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1 Introduction

Let (Ω,M,P) be a probability space and let Λ be the collection of all complete
sub-σ -fields of M. (We stress here that P need not itself be complete to begin with.
Complete just means containing 0Λ := P

−1({0, 1}) – the P-trivial events of M.)
σ(××) (resp. σ(××)) is the smallest (resp. complete) σ -field on Ω containing or
making measurable whatever stands in lieu of ××. Then for {X ,Y,Z} ⊂ Λ set
X ∧Y := X ∩Y and X ∨Y := σ(X ∪Y); write X ⊥⊥ Y if X and Y are independent,
in which case set X + Y := X ∨ Y ; finally, say X is complemented by Y in Z , or
that Y is a complement of X in Z , if Z = X + Y .

We are interested in exposing the salient “arithmetical rules” of the operations
∧, ∨, and especially of + and the notion of a complement, delineating their scope
through (counter)examples. Apart from pure intellectual curiosity, the justification
for the interest in such matters — that may seem a bit “dry” at first — can be seen as
coming chiefly from the following observations.
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(1) Even though the concepts involved are prima facie very simple, the topic
is not trivial and intuition can often mislead. The following examples give already
a flavor of this; in them, and in the rest of this paper, equiprobable sign means a
({−1, 1}, 2{−1,1})-valued random element ξ with P(ξ = 1) = P(ξ = −1) = 1/2.

Example 1.1 (∧-∨ distributivity may fail).

(a) If ξ1 and ξ2 are independent equiprobable signs, then taking X = σ(ξ1), Y =
σ(ξ1ξ2) and Z = σ(ξ2), the σ -fields X ,Y,Z are pairwise independent and
(X ∨ Z) ∧ (Y ∨ Z) = σ(ξ1, ξ2), while (X ∧ Y) ∨ Z = 0Λ ∨ Z = σ(ξ2); so
(X ∨ Z) ∧ (Y ∨ Z) �= (X ∧ Y) ∨ Z . The same example also shows that one
does not in general have (X ∧ Z) ∨ (Y ∧ Z) = (X ∨ Y) ∧ Z .

(b) [14, Exercise/Warning 4.12] Let Y = (Yn)n∈N0 be a sequence of independent
equiprobable signs. For n ∈ N define Xn := Y0 · · · Yn; set Y := σ(Y1, Y2, . . .)

and Xn := σ(Xm : m ∈ N≥n) for n ∈ N. Then the Xn, n ∈ N, are decreasing,
but ∧n∈N(Xn ∨ Y) �= (∧n∈N0Xn) ∨ Y . Indeed the Xn, n ∈ N, are independent
equiprobable signs, so by Kolmogorov’s zero-one law ∧n∈NXn = 0Λ. On the
other hand Y0 is measurable w.r.t. σ(Y) = ∧n∈N(Xn ∨Y) and at the same time
it is independent of Y . (For another related example see [15].)

Example 1.2 (Complements may not exist). If ξ1, ξ2 are independent equiprobable
signs, then σ({ξ1 = 1} ∪ {ξ1 = −1, ξ2 = 1}) has no complement in σ(ξ1, ξ2).

Example 1.3 (Complements may not be unique). Take again a pair of independent
equiprobable signs ξ1 and ξ2. Then σ(ξ1) + σ(ξ2) = σ(ξ1, ξ2) but also σ(ξ1) +
σ(ξ1ξ2) = σ(ξ1, ξ2).

Example 1.4 (Vanishing of information in the limit). [12, Example 1.1; see also
the references there]. Let Ω = {−1, 1}N, and let ξi , i ∈ N, the canonical projec-
tions, be independent equiprobable signs generating M = (2{−1,1})⊗N. Let Gn =
σ(ξ1ξ2, . . . , ξnξn+1) and Fn = σ(ξn+1, ξn+2, . . .) for n ∈ N. Then Gn + Fn = F0 =
M for all n ∈ N, and by Kolmogorov’s zero-one law F∞ := ∧n∈NFn = 0Λ. Fur-
thermore, we have Fn = Fn+1 + Hn+1 and Gn+1 = Gn + Hn+1 for all n ∈ N0, if
we put Hn := Gn ∧ Fn−1 = σ(ξnξn+1) for n ∈ N. But still G∞ := ∨n∈NGn =
σ(ξ1ξ2, ξ2ξ3, . . .) �= M, for instance, because ξ1 is non-trivial and independent
of G∞.

Concerning the failure of the equality ∧n∈N(Xn ∨ Y) = (∧n∈N0Xn) ∨ Y in Ex-
ample 1.1(b), Chaumont and Yor [2, p. 30] write: “A number of authors, (including
the present authors, separately!!), gave wrong proofs of /this equality/ under various
hypotheses. This seems to be one of the worst traps involving σ -fields.” According to
Williams [14, p. 48]: “The phenomenon illustrated by this example tripped up even
Kolmogorov and Wiener. [...] Deciding when we can assert [equality] is a tantaliz-
ing problem in many probabilistic contexts.” Émery and Schachermayer [3, p. 291]
call a variant of Example 1.4 “paradigmatic [...], well-known in ergodic theory, [...],
independently discovered by several authors”.

(2) In spite of the subtleties involved, facts concerning the arithmetic of σ -fields
are not very easily accessible in the literature, various partial results being scattered
across papers and monographs, as and when the need for them arose.
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(3) In broad sense, nondecreasing families of sub-σ -fields — filtrations — model
the flow of information in a probabilistic context. They are essential to the modern-
day proper understanding of martingales and Markov processes. And since stochastic
models are usually specified by some kind of (conditional) independence structure
(think i.i.d. sequences, Lévy processes, Markov processes in general), it is therefore
important to understand how such information, as embodied by σ -fields, is “aggre-
gated” and/or “intersected” over (conditionally) independent σ -fields. The classical
increasing and decreasing martingale convergence theorems [6, Theorem 6.23], for
instance, involve the generated and intersected σ -fields in a key way. Kolmogorov’s
zero-one law and its extensions [6, Corollary 6.25], with their many offsprings, are
another example in which the interplay between independence, intersected, and gen-
erated σ -fields lies at the very heart of the matter.

(4) More narrowly, the exposition in [12] recognizes stochastic noises (gener-
alizations of Wiener and Poissonian noise) as subsets of the lattice Λ satisfying in
particular, and in an essential way, a certain property with respect to independent
complements; see also [5, 11].

With the above as motivation, and following the introduction of some further nota-
tion and preliminaries in Section 2, we investigate below in Section 3, in depth: (I) the
distributivity properties of the pair ∧-∨ for families of σ -fields that, roughly speak-
ing, exhibit at least some independence properties between them; (II) the properties
of complements (existence, uniqueness, etc.). In particular, apart from some trivial
observations, we confine our attention to those statements concerning the arithmetic
of σ -fields, in which a property of (conditional) independence intervenes in a non-
trivial way (this is of course automatic for (II)); hence the title. For the most part the
paper is of an expository nature; see below for the precise references. In some places
a couple of original complements/extensions are provided. Section 4 closes with a
brief application; other uses of the presented results are found in the citations that we
include, as well as in the literature quoted in those.

