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Abstract A stochastic heat equation on [0, 7] x R driven by a general stochastic measure
du(t) is investigated in this paper. For the integrator ©, we assume the o -additivity in proba-
bility only. The existence, uniqueness, and Holder regularity of the solution are proved.

Keywords Stochastic measure, stochastic heat equation, mild solution, Holder regularity,
Besov space

2010 MSC  60H15, 60G17, 60G57

1 Introduction

In this paper, we consider a stochastic heat equation that can formally be written as

0%u(z, x)
du(t,x) = a>?—>2—~
u(t,x) =a 912
u(0, x) = uo(x),

where (¢, x) € [0, T] xR, a € R, a # 0, and u is a stochastic measure (SM) defined
on the Borel o-algebra of [0, T]. We consider a solution to the formal equation (1)
in the mild sense (see Eq. (5)). We prove the existence and uniqueness of the solu-
tion and obtain Holder regularity of its paths under some general conditions for the
stochastic part of equation.

dt+ f(t, x,u(t,x))dt +o(t,x)du(), 0
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A similar problem for u dependent on the spatial variable x was considered in [5].
The stochastic heat equation on fractals was studied in [7], and a review of results on
equations driven by SMs is given in [6].

For equations driven by white noise, the regularity of paths of solutions was con-
sidered in [10, Chapter 3]. Equations driven by fractional noise were studied in [9,
Chapter 2]. In many papers, the regularity of solutions was considered in appropriate
function spaces; see, for example, [2] and references therein.

2 Preliminaries

Let Ly = Lo(£2, F, P) be the set of (equivalence classes of) all real-valued random
variables defined on a complete probability space (§2, F, P). The convergence in Lo
is understood as the convergence in probability. Let X be an arbitrary set, and I3 be a
o -algebra of subsets of X.

Definition 1. Any o-additive mapping i : B — Lo is called a stochastic measure
(SM).

In other words, p is a vector measure with values in Lg. In [3], such u is called a
general SM.

Examples of SMs are the following. Let X = [0, T] C R, B be the o -algebra of
Borel subsets of [0, T], and N(¢) be a square-integrable martingale. Then w(A) =
fOT 1o(t) dN(t) is an SM. If W (¢) is a fractional Brownian motion with Hurst
index H > 1/2 and f : [0,T] — R is a bounded measurable function, then
w(A) = fOT f(t)lA(t)dWH(t) is also an SM, as follows from [4, Theorem 1.1].
An «-stable random measure defined on a o-algebra is an SM [8, Chapter 3]. The-
orem 8.3.1 of [3] states the conditions under which the increments of a real-valued
Lévy process generate an SM.

For a deterministic measurable function g : X — R and SM p, an integral of
the form fx g du is defined and studied in [3, Chapter 7]; see also [1]. In particular,
every bounded measurable g is integrable w.r.t. any x. An analogue of the Lebesgue
dominated convergence theorem holds for this integral [3, Proposition 7.1.1].

We consider the Besov spaces BY,([c, d]). Recall that the norm in this classical
space for 0 < o < 1 may be introduced by

d—c 12
2 oy
gl B2, (e.an = 8 llLy(ie,an + (/0 (w2(g.M)r 2o 1dr> , 2)

where
1/2

d—h
wa(g,r) = sup (/ |g(s +h) — g(s>|2ds>
0<h<r c

Foralln > 1,1 <k <27, put AY) = ((k — 1)27"1, k2™"1].

