back to the original time vari-
able,

p̂(k, t) = e−λ0
∫ t

0 w(s)ds

2

[(
1 + λ0√

λ2
0 − c2

0|k|2α

)
e

√
λ2

0−c2
0|k|2α(

∫ t
0 w(s)ds)

+
(

1 − λ0√
λ2

0 − c2
0|k|2α

)
e
−

√
λ2

0−c2
0|k|2α(

∫ t
0 w(s)ds)

]
. (20)

The problem to find the inverse Fourier transform of (20) seems to be solvable only
in the case α = 1 (that leads to the probability law of the classical telegraph pro-
cess).

We can observe that the main features of the space-fractional telegraph process
strongly differ from that of the classical telegraph process, since it has discontinu-
ous sample paths and it does not preserve the finite velocity of propagation. Indeed,
as it was shown by Orsingher and Zhao in [26], the random process related to the
space-fractional telegraph equation describes the one-dimensional motion of a par-
ticle which moves forward and backward performing jumps of random amplitude.
This is not surprising, since the appearance of the fractional Laplacian is related to
non-locality and leads to almost surely discontinuous paths. On the other hand, this
model is interesting in the context of the studies about fractional persistent random
walk models, as fully discussed by Masoliver in [23].

4 Discussion: applications to run-and-tumble models

We now discuss how the obtained general results can be applied in the context of
run-and-tumble models.

Let us first assume that the tumbling rate is constant, λ0. This is, for example, the
case in which a time-dependent and spatially homogeneous external field induces a
time-dependent speed c(t) without changing tumbling processes in genetically engi-
neered bacteria. In terms of the auxiliary variable τ the equation of motion turns out
to be Eq. (8) with a time-dependent effective tumbling rate

λeff(τ ) = λ0

w(t(τ ))
. (21)

A simple interesting case can be analyzed by considering a spatially uniform light
field which is abruptly switched off at t = 0. One can assume that, due to finite time
response of the internal processes inside the cell body, the swimmer speed exponen-
tially relaxes towards zero

c(t) = c0 exp(−γ t), (22)

where γ −1 is the relaxation time [4, 29]. In this case one has that

λeff = λ0

1 − γ τ
, (23)
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leading to the partial differential equation

[
∂2

∂τ 2 + 2λ0

1 − γ τ

∂

∂τ

]
p(x, τ ) = c2

0
∂2p

∂x2 . (24)

We observe that similar equations arise in the analysis of random flights in higher
dimension, see for example [8].

As mentioned in the Introduction, for some bacteria it has been found that there is
a proportionality between the speed and the reorientation frequency. The assumption
λeff = const., made in the second part of Section 2 and leading to the Eq. (10), is then
appropriate for these systems and all the results found in this approximation apply to
this case. It is still an open question to find, for other microorganisms, the relation-
ship between tumbling rate and swim speed. For example, it would be interesting to
investigate such a issue in the case of genetically engineered bacteria, for which one
could control the bacterial speed by varying the external field and then measure the
corresponding tumbling rate.
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