2 Further notation and preliminaries

Some general notation and vocabulary. For M ⊂ [−∞,∞], BM will denote the Borel
σ -field on M for the standard (Euclidean) topology thereon. For σ -fields F and G,
F/G is the set of precisely all the F/G-measurable maps. A measure on a σ -field
that contains the singletons of the underlying space will be said to be diffuse, or con-
tinuous, if it does not charge any singleton. Throughout “a.s.” is short for “P-almost
surely” and E denotes expectation w.r.t. P. A random element valued in ([0, 1],B[0,1])
whose law is the (trace of) Lebesgue measure on [0, 1] will be said to have (the) uni-
form law (on [0, 1]).

Let now {X ,Y} ⊂ Λ. Then (i) for M ∈ M/B[−∞,∞], E[M|X ] is the conditional
expectation of M w.r.t. X (when E[M+] ∧ E[M−] < ∞, in which case E[M|X ] ∈
X /B[−∞,∞])1 and as usual P[F |X ] = E[1F |X ] for F ∈ M; (ii) we will denote by

1We will indulge in the usual confusion between measurable functions and their equivalence classes
mod P. Because we will only be interested in complete σ -fields this will be of no consequence.
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E|X the operator, on L1(P), of the conditional expectation w.r.t. X : so E|X (M) =
E[M|X ] a.s. for M ∈ L1(P); (iii) X will be said to be countably generated up to
negligible sets, or to be essentially separable, if there is a denumerable B ⊂ X such
that X = σ(B): manifestly it is so if and only if L1(P|X ) is separable, in which case
every element Y ∈ Λ with Y ⊂ X is countably generated up to negligible sets, and
this is true if and only if there is an X ∈ X /BR with X = σ(X); (iv) if further Z ∈ Λ,
we will write X ⊥⊥Z Y to mean that X and Y are independent given Z .

Remark 2.1. A warning: separability per se is not hereditary. For instance BR is
countably generated but the countable-co-countable σ -field on R is not. In general it
is true that completeness will have a major role to play in what follows, and we shall
make no apologies for restricting our attention to complete sub-σ -fields from the get
go – practically none of the results presented would be true without this assumption
(or would be true only “mod P”, which amounts to the same thing).

The following basic facts about conditional expectations are often useful; we will
use them silently throughout.

Lemma 2.2 (Independent conditioning). Let {F, G} ⊂ M/B[0,∞] and let {X ,Y,

Z} ⊂ Λ. If Y ∨ σ(G) ⊥⊥ X ∨ σ(F), then E[FG|X ∨ Y] = E[F|X ]E[G|Y] a.s.; in
particular if Y ⊥⊥ X ∨Z , then Z ⊥⊥X Y; finally, if σ(F) ⊥⊥X Y , then E[F|X ∨Y] =
E[F|X ] a.s.

Proof. For the first claim, by a π/λ-argument it suffices to check that E[FG; X ∩
Y ] = E[E[F|X ]E[G|Y]; X ∩ Y ] for X ∈ X and Y ∈ Y , which is immediate (both
sides are equal to E[F; X]E[G; Y ] on account of Y ∨ σ(G) ⊥⊥ X ∨ σ(F)). To obtain
the second statement, let Z ∈ Z/B[0,∞] and Y ∈ Y/B[0,∞]; then a.s. E[ZY|X ] =
E[ZY|X ∨ 0Λ] = E[Z|X ]E[Y] = E[Z|X ]E[Y|X ]. For the final claim, by a π/λ-
argument it suffices to check that E[F; X ∩ Y ] = E[E[F|X ]; X ∩ Y ] for all (X, Y ) ∈
X × Y . But E[E[F|X ]; X ∩ Y ] = E[E[F|X ]P[Y |X ]; X] = E[E[F1Y |X ]; X], which
is indeed equal to E[F; X ∩ Y ].

We conclude this section with a statement concerning decreasing convergence for
martingales indexed by a directed set (it is also true in its increasing convergence
guise [9, Proposition V-1-2] but we shall not find use of that version). In it, and in
the remainder of this paper, for a family (Xt )t∈T in Λ we set ∧t∈T Xt := ∩t∈T Xt ,
provided T is non-empty (similarly, later on, we will use the notation ∨t∈T Xt :=
σ(∪t∈T Xt ) (= 0Λ when T is empty)).

Lemma 2.3 (Decreasing martingale convergence). Let X ∈ L1(P) and let (Xt )t∈T be
a non-empty net in Λ indexed by a directed set (T ,≤) satisfying Xt ⊂ Xs whenever
s ≤ t are from T . Then the net (E[X|Xt ])t∈T converges in L1(P) to E[X| ∧t∈T Xt ].
Remark 2.4. Recall that when T = N with the usual order, then the convergence is
also almost sure.

Proof. According to [9, Lemma V-1-1] and the usual decreasing martingale conver-
gence indexed by N [9, Corollary V-3-12] the net (E[X|Xt ])t∈T is convergent to some
X∞ in L1(P). Because for each t ∈ T , L1(P|Xt

) is closed in L1(P) and since X∞ is
also the limit of the net (E[X|Xu])u∈T≥t , it follows that X∞ ∈ Xt /BR; hence X∞ ∈
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(∧t∈T Xt )/BR. Then for any X ∈ ∧t∈T Xt , E[X∞; X] = limt∈T E[E[X|Xt ]; X] =
limt∈T E[X; X] = E[X; X], which means that a.s. X∞ = E[X| ∧t∈T Xt ].

3 The arithmetic

We begin with some simple observations.

Remark 3.1 (Lattice structure). [12, passim]. The operations ∧, ∨ in Λ are clearly
associative and commutative, and one has the absorption laws: (X ∧ Y) ∨ X = X
and (X ∨ Y) ∧ X = X for {X ,Y} ⊂ Λ. Besides, 0Λ ∨ X = X and X ∧ M = X
for all X ∈ Λ. Thus (Λ,∧,∨) is a bounded algebraic lattice with bottom 0Λ and top
M. However, it is not distributive in general, as we saw in the introduction. While +
is not an internal operation on Λ, nevertheless we may assert, for {X ,Y,Z} ⊂ Λ,
that X + Y = Y + X , resp. (X + Y) + Z = X + (Y + Z), whenever X and Y are
independent, resp. and independent of Z . Clearly also X + 0Λ = X for X ∈ Λ.

Proposition 3.2 (Independence and commutativity). [12, Proposition 3.5]. Let {X ,

Y} ⊂ Λ. Then the following are equivalent.

(i) X and Y are independent.

(ii) X ∧ Y = 0Λ and X and Y “commute”: E|XE|Y = E|YE|X .

(iii) E|XE|Y = E|0Λ .

Example 3.3. Let ξ1, ξ2 be independent equiprobable signs and X = σ({ξ1 = ξ2 =
1}), Y = σ(ξ1). Then X and Y are not independent but X ∧ Y = 0Λ.