The following estimate is a key tool for the proof of Holder regularity of the
stochastic integral. In our estimates, C and C (w) will denote a constant and a random
constant, respectively, which may be different from formula to formula.
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Lemma 1 (Lemma 3.2 [5]). Let SM u be defined on the Borel o-algebra of [0, t],
Z be an arbitrary set, and q(z, s) : Z x [0, t] — R be a function such that for some
1/2 <a < 1andforeachz € Z, q(z,-) € B3, ([0, t]). Then the random function

n(z)=/ q(z,8)du(s), zeZ,
[0,1]

has a version 1(z) such that for some constant C (independent of z, w) and each
w € £2,

()] < |q(z 0)u(10, 11)]

1/2
-+CM&,w3”mt{§:yuzm S Ju(a) } e

n>1 1<k<2n

From Lemma 3.1 [5] it follows that, for ¢ > 0,

ZZ_”E Z I ( A(l) < 400 a.s. 4)

n>1 1<k=<2n

3 The problem

Consider equation (1) in the following mild sense:

t
u(t,x) = /Rp(t,x—y)uo(y)dwr/o dS/Rp(t—s,x—y)f(s,y,u(s,y))dy

+f du(S)f pt—s,x —y)o(s,y)dy. ©)
(0,1] R
Here
1 & 6
p(t,x)—zaﬁe (6)

is the Gaussian heat kernel, u (¢, x) = u(t, x, o) : [0, T] xR x £2 — R is an unknown

measurable random function, and p is an SM defined on the Borel o -algebra of [0, T'].

The integrals of random functions w.r.t. dy and ds are taken for each fixed w € 2.
Throughout this paper, we will use the following assumptions.

Al. ug(y) = uo(y,w) : R x £ — R is measurable and w-wise bounded,
lup(y, w)| < C(w).

A2. ug(y) is Holder continuous:

uo(y1) — o ()| < C@)ly1 =y P™, Blug) = 1/2.
A3. f(s,y,v):[0,T] xR xR — Ris measurable and bounded: | f (s, y, v)| < C.
Ad4. f(s,y,v) isuniformly Lipschitzin y, v € R:

| f(s, v, v0) = f(s, y2.v2)| < C(ly1 = y2l + [v1 — v2l).
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AS. o(s,y) : [0, T] x R — R is measurable and bounded: |o (s, y)| < C.

A6. o (s, y) is Holder continuous:
|o(s1, y1) = 052, )] = C(Is1 = 2177 + Iy1 = 22l 7), Blo) > 1/2.
A7. u is Holder continuous:
[1(Gs1, 21)| < C@)lst =521, 51,52 €10, T, B(w) > 0.

Recall that [, p(t, x)dx = 1.

4 Holder continuity in x

Consider the regularity of paths of the stochastic integral from (5).

Lemma 2. Let Assumptions A5 and A6 hold. Then, for any fixed t € [0, T] and
y1 < B(o) — 1/2, the stochastic function

mm=/ dmw/pWﬂw—wM&ww,XER
0,7] R

has a Holder continuous version with exponent y1.

Proof. Denote
q(z,s) = / (pt —s.x1—y) = plt —s,x2—y))o(s,y)dy, z=(x1,x2,10),
R

and apply (3) to n(z) = ¥ (x1) — ¥ (x2). We will estimate the Besov space norm in (3).
Consider the difference

Q(sz+h) _Q(Z’S)
= (/Rp(t—s—h,xl—y)o(s+h,y)dy—/Rp(t—s,x1—y)o(s,y)dy>
—(/Rp(t—s—h,Xz—y)o(erh,y)dy—/Rp(t—s,Xz—y)a(s,y)dy)
= Dy — Ds. N

Using (6) and the change of variables

Xy —y X1 —y

= Uzi’
2a/t —s — h 2a./t —§

v

we get
|Dy| = C‘f e ™o (s + h, x1 — 2avv/i —s — h) dv
R

—/e_vza(s,xl — 2av+/t —s)dv
R
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< C/ eV (1hF@ + v —s —h — Vi—5)|" ) dv
R

©)|)1B©)
_ c[ e_v2<|h|’3(0) + Ll U >dv
R Wt —s—h+t—s|p

B(o)
< Clhlﬁ(”)/ e_"2<1 P L i ﬁ(0)> dv =ClhPO @ —5)7P@2  (8)
R JE—S

By a similar way, we can estimate | D;| and obtain
lg(z.s +h) —q(z.9)] < ClhIF@t —5) P2, )

Further, consider
q(z, s +h) —q(z,s) = </Rp(t—s—h,x1 —Y)o(s+h,y)dy
_/Rp(t—s—h,xz—y)o(s+h,y)dy)
- (/R p(t —s,x1 —y)o(s,y)dy
_/Rp(r —s5,x2—y)o(s,y) dy) = Ej - E.