Proof. (ii) implies (iii) because E|XE|Y = E|YE|X entails that E|XE|Y = E|YE|X =
E|X∧Y . Also, if X and Y are independent, then the basic properties of conditional
expectations imply E|XE|Y = E|0Λ = E|YE|X , while clearly X ∧ Y = 0Λ, i.e.
(i) implies (ii). Suppose now (iii). Let X ∈ X and Y ∈ Y . Then P(X ∩ Y) =
E[P[Y |X ]; X] = E[E[1Y |Y|X ]; X] = E[P[Y |0Λ]; X] = P(X)P(Y ), which is (i).

The next few results deal with the distributivity properties of the pair ∨-∧, when
there are strong independence properties.

Proposition 3.4 (Distributivity I). Let (Xαβ)(α,β)∈A×B be a family in Λ, A non-
empty, such that the Zβ := ∨α∈AXαβ , β ∈ B, are independent. Then

∧α∈A ∨β∈BXαβ = ∨β∈B ∧α∈A Xαβ. (3.1)

It is quite agreeable that the preceding statement can be made in such generality.
We give some remarks before turning to its proof.

Remark 3.5. Of course the independence of Zβ , β ∈ B, is far from being necessary
in order for (3.1) to prevail. For instance if {X ,Y,Z} ⊂ Λ, and Z ⊂ X or Z ⊂ Y ,
then (X ∧ Z) ∨ (Y ∧ Z) = Z = (X ∨ Y) ∧ Z = (X ∨ Y) ∧ (Z ∨ Z), but X ∨ Z
and Y ∨ Z are not independent unless Z = 0Λ; similarly if X ∨ Y ⊂ Z , then
(X ∧ Y) ∨ (Z ∧ Z) = (X ∧ Y) ∨ Z = Z = (X ∨ Z) ∧ (Y ∨ Z), but X ∨ Y and Z
are not independent unless X = Y = 0Λ.
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Remark 3.6. The generality of a not necessarily denumerable B in Proposition 3.4
is of only superficial value. Indeed clearly we have ∨β∈B ∧α∈A Xαβ =
∪B countable ⊂B ∨β∈B ∧α∈AXαβ ; similarly if A ∈ ∧α∈A ∨β∈B Xαβ , then for sure
A ∈ ∨β∈BZβ for some denumerable B ⊂ B so that, by the very statement of this
proposition (with B a two-point set), A ∈ ∧α∈A ∨β∈B Xαβ , viz. ∧α∈A ∨β∈B Xαβ =
∪B countable ⊂B ∧α∈A ∨β∈BXαβ .

Remark 3.7. Proposition 3.4 yields at once Kolmogorov’s zero-one law: if A =
(Aγ )γ∈Γ is an independency (i.e. a family consisting of independent σ -fields) from
Λ, independent from a B ∈ Λ then, setting for cofinite A ⊂ Γ , ∨AA := ∨γ∈AAγ ,
one obtains ∧A cofinite in Γ (B ∨ (∨AA)) = B.

Proof. The inclusion ⊃ in (3.1) is trivial. On the other hand, for β ∈ B, ∧α∈A∨β ′∈B
Xαβ ′ ⊂ ∧α∈A(Xαβ∨(∨β ′∈B\{β}Zβ ′)). Hence ∧α∈A∨β ′∈BXαβ ′ ⊂ ∧β∈B(∧α∈A(Xαβ∨
(∨β ′∈B\{β}Zβ ′))), and thus it will suffice to prove (3.1) for the following two special
cases.

(a) B = {1, 2}, Xα2 = Z2 for α ∈ A.

(b) A = B and Xαβ = Zβ for α �= β from A.

In proving this we will use without special mention the completeness of the members
of Λ.

(a). Relabel Xα1 =: Xα , α ∈ A, and Z2 =: Y . Suppose (3.1) has been established
for A finite (all the time assuming (a)). Let T consist of the finite non-empty subsets of
A, direct T by inclusion ⊂, and define XA := ∧α∈AXα for A ∈ T . Then ∧α∈A(Xα ∨
Y) = ∧A∈T (XA ∨Y) and (of course) ∧α∈AXα = ∧A∈T XA. Let X ∈ ∨α∈AXα =: X
and Y ∈ Y . Using X ⊥⊥ Y and decreasing martingale convergence we see that a.s.
P[X∩Y |(∧A∈T XA)∨Y] = P[X|∧A∈T XA]P[Y |Y] = (limA∈T P[X|XA])P[Y |Y] =
limA∈T (P[X|XA]P[Y |Y]) = limA∈T P[X∩Y |XA∨Y] = P[X∩Y |∧A∈T (XA∨Y)],
where the limits are in L1(P). A π/λ-argument allows to conclude that (3.1) holds
true. Suppose now A is finite. By induction we may and do consider only the case
A = {1, 2}, and so we are to show that (X1 ∨ Y) ∧ (X2 ∨ Y) = (X1 ∧ X2) ∨
Y . Let again X ∈ X and Y ∈ Y . Then using X ⊥⊥ Y , convergence of iterated
conditional expectations [1, Proposition 3] and bounded convergence, we obtain that
a.s. P[X ∩ Y |(X1 ∨ Y) ∧ (X2 ∨ Y)] = E[1X∩Y |X1 ∨ Y|(X1 ∨ Y) ∧ (X2 ∨ Y)] =
E[P[X|X1]1Y |(X1 ∨Y)∧(X2 ∨Y)] = E[P[X|X1]1Y |X2 ∨Y|(X1 ∨Y)∧(X2 ∨Y)] =
E[E[1X|X1|X2]1Y |(X1 ∨ Y) ∧ (X2 ∨ Y)] = E[E[1X|X1|X2|X1|X2]1Y |(X1 ∨ Y) ∧
(X2 ∨Y)] = · · · → E[P[X|X1 ∧X2]1Y |(X1 ∨Y)∧ (X2 ∨Y)] = P[X|X1 ∧X2]1Y ∈
((X1 ∧ X2) ∨ Y)/B[−∞,∞]. Again a π/λ-argument allows to conclude.

(b). Relabel Xαα =: Xα and Zα =: Aα , α ∈ A. Suppose (3.1) has been shown
for A finite (all the time assuming (b)). Let T consist of the finite subsets of A, di-
rect T by inclusion ⊂, and define XA := ∨α∈AXα for A ∈ T . Then ∧α∈A(Xα ∨
(∨α′∈A\{α}Aα′)) = ∧A∈T (XA ∨ (∨α′∈A\AAα′)). Now let B ∈ T \{∅}, Ai ∈ Ai for
i ∈ B. We have by decreasing martingale convergence, a.s. P[∩i∈BAi | ∧A∈T (XA ∨
(∨α′∈A\AAα′))] = limA∈T P[∩i∈BAi |XA ∨ (∨α′∈A\AAα′)] = P[∩i∈BAi |XB ] ∈
(∨α∈AXα)/B[−∞,∞], where the limit is in L1(P), and we conclude that (3.1) holds
true via a π/λ-argument. So it remains to argue (3.1) for A finite, and then by an
inductive argument for A = {1, 2}, in which case we are to establish that (X1 ∨A2)∧
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(A1 ∨ X2) = X1 ∧ X2. To this end let F ∈ (X1 ∨ A2) ∧ (A1 ∨ X2). Then a.s.
1F = P[F |X1 ∨ A2] (because F ∈ X1 ∨ A2), which is ∈ (X1 ∨ X2)/B[−∞,∞] (be-
cause F ∈ A1 ∨ X2, by a π/λ-argument, using X1 ⊂ A1, X2 ⊂ A2 and A2 ⊥⊥ A1:
if A1 ∈ A1 and X2 ∈ X2 then a.s. P[A1 ∩ X2|X1 ∨ A2] = 1X2P[A1|X1] ∈
(X1 ∨ X2)/B[−∞,∞]).

Corollary 3.8 (Distributivity II).

(i) If Y ∈ Λ is independent of a nonincreasing sequence (Xn)n∈N from Λ, then
∧n∈N(Xn ∨ Y) = (∧n∈NXn) ∨ Y . [2, Exercise 2.5(1-2)], [10, Exercise 2.15].

(ii) For {X1,X2,Y1,Y2} ⊂ Λ, if X1 ∨X2 ⊥⊥ Y1 ∨Y2, then (X1 ∨Y1)∧(X2 ∨Y2) =
(X1 ∧ X2) ∨ (Y1 ∧ Y2). [12, Fact 2.18, when M is countably generated up
to negligible sets]. In particular for {X ,A,Y} ⊂ Λ, if X ⊂ A ⊥⊥ Y , then
(X ∨ Y) ∧ A = X .

(iii) If {X ,Y,Z} ⊂ Λ, X ∨Y ⊥⊥ Z , then (X ∨Z) ∧ (Y ∨Z) = (X ∧Y) ∨Z .

Remark 3.9. [13] discusses the equality in (i) when X and Y are not necessarily
independent; we have seen in Example 1.1(b) that it fails in general.

Remark 3.10. In (iii) the equality (X ∧Z)∨ (Y ∧Z) = (X ∨Y)∧Z is trivial (both
sides are equal to 0Λ). Example 1.1(a) showed that these basic distributivity relations
fail in general, even when X ,Y,Z are pairwise independent.

Remark 3.11. Let {A,B, C} ⊂ Λ. (I) If A ⊂ B ∨ C and A ∨ B ⊥⊥ C, then A ⊂ B:
A = A ∧ (B ∨ C) = (A ∨ 0Λ) ∧ (B ∨ C) = A ∧ B by (ii), [2, Exercise 2.2(1)]. (II)
If A ⊂ B ∨ C, A ⊥⊥ C, B ⊂ A, then A = B: A ⊂ (B ∨ C) ∧ (A ∨ 0Λ) = B by (ii)
again, [2, Exercise 2.2(3)].

We turn now to complements; we shall resume with the investigation of distribu-
tivity later on in Nos. 3.20-3.26.

Proposition 3.12 (Complements I). [4, Proposition 4]. Let {X ,Y} ⊂ Λ. Assume X is
countably generated up to negligible sets and Y ⊂ X . Then the following statements
are equiveridical.

(i) Whenever X ∈ X /BR is such that X = σ(X), then for every Y ∈ Y/BR,
P(X = Y) = 0.

(ii) There exists X ∈ X /BR such that for every Y ∈ Y/BR, P(X = Y) = 0.

(iii) There exists Z ∈ X /BR independent of Y and having a diffuse law.

(iv) There exists Z ∈ X /B[0,1] independent of Y with uniform law such that Y +
σ(Z) = X .

(v) Every Z ∈ X /BR for which Y ∨ σ(Z) = X has a diffuse law.

Definition 3.13. Let {X ,Y} ⊂ Λ, Y ⊂ X , X countably generated up to negligible
sets. Following [4] call X conditionally non-atomic given Y when the conditions
(i)-(v) of Proposition 3.12 prevail.

Example 3.14. Let {A,B,X } ⊂ Λ, X ⊂ A + B. It can happen that A, B, X
are pairwise independent [2, Exercise 2.1(3)], and even when it is so, it may then
happen that there is no X ′ ∈ Λ with X ′ ⊂ B and A + X = A + X ′, i.e. X ⊂
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((A ∨ X ) ∧ B) ∨ A may fail (in particular one can have X independent of B, but
not measurable w.r.t. A [2, Exercise 2.1(2)]). In the “discrete” setting2 take, e.g., ξi ,
i ∈ {1, 2, 3, 4}, independent equiprobable signs. Let A = σ(ξ1, ξ2), B = σ(ξ3, ξ4),
X = σ(ξ1ξ3 + ξ2ξ4). Then it is mechanical to check that (X ∨ A) ∧ B = σ(ξ3ξ4)

(e.g., for inclusion ⊃ one can notice that (ξ1ξ3 + ξ2ξ4)
2 = 2(1 + ξ1ξ2ξ3ξ4); for

the reverse inclusion one can consider the behavior of the indicators of the ele-
ments of σ(ξ3, ξ4) on the atoms of σ(ξ1, ξ2, ξ1ξ3 + ξ2ξ4)). But ξ1ξ3 + ξ2ξ4 is not
measurable w.r.t. A ∨ ((A ∨ X ) ∧ B) = σ(ξ1, ξ2, ξ3ξ4), indeed ξ1ξ3 + ξ2ξ4 is
not a.s. constant on the atom {ξ1 = 1, ξ2 = 1, ξ3ξ4 = 1} of σ(ξ1, ξ2, ξ3ξ4). To
tweak this to the “continuous” case,3 simply take a sequence (ξi)i∈N of indepen-
dent equiprobable signs and set A = σ(ξ2i : i ∈ N), B = σ(ξ2i+1 : i ∈ N0),
X = σ(ξ1ξ2 + ξ3ξ4, ξ5ξ6 + ξ7ξ8, . . .). By Proposition 3.4 and the preceding, it fol-
lows that (X ∨ A) ∧ B = σ(ξ1ξ3, ξ5ξ7, . . .), and we see that ξ1ξ2 + ξ3ξ4 is not
measurable w.r.t. ((X ∨A)∧B)∨A, for, exactly as before, it is not measurable w.r.t.
σ(ξ2, ξ4, ξ1ξ3) = [((X ∨ A) ∧ B) ∨ A] ∧ σ(ξ1, . . . , ξ4).

Examples 3.15. Let {X ,Y} ⊂ Λ, Y ⊂ X .

(a) We have already seen in Example 1.2 that in general Y may fail to have a
complement in X , though by Proposition 3.12 this cannot happen when X is
essentially separable and everything is “sufficiently continuous”. Example 1.3
shows, in a “discrete” setting, that even when Y has a complement in X , then it
is not necessarily unique. To see the latter also in the “continuous” setting take
a doubly infinite sequence (ξi)i∈Z of independent equiprobable signs, and set
X = σ(ξi : i ∈ Z), Y = σ(ξi : i ∈ N). Then Y + σ(ξi : i ∈ Z≤0) = X but
also Y + σ(ξiξi+1 : i ∈ Z≤0) = X .