Using (6) and the substitutions

X1 =y X2 =y
V== =
2a/t —s — h 2a+/t —s — h

we get
|Ej| = C‘/Re_vzo(s £ h,xy = 2avVi —s —h)dv
- /I‘Qe_vza(s +h,xy —2avi —s — h)dv
A§6 C/Re*“2|x1 — P qv = Clx; — x2P@.
Similarly, we can estimate | E2| (we consider | E| for ~ = 0) and obtain

lg(z,s + 1) — q(z,9)] < Clxg — x2/P@). (10)

The product of (9) raised to the power A and (10) raised to the power 1 — A,
0 < A < 1, now satisfies

lgz.s +h) —q(z,5)| < CIhP@ (1 — 5)=BOM2 ) _ x,|1-PB@)
w(q(z, ), r) < CrP@|x; — 5y 1-PE@),
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If AB(0o) > 1/2, then the integral from (2) is finite for some « > 1/2. In this case,
the integral does not exceed C|x; — x| =MA©@),
From the estimate of E for 4 = 0 we obtain

9.0 = Clri =", g@ ) g0, = Clrr =2l
Therefore, we have
|9 (x1) =P ()| < C@)xi —x2|”, 1 =1 —=1B(0).

Under the restriction A8 (o) > 1/2, we can getany y; < (o) — 1/2. 4

5 Holder continuity in ¢

Lemma 3. Assume that Assumptions A5, A6, and A7 hold. Then, if y» < B(u) and
vy < B(o) — 1/2, then for any fixed x € R, the stochastic process

5‘(t)=/ du(S)/ pt—s,x —y)o(s,y)dy, te€[0,T],
(0,1] R

has a Holder continuous version with exponent y;.

Proof. Fort; < t,, we have

D () — O (1) = /

(11,121

du(s) /R p(ta —s,x —y)o(s,y)dy

+f du(S)/(p(tz—s,x—y) — p(ti —s,x — y))o(s, y)dy
0,111 R
= F + F>.

Step 1. Estimation of Fj. Consider segments [0, T], A\ = ((k— 1)27"T, k27" T],
and the function

q(z,8) = /Rp(tz —s,x —y)o(s,y)dy, selt, il z=(x, n).
From the estimates of D1 in (7) and (8) it follows that
G(z,s +h) — Gz, 9)] < ClWP Oty —5) PO selty—hn—h). (11)
Let &, and k;,» be such that #; € A,((fl)n, € A,gz)n. For the functions
on

Gn(z.9) =Y Gz (k= 127"T Vi A 0)1 40 (5),
k=1 "

the analogue of the Lebesgue theorem [3, Proposition 7.1.1] implies that

‘/ q(z,s)du(s)
(t1,12]

= 'P lim dn(z,5) dp(s)
n—oo

(t1,12]
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‘ / qo(z, S)du(S)JrZ( / Gn(z,8) dpu(s) — / én—l(z,S)du(S)>'
(t1,12] (t1,12] (t1,12]

s|c7(z,r1)u(<n,tz])|+Z\(é(z,knlz—"T) 3z m)u(Ag) )]

n=ng

+2 > Mk @=D2T) = (e 2k = 227T)) (A, )|

n=n kik,y <2k—2<kpr—2

+ 3 1@z i = D27T) = G (2. (knz = 227"T)) (G2 — D27 12]) -

n=ng
(12)
Here n is such that
2T < py — 1y <270t (13)
We have
knp —knt < (2 — 112" 2/ T, 1> no. (14)

Applying Assumptions AS, A7, (11), and the Cauchy inequality from (12) for
0 < e <28(c) — 1, we obtain