(b) Even when the equivalent conditions of Proposition 3.12 are met, and a Z ∈ Λ

satisfies Y ∨ Z = X , there may be no Z ′ ∈ Λ with Z ′ ⊂ Z and Y + Z ′ = X .
The following example of this situation is essentially verbatim from [4, p. 11,
Remark (b)]. Let Ω = ([0, 1

2 ] × [0, 1]) ∪ ([ 1
2 , 1] × [0, 1

2 ]) ∪ ([1, 3
2 ] × [ 1

2 , 1]),
M = BΩ , and P be the (restriction of the) Lebesgue measure. Let Y be the
projection onto the first coordinate and Z be the projection onto the second
coordinate, Y = σ(Y), Z = σ(Z), X = σ(Y, Z) = M. Then |Z − 1

2 | is
independent of Y , verifying (iii), though Y and Z are not independent. Suppose
that Z ′ ∈ Λ satisfies Z ′ ⊂ Z and Y ∨ Z ′ = X . The σ -field X and hence
Z ′ is countably generated up to negligible sets so there is Z′ ∈ Z ′/BR such
that Z ′ = σ(Z′). By the Doob–Dynkin lemma there are f ∈ B[0,1]/BR and
g ∈ B[0, 3

2 ]×R
/B[0,1] such that a.s. Z′ = f (Z) and Z = g(Y, Z′). Then Z =

g(Y, f (Z)) a.s.; consequently by Tonelli’s theorem for Lebesgue-almost every
y ∈ [0, 1

2 ], z = g(y, f (z)) for Lebesgue-almost all z ∈ [0, 1]. Fix such y. Then
because Z is absolutely continuous, one obtains Z = g(y, f (Z)) = g(y, Z′)
a.s.; this forces Z ′ = Z , preventing Z ′ ⊥⊥ Y .

2In precise terms, by “discrete”, we mean here, and in what follows, that every σ -field under consider-
ation is generated up to negligible sets by a discrete random variable.

3To be precise, by “continuous”, we mean to say here, and in what follows, that every σ -field under
consideration is generated up to negligible sets by a diffuse random variable.
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(c) If the equivalent conditions of Proposition 3.12 are met and if Z ∈ X /BR

has diffuse law and is independent of Y , there may exist no Z ′ ∈ Λ such
that Y + Z ′ = X and σ(Z) ⊂ Z ′ (however this cannot happen if ceteris
paribus Z is discrete rather than continuous – see Corollary 3.16(ii)(b)). We
repeat here for the reader’s convenience [4, p. 11, Remark (a)] exemplifying
this scenario. Let X, Y, Z be independent random variables with uniform law
on [0, 1] and let Y = σ(Y), X = σ(Y, Z, X1{Y< 1

2 }). Clearly X is countably

generated up to negligible sets; Z has a diffuse law and is independent of Y ; in
particular (iii) is verified. Let Z ′ ∈ Λ be such that Y ⊥⊥ Z ′ ⊃ σ(Z), Z ′ ⊂ X .
There is a Z′ ∈ Z ′/BR such that Z ′ = σ(Z′). By the Doob–Dynkin lemma
there are f ∈ BR/B[0,1] and g ∈ B[0,1]3/BR such that a.s. Z = f (Z′) and
Z′ = g(Y, Z, X1{Y< 1

2 }). Then on {Y ≥ 1
2 }, Z′ = g(Y, Z, 0) = g(Y, f (Z′), 0)

a.s.; hence by Tonelli’s theorem for Lebesgue-almost every y ∈ [ 1
2 , 1], z′ =

g(y, f (z′), 0) for Z′
�P-almost every z′ ∈ R. Fix such y. It follows that Z′ =

g(y, f (Z′), 0) = g(y, Z, 0) a.s.; this forces Z ′ = σ(Z), which precludes Y ∨
Z ′ = X .

Proof of Proposition 3.12. We follow closely the proof of [4, Proposition 4].
(i) ⇒ (ii) because X is countably generated up to negligible sets.
(iv) ⇒ (iii) is trivial.
(iii) ⇒ (ii) by Tonelli’s theorem.
(v) ⇒ (i). Let X ∈ X /BR be such that X = σ(X), take Y ∈ Y/BR. Fix x0 ∈ R

for which P(X = x0) = 0. Then Y ∨ σ(X1{X �=Y} + x01{X=Y}) = X , hence by (v)
X1{X �=Y} + x01{X=Y} has a diffuse law, and therefore P(X = Y) = 0.

(ii) ⇒ (v). Let X ∈ X /BR be such that for every Y ∈ Y/BR, P(X = Y) = 0 and
let Z ∈ X /BR be such that Y ∨ σ(Z) = X . Because Y is countably generated up
to negligible sets, there is Y ∈ Y/BR such that Y = σ(Y). Then σ(Y, Z) = X and
by the Doob–Dynkin lemma there is f ∈ BR2/BR such that a.s. X = f (Y, Z). We
conclude that for each z0 ∈ R, P(Z = z0) ⊂ P(X = f (Y, z0)) = 0.

(ii) ⇒ (iv). Let again X ∈ X /BR be such that for every Y ∈ Y/BR, P(X = Y) =
0. Take also Y ∈ Y/BR such that Y = σ(Y) and X′ ∈ X /BR such that σ(X′) = X .
Let μ be the law of Y and let (νy)y∈R be a version of the conditional law of X′ given
Y: (R � y �→ νy(A)) ∈ BR/B[0,1] for each A ∈ BR; νy is a law on BR for each
y ∈ R; and E[f (X′, Y)] = ∫

f (x′, y)νy(dx′)μ(dy) for f ∈ BR2/B[0,∞]. Remark
that in particular (�) a.s. X′ cannot fall into a maximal non-degenerate interval that
is negligible for νY . Besides, by the Doob–Dynkin lemma, there is g ∈ BR/BR such
that X = g(X′) a.s. Then P(Y′ = X′) ⊂ P(X = g(Y′)) = 0 for any Y′ ∈ Y/BR.
From this it follows that (��) νy is diffuse for μ-almost every y ∈ R. Set now Z :=
νY((−∞, X′]) ∈ X /B[0,1]; then for φ ∈ BR/B[0,∞] and z ∈ [0, 1],

E
[
φ(Y); Z ≤ z

] =
∫ ∫

φ(y)1[0,z](νy

((−∞, x′]))νy

(
dx′)μ(dy)

= z

∫
φdμ = P(Z ≤ z)E

[
φ(Y)

]
,

because of (��). On account of (�), it also follows from the equality Z = νY ((−∞,

X′]) that X′ ∈ σ(Z, Y). Thus Z meets all the requisite properties.
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Several “stability” properties of conditionally non-atomic σ -fields can be noted:

Corollary 3.16 (Conditionally non-atomic σ -fields). [4, Corollaries 3 and 4] Let
{X ,Y,Z} ⊂ Λ, Y ⊂ X . Assume X ∨ Z is countably generated up to negligible
sets.

(i) If X ∨ Z is conditionally non-atomic given Y ∨ Z , then X is conditionally
non-atomic given Y .

(ii) Suppose X is conditionally non-atomic given Y .

(a) If X and Z are independent, then X ∨ Z is conditionally non-atomic
given Y ∨ Z .

(b) If P ⊂ X is a denumerable partition of Ω , then X is conditionally non-
atomic given Y ∨ σ(P); if further σ(P) ⊥⊥ Y , then there exists Z ∈
X /B[0,1] with uniform law such that Y + σ(Z) = X and σ(P) ⊂ σ(Z).

Proof. We follow closely the proofs of [4, Corollaries 3 and 4].
(i). Let Z ∈ X /BR be such that X = Y ∨ σ(Z); then X ∨ Z = (Y ∨ Z) ∨ σ(Z).

Thus if X ∨Z is conditionally non-atomic given Y ∨Z , then by Proposition 3.12(v)
Z is diffuse, which makes X conditionally non-atomic given Y by the very same
argument.

(ii)(a). Let X and Z be independent. By Proposition 3.12(iii), there exists Z ∈
X /BR independent of Y and having a diffuse law; such Z is then also independent of
Y ∨ Z , so that by the very same condition X ∨ Z is conditionally non-atomic given
Y ∨ Z .

(ii)(b). There is a random variable P ∈ X /2N for which σ(P) = σ(P). If Z ∈
X /BR is such that X = (Y ∨ σ(P)) ∨ σ(Z) = Y ∨ σ(P, Z), then (P, Z) has a
diffuse law by Proposition 3.12(v), hence (because P has a denumerable range) Z
has a diffuse law, which entails the desired conclusion by the very same argument.
Now suppose P is independent of Y . Via Proposition 3.12(iv) let Z′ ∈ X /B[0,1] have
uniform law and be a complement for Y+σ(P) in X . Of course σ(Z′, P) is essentially
separable so there is Z ∈ σ(Z′, P)/BR with σ(Z) = σ(Z′, P). Z is diffuse, because
Z′ is, hence may be chosen to be uniform on [0, 1].

The next proposition investigates to what extent complements are “hereditary”.

Proposition 3.17 (Complements II). Let {X ,Y,Z} ⊂ Λ, Z ⊂ X + Y . Then the
following statements are equivalent.

(i) Z = (X ∧ Z) ∨ (Y ∧ Z), i.e. X ∧ Z is a complement of Y ∧ Z in Z .

(ii) X and Y are conditionally independent given Z , and P[Y |Z] ∈ Y/B[−∞,∞]
for Y ∈ Y , P[X|Z] ∈ X /B[−∞,∞] for X ∈ X .

Remark 3.18. Dropping, ceteris paribus, the condition that X ⊥⊥ Y , then (i) no
longer implies (ii) (because one can have Z ⊂ X or Z ⊂ Y , without X and Y
being conditionally independent given Z); however, (ii) still implies (i) (this will be
clear from the proof, and at any rate Proposition 3.21 will provide a more general
statement, that will subsume this implication as a special case).
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Examples 3.19.

(a) The situation described by (i), equivalently (ii) is not trivial. For instance if
A,B, C,D are independent members of Λ, then one can take X = A + B,
Y = C+D, Z = B+C. Of course in this case Z = (X ∧Z)∨ (Y ∧Z) can be
seen (slightly indirectly) from Proposition 3.4 as much as (directly) from the
validity of (ii).

(b) But there are cases when Proposition 3.4 does not apply (or applies only (very)
indirectly), while Proposition 3.17 does. A trivial example of this is when Z ⊂
X or Z ⊂ Y .

(c) For a less trivial example of the situation described in (b) let ξi , i ∈ {1, 2, 3, 4},
be independent equiprobable signs. Let X = σ(ξ1, {ξ1 = ξ2 = 1}), Y =
σ(ξ3, {ξ3 = ξ4 = 1}) and Z = σ(ξ1, ξ3). In this case, unlike in (a), it is not
the case that Z ∧ X = σ(ξ1) would have a complement in X and Z ∧ Y =
σ(ξ3) would have a complement in Y . For this reason Proposition 3.4 cannot
be (indirectly) applied to deduce (X ∧Z)∨(Y∧Z) = Z . Yet this equality does
prevail and can indeed be seen directly and a priori from the validity of (ii).

Proof. Suppose (i) hods true. Let X ∈ X and Y ∈ Y . Then because X ⊥⊥ Y , a.s.
P[X∩Y |Z] = P[X∩Y |(X∧Z)∨(Y∧Z)] = P[X|X∧Z]P[Y |Y∧Z]. Taking Y = Ω

and X = Ω shows that P[X|Z] = P[X|X ∧ Z] a.s. and P[Y |Y ∧ Z] = P[Y |Z] a.s.,
which concludes the argument. Conversely, suppose that (ii) holds true. Let X ∈ X
and Y ∈ Y . Then a.s. P[X ∩ Y |Z] = P[X|Z]P[Y |Z] and P[X|Z] = P[X|X ∧ Z],
P[Y |Z] = P[Y |Y ∧ Z]. Hence P[X ∩ Y |Z] ∈ ((X ∧ Z) ∨ (Y ∧ Z))/B[−∞,∞].
A π/λ-argument allows to conclude that P[Z|Z] ∈ ((X ∧ Z) ∨ (Y ∧ Z))/B[−∞,∞]
for all Z ∈ X ∨ Y and therefore, because Z ⊂ X ∨ Y , for all Z ∈ Z . Thus Z ⊂
(X ∧ Z) ∨ (Y ∧ Z), while the reverse inclusion is trivial.

More generally (in the sufficiency part):

Proposition 3.20 (Distributivity III). Let (Xα)α∈A be a family in Λ consisting of
independent σ -fields. Then

(∨α∈AXα) ∧ Z = ∨α∈A(Xα ∧ Z)

provided (i) the Xα , α ∈ A, are conditionally independent given Z and (ii) P[Xα|Z] ∈
Xα/B[−∞,∞] for all Xα ∈ Xα , α ∈ A.

Proof. Set X := ∨α∈AXα . Condition (ii) entails that a.s. P[Xα|X∧Z] = P[Xα|Xα∧
Z] = P[Xα|Z] for all α ∈ A; combining this with (i) shows via a π/λ-argument that
a.s. P[X|X ∧Z] = P[X|Z] for all X ∈ X : if B is a finite non-empty subset of A, then
a.s. P[∩β∈BXβ |Z] = ∏

β∈B P[Xβ |Z] = ∏
β∈B P[Xβ |X ∧Z] ∈ (X ∧Z)/B[−∞,∞].

Replacing Z by Z∧X if necessary, we may and do assume Z ⊂ X . Then ∨α∈A(Xα∧
Z) ⊂ Z = X ∧Z is trivial. For the reverse inclusion, let B be a finite non-empty sub-
set of A, and let Xβ ∈ Xβ for β ∈ B. Then a.s. P[∩β∈BXβ |Z] = ∏

β∈B P[Xβ |Z] =∏
β∈B P[Xβ |Xβ ∧Z] ∈ (∨α∈A(Xα ∧Z))/B[−∞,∞]. By a π/λ-argument we conclude

that P[Z|Z] ∈ (∨α∈A(Xα ∧Z))/B[−∞,∞] for all Z ∈ ∨α∈AXα , and therefore for all
Z ∈ Z . It means that also X ∧ Z = Z ⊂ ∨α∈A(Xα ∧ Z).
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Parallel to Proposition 3.20 we have:

Proposition 3.21 (Distributivity IV). Let (Xα)α∈A be a family in Λ, with A contain-
ing at least two elements, consisting of σ -fields that are conditionally independent
given Z ∈ Λ. Then

Z = ∧α∈A(Xα ∨ Z);
in particular ∧α∈AXα ⊂ Z .