/ q(z,s)du(s)
(t1,12]

o0
< C(w)(ta — )PP + C(w) Z =B (w)

n=no

o0
i, Z Z 2—np(o) (tz — 2k —2)27" T)iﬂ(o)/z‘ (Agk))n”
n=ng k:k,) <2k—2<kyp—2

o0
+Clw) Yy 27w

n=ny

< C(w)(tr — 11)PW + C(w)27 0P

00 172
n C( 3 geng 8@ > (1 — 2k - 2)2—nT)—ﬁ(U))

n=n kky <2k—2<k,n—2

(EreSan)”

n=0

“),(13)
S C@— )™

+ C(w) < Z penn—2nplo) Z (i2_" T)—,B(a))

n=ny 1<i<(kua—kn1)/2

172

o0

1/2
< C@)(n— )P+ C(w)(Z 2P (ko — knl)l—/’“”)

n=n
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(14)

< Cw)(ty — )P 4 C(w)(ty — 1)1 7PO)/2=102B(@)—e=1)/2
(13)

< C@) (2 — 1) + C(@)(ta — 1) P72 < C(w)(t — 1)

Step 2. Estimation of F,. Now denote

4(z.5) = /R(p(tz —s5,x—y) = plti —s,x — y))o (s, y)dy,
s €[0,n1], z=(x, 11, 12).
Using the change of variables

xX=) xX=y

= V= D —
2a./t) — § 2a./t1 — §

v

we get
G(z, 9)| = C‘/Revzo(s,x —2ava/th — 5) dv
- /Re_UZG(s,x —2av./t; —s)dv
2 c/Re—v2|U(m = av

2 Clty— 1) (1 = ) PO, (1)
Also, analogously to (7) and (8), we have
|Gz, s +h) =Gz s)| < ClhFO @ —5)~F/2, (16)
From (15) and (16) for0 < A < 1and 0 < s < t; — h, we obtain

M(Z’ s+ h) - q(za S)|
< Clhllﬁ(a)(tl _ s)_ﬁ(a))‘/z(tz _ tl)(l—)»)ﬂ(ff)(tz 5 — h)—(l—)»)ﬂ(tf)/z,

wa(G(z, ), ) < CrP@ (5 — 1) 1-DFE),

IfAB(o) > 1/2 < (1 —A)B(0) < B(o) — 1/2, then the integral from (2) is finite for
some > 1/2. In this case, the integral does not exceed C(t — t;)1 =MA@),
From (15) we get

30| = =) 3G ey = Cla =P

Therefore, from (3) we have | F>| < C(w)(tp — t1)¥2, which finishes the proof. O

6 Solution to the equation

Theorem 1. Suppose that Assumptions AI-A6 hold.

1. Equation (5) has a solution u(t, x). If v(t, x) is another solution to (5), then
forallt and x, u(t, x) = v(t, x) a.s.
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2. Forany fixedt € [0, T] and y1 < B(0) — 1/2, the stochastic function u(t, x),
x € R, has a Holder continuous version with exponent y|.

3. In addition, let Assumption A7 hold. Then for any fixed § > 0 and vy, y2 such
that y1 < B(o)—1/2, yo» < B(n), and y» < B(0)—1/2, the stochastic function
u(t, x) has a version u(t, x) such that

|ii(t1, x1) — ii(t, x2)| < Cw)(Iti — 221" + |x1 — x2|"),
ti €[8,T], xi eR. (17)

Proof. Consider the standard iteration process. Take u@(t, x) = 0 and set
w" (@, x) = /Rp(t,x — yuo(y) dy
+/Ot ds/Rp(r —s.x =) f (s, y.u™ s, y))dy
+f du(s)/ p(t = 5.% = Y)o (s, y) dy.
(0,7] R

Further, we can repeat the proof of Theorem [5]. Instead of reference to Lem-
mas 5.1 and 6.1 of [5], we can refer to Lemmas 2 and 3 of this paper. O

Remark 1. For u, we obtained less regularity than for elements of equation (5).
However, a solution to a heat equation usually has the same regularity or even more
regular than the coefficients. One may expect that using other methods gives (17) with
exponents y» < B() A y2 < f(o) and y; < B(0).
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