Remark 3.22. The converse is not true, because, for instance, one can have X and Y
dependent with X ∧ Y = 0Λ (then Z = (X ∨ Z) ∧ (Y ∨ Z) for Z = 0Λ, but X and
Y are not independent given Z) – see Example 3.3. The condition on the conditional
independence of course cannot be dropped, not even if the Xα , α ∈ A, and Z are
pairwise independent – see Example 1.1(a).

Remark 3.23. By Proposition 3.4 the equality

(∧α∈AXα) ∨ Z = ∧α∈A(Xα ∨ Z)

also prevails when the Xα , α ∈ A, are independent of Z , however the scope of this
result is clearly different from that of Proposition 3.21.

Proof. It is clear that Z ⊂ ∧α∈A(Xα ∨Z). For the reverse inclusion we may assume
A = {1, 2}. Let F ∈ (X1 ∨Z)∧(X2 ∨Z). Then a.s. 1F = P[F |X1 ∨Z] (because F ∈
X1 ∨Z). Let us now show that if F ∈ X2 ∨Z , then P[F |X1 ∨Z] ∈ Z/B[−∞,∞]; this
will conclude the argument. Take X2 ∈ X2 and Z ∈ Z . Then a.s. P[X2∩Z|X1∨Z] =
1ZP[X2|X1 ∨Z]. Thus by a π/λ-argument it will suffice to establish that P[X2|X1 ∨
Z] ∈ Z/B[−∞,∞]. For this, just argue that a.s. P[X2|X1∨Z] = P[X2|Z]: let X1 ∈ X1
and Z ∈ Z; then P(X2 ∩X1 ∩Z) = E[P[X2|Z]; X1 ∩Z] because X1 is conditionally
independent of X2 given Z; another π/λ-argument allows to conclude.

A further substantial statement involving conditional independence and distribu-
tivity is the following. It generalizes Proposition 3.4 in the case when B is a two-point
set.

Proposition 3.24 (Distributivity V). Let (Xαi)(α,i)∈A×{1,2} be a family in Λ, A non-
empty. Set Xi := ∨α∈AXαi for i ∈ {1, 2}. Assume that for each finite non-empty A ⊂
A, X1 is conditionally independent of X2 given ∧α∈AXα1 and also given ∧α∈AXα2.
Then

∧α∈A (Xα1 ∨ Xα2) = (∧α∈AXα1) ∨ (∧α∈AXα2). (3.2)

Proof. By decreasing martingale convergence, X1 is conditionally independent of X2
given ∧α∈AXα1 and also given ∧α∈AXα2. Therefore, by the same reduction as at the
start of the proof of Proposition 3.4, it suffices to establish the claim in the following
two cases.

(A) Xα2 = X2 for all α ∈ A.

(B) A = {1, 2}, X11 ⊂ X21, X22 ⊂ X12.

(A). Suppose (3.2) has been established for A finite (all the time assuming (A), of
course). Let A ⊂ A be finite and non-empty and (X1, X2) ∈ X1 ×X2. Then, because
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X1 ⊥⊥∧α∈AXα1 X2, a.s. P[X1 ∩ X2|(∧α∈AXα1) ∨ X2] = P[X1| ∧α∈A Xα1]1X2 . By
decreasing martingale convergence and the assumption made, it follows that P[X1 ∩
X2| ∧α∈A (Xα1 ∨ X2)] ∈ ((∧α∈AXα1) ∨ X2)/B[−∞,∞], and we conclude as usual.
Then it remains to establish the claim for finite A, and by induction for A = {1, 2}.
The remainder of the proof is now the same as in the proof of item (a) of Proposi-
tion 3.4, except that, as appropriate, one appeals to conditional independence in lieu
of independence.

(B). This is proved just as in the final part of the proof of item (b) of Proposi-
tion 3.4 (only the final part is relevant because here a priori A = B = {1, 2}), except
that again one appeals to conditional independence in lieu of independence, as appro-
priate.

Corollary 3.25 (Distributivity VI). [7], [2, Exercise 2.5(1)]. If Y ∈ Λ and a non-
increasing sequence (Xn)n∈N from Λ are such that Y ⊥⊥Xn

X1 for all n ∈ N, then
∧n∈N(Xn ∨ Y) = (∧n∈NXn) ∨ Y .

Remark 3.26. The generalization to a general B in lieu of {1, 2} in Proposition 3.24
seems too cumbersome to be of any value, and we omit making it explicit.

Finally we return yet again to complements. In the following it is investigated
what happens if one is given A ⊥⊥ B from Λ, and one enlarges A by an independent
complement X to form A′ = A+X , while reducing B to B′ through an independent
complement Y , B′ + Y = B, in such a manner that A′ ⊥⊥ B′, and that between them
A′ and B′ generate the same σ -field as A and B do. (We will see in Section 4 why
this is an interesting situation to consider.)

Proposition 3.27 (Two-sided complements). Let {A,B,A′,B′} ⊂ Λ be such that
A + B = A′ + B′.

(i) There is at most one X ∈ Λ such that A + X = A′ and B′ + X = B, namely
A′ ∧ B.

(ii) Let {X ,Y} ⊂ Λ be such that A + X = A′ and B′ + Y = B. The following
statements are equivalent:

(a) There is Z ∈ Λ with A + Z = A′ and B′ + Z = B.

(b) A + (A′ ∧ B) + B′ = A + B (= A′ + B′).
(c) X ⊂ A ∨ (A′ ∧ B) and Y ⊂ B′ ∨ (A′ ∧ B).

(d) There is X ′ ∈ Λ with X ′ ⊂ B and A+X ′ = A′ and there is Y ′ ∈ Λ with
Y ′ ⊂ A′ and B′ + Y ′ = B.

(e) P[B|A′] ∈ B/B[−∞,∞] for B ∈ B and P[A′|B] ∈ A′/B[−∞,∞] for A′ ∈
A′.

Example 3.28. Let ξi , i ∈ {1, 2, 3}, be independent equiprobable signs. Let A :=
σ(ξ1), B′ := σ(ξ2), X := σ(ξ3), Y := σ({ξ1 = ξ3 = 1 or ξ3ξ2 = ξ1 = −1}),
A′ := A + X , B := B′ + Y . It is then straightforward to check, for instance by
considering the induced partitions, that A + B = σ(ξ1, ξ2, ξ3) = A′ + B′, while
A′ ∧ B ⊂ 0Λ, so that in particular A + (A′ ∧ B) + B′ �= A + B. This “discrete”
example can be tweaked to a “continuous” one, just like it was done in Example 3.14.
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Remark 3.29. One would call X satisfying the relations stipulated by (i) a two-sided
complement of (A,B) in (A′,B′). Unlike the usual “one-sided” complement, it is
always unique, if it exists. However, by Example 3.28, the “existence of one-sided
complements on both sides”, i.e. what is the starting assumption of (ii), does not
ensure the existence of a two-sided complement (which is (ii)(a)).

Proof. (i). Suppose the two relations are also satisfied by a Y ∈ Λ in lieu of X . Then
Y ⊂ B = B′ + X and Y ⊂ A′ = A + X ; hence Y ⊂ (B′ + X ) ∧ (A + X ). But
B′ is independent of A′, and A′ = A + X ; hence B′, A and X are independent,
so Corollary 3.8(iii) entails that (B′ + X ) ∧ (A + X ) = X . Thus Y ⊂ X and by
symmetry X ⊂ Y , also; hence X = Y . If X satisfies the relations, then they are also
a fortiori satisfied by A′ ∧ B; by uniqueness X = A′ ∧ B.

(ii). Suppose (a) holds. Then by (i) Z = A′ ∧ B and (b)-(c)-(d) follow at once.
To see (e), let B ′ ∈ B′ and Z ∈ Z . Then a.s. P[B ′ ∩ Z|A′] = P[B ′ ∩ Z|A ∨
Z] = 1ZP[B ′|A ∨ Z] = 1ZP(B ′) ∈ Z/B[−∞,∞] ⊂ B/B[−∞,∞]. The general
case obtains by a π/λ-argument and then the second part by symmetry. Conversely,
if any of (b)-(c)-(d) obtains, then it is straightforward to check that one can take
Z = A′ ∧ B in (a) (of course by (i) there is no other choice for Z). Finally we verify
that (e) implies X ⊂ A ∨ (A′ ∧ B) (by (c) and symmetry it will be enough). The
assumption entails that P[B|A′] = P[B|A′ ∧B] a.s. for B ∈ B. Let X ∈ X ; it will be
sufficient to show that a.s. P[X|A ∨ (A′ ∧ B)] = 1X, and then by a π/λ-argument,
that E[P[X|A∨ (A′ ∧B)]; A∩B] = P(X ∩A∩B) for A ∈ A, B ∈ B. Now because
(A′ ∧ B) ∨ σ(B) ⊂ B ⊥⊥ A, we find indeed that E[P[X|A ∨ (A′ ∧ B)]; A ∩ B] =
E[P[X ∩ A|A ∨ (A′ ∧ B)]; B] = E[P[B|A ∨ (A′ ∧ B)]; X ∩ A] = E[P[B|A′ ∧
B]; X ∩ A] = E[P[B|A′]; X ∩ A] = P(X ∩ A ∩ B).

4 An application to the problem of innovation

Let F = (Fn)n∈N be a nonincreasing sequence in Λ and let G = (Gn)n∈N be a
nondecreasing sequence in Λ such that Fn ∨ Gn = F1 ∨G1 for all n ∈ N. Set F∞ :=
∧n∈NFn and G∞ := ∨n∈NGn, as well as (for convenience) G0 := 0Λ, F0 := F1 ∨G1.
We are interested in specifying (equivalent) conditions under which F∞ ∨G∞ = F0.
We have of course a priori the inclusion F∞ ∨ G∞ ⊂ F0.

Remark 4.1. Since Fn ∨ G∞ = F0 for all n ∈ N, the statement F∞ ∨ G∞ = F0 is
equivalent to (∧n∈NFn) ∨ G∞ = ∧n∈N(Fn ∨ G∞), and the conditions of the theorem
of [13] apply. For instance, assume (i) F0 is countably generated up to negligible sets;
and (ii) F∞ = 0Λ. Take a regular version (Pω

G∞)ω∈Ω of the conditional probability on
F0 given G∞ [it means that G∞/B[0,1] � P

·
G∞(A) = P[A|G∞] a.s. for all A ∈ F0, and

P
ω
G∞ is a probability measure on F0 for each ω ∈ Ω]. Then we can write Theorem.e

in [13] as F∞ ∨ G∞ = F0 iff Pω
G∞ is trivial on F∞ a.s. in ω ∈ Ω .

We will restrict our attention to the case when there are strong independence
properties. A typical example of the type of situation that we have in mind and when
the equality F∞ ∨ G∞ = F0 (nevertheless) fails was the content of Example 1.4 in
the introduction.

Example 1.4 continued. With regard to Remark 4.1, note that (in the context of Ex-
ample 1.4) G∞ = σ({A ∈ M : A = −A}). Indeed one checks easily that σ(ξ1ξ2,
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ξ2ξ3, . . .) ⊂ {A ∈ M : A = −A}. Conversely, if for a C ∈ (2{−1,1})⊗N, A = (ξ1,

ξ1ξ2, ξ2ξ3, . . .)
−1(C) = −A, then A = (ξ1, ξ1ξ2, ξ2ξ3, . . .)

−1(C) = (−ξ1, ξ1ξ2,

ξ2ξ3, . . .)
−1(C) = (ξ1ξ2, ξ2ξ3, . . .)

−1(pr2,3,...(C)); as a consequence, Blackwell’s
theorem [8, Theorem III.17] shows that A ∈ σ(ξ1ξ2, ξ2ξ3, . . .), so that also σ(ξ1ξ2,

ξ2ξ3, . . .) ⊃ {A ∈ M : A = −A}. Thus in Remark 4.1 we may take EP
·
G∞ [f ] =

(f + f ◦ (−idΩ))/2 for f ∈ ((2{−1,1})⊗N)/B[0,∞]. For this choice P
ω
G∞ is non-

trivial on F∞ for arbitrary ω ∈ Ω (take, e.g., f equal to the indicator of the event
Aω := {ξn = ω(n) for all sufficiently large n ∈ N}).

Here is now a general result that motivates the investigation of two-sided comple-
ments in Proposition 3.27.

Proposition 4.2. Let H = (Hn)n∈N be a sequence in Λ such that Fn = Fn+1 +
Hn+1 and Gn+1 = Gn + Hn+1 for all n ∈ N0. (One would say that the sequence
H “innovates” (F ,G).) Then Hn = Gn ∧ Fn−1 for all n ∈ N, and the following
statements are equivalent.

(i) F∞ ∨ G∞ = F0.

(ii) Fn = F∞ ∨ [∨k∈N>n
Hk] for all n ∈ N0.

(iii) Fn = F∞ ∨ [∨k∈N>n
Hk] for some n ∈ N0.

Proof. We have Fn + Gn = Fn+1 + Gn+1 for all n ∈ N0. Now the expressions for
the Hn, n ∈ N, follow from Proposition 3.27(i). Note also that Gn = H1 ∨ · · · ∨ Hn

for all n ∈ N0.
The implication (ii) ⇒ (iii) is trivial.
(i) ⇒ (ii). The inclusion ⊃ is clear. Conversely, if F ∈ Fn, then a.s. 1F =

P[F |F0] = P[F |F∞ ∨ G∞] = P[F |F∞ ∨ Gn ∨ [∨k∈N>n
Hk]] = P[F |F∞ ∨

[∨k∈N>n
Hk]], since Gn ⊥⊥ Fn ⊃ σ(F ) ∨ F∞ ∨ [∨k∈N>n

Hk].
(iii) ⇒ (i). F∞ ∨ G∞ = F∞ ∨ Gn ∨ [∨k∈N>n

Hk] = Fn ∨ Gn = F0.
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