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Abstract The paper deals with a generalization of the risk model with stochastic premiums
where dividends are paid according to a multi-layer dividend strategy. First of all, we derive
piecewise integro-differential equations for the Gerber–Shiu function and the expected dis-
counted dividend payments until ruin. In addition, we concentrate on the detailed investigation
of the model in the case of exponentially distributed claim and premium sizes and find explicit
formulas for the ruin probability as well as for the expected discounted dividend payments.
Lastly, numerical illustrations for some multi-layer dividend strategies are presented.
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1 Introduction

The ruin measures such as the ruin probability, the surplus prior to ruin and the deficit
at ruin have attracted great interest of researchers recently (see, e.g., [2, 28, 33] and
references therein). Gerber and Shiu [16] introduced the expected discounted penalty
function for the classical risk model, which enabled to study those risk measures
together by combining them into one function. After that, the so-called Gerber–Shiu
function has been investigated by many authors in more general risk models (see, e.g.,
[6–8, 10, 11, 17, 18, 36, 39, 45, 47]).
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In particular, a lot of attention has been paid to the study of risk models where
shareholders receive dividends from their insurance company. De Finetti [14], who
first considered dividend strategies in insurance, dealt with a binomial model. For
the classical risk model and its different generalizations, different dividend strategies
have been studied in a number of papers (see, e.g., [9, 12, 13, 20, 22–24, 26, 27, 35,
37, 40]). In addition, the monograph by Schmidli [34] is devoted to optimal dividend
problems in insurance risk models.

Applying multi-layer dividend strategies enables to change the dividend payment
intensity depending on the current surplus. Albrecher and Hartinger [1] consider the
modification of the classical risk model where both the premium intensity and the div-
idend payment intensity are assumed to be step functions depending on the current
surplus level. The authors derive algorithmic schemes for the determination of ex-
plicit expressions for the Gerber–Shiu function and the expected discounted dividend
payments. A similar risk model is considered by Lin and Sendova [25], who derive
a piecewise integro-differential equation for the Gerber–Shiu function and provide a
recursive approach to obtain general solutions to that equation and its generalizations.
Developing a recursive algorithm to calculate the moments of the expected discounted
dividend payments for a class of risk models with Markovian claim arrivals, Bade-
scu and Landriault [3] generalize some of the results obtained in [1] (see also [4] for
some results related to the class of Markovian risk models with a multi-layer dividend
strategy).

The absolute ruin problem in the classical risk model with constant interest force
and a multi-layer dividend strategy is investigated in [43], where a piecewise integro-
differential equation for the discounted penalty function is derived, some explicit
expressions are given when claims are exponentially distributed and an asymptotic
formula for the absolute ruin probability is obtained for heavy-tailed claim sizes. The
dual model of the compound Poisson risk model with a multi-layer dividend strategy
under stochastic interest is considered in [44]. Results related to perturbed compound
Poisson risk models under multi-layer dividend strategies can be found in [31, 42].
In addition, different classes of more general renewal risk models are investigated
in [15, 19, 40, 41], and some recent papers deal with risk models that incorporate
various dependence structures (see, e.g., [21, 38, 46, 48]).

The present paper generalizes the risk model with stochastic premiums intro-
duced and investigated in [5] (see also [28]). In that risk model, both claims and
premiums are modeled as compound Poisson processes, whereas premiums arrive
with constant intensity and are not random in the classical compound Poisson risk
model (see also [29, 30] for a generalization of the classical risk model where an
insurance company gets additional funds whenever a claim arrives). In [5], claim
sizes and inter-claim times are assumed to be mutually independent, and the same
assumption is made concerning premium arrivals. In contrast to [5], the recent pa-
per [32] deals with the risk model with stochastic premiums where the dependence
structures between claim sizes and inter-claim times as well as premium sizes and
inter-premium times are modeled by the Farlie–Gumbel–Morgenstern copulas, and
dividends are paid according to a threshold dividend strategy. The Gerber–Shiu func-
tion, a special case of which is the ruin probability, and the expected discounted
dividend payments until ruin are studied in [32]. In the present paper, we develop
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those results and make the assumption that dividends are paid according to a multi-
layer dividend strategy and all random variables and processes are mutually indepen-
dent.

The rest of the paper is organized as follows. In Section 2, we give a description
of the risk model with stochastic premiums and a multi-layer dividend strategy. In
Sections 3 and 4, we derive piecewise integro-differential equations for the Gerber–
Shiu function and the expected discounted dividend payments until ruin. Next, in
Section 5, we deal with exponentially distributed claim and premium sizes and ob-
tain explicit formulas for the ruin probability and the expected discounted dividend
payments. Finally, Section 6 provides some numerical illustrations.

2 Description of the model

Let (Ω,F,P) be a probability space satisfying the usual conditions, and let all the
stochastic objects we use below be defined on it.

In the risk model with stochastic premiums introduced in [5] (see also [28]), claim
sizes form a sequence (Yi)i≥1 of non-negative independent and identically distributed
(i.i.d.) random variables (r.v.’s) with cumulative distribution function (c.d.f.) FY (y) =
P[Yi ≤ y], and the number of claims on the time interval [0, t] is a Poisson process
(Nt )t≥0 with constant intensity λ > 0. In addition, premium sizes form a sequence
(Ȳi)i≥1 of non-negative i.i.d. r.v.’s with c.d.f. F̄Ȳ (y) = P[Ȳi ≤ y], and the number
of premiums on the time interval [0, t] is a Poisson process (N̄t )t≥0 with constant
intensity λ̄ > 0. Thus, the total claims and premiums on [0, t] equal

∑Nt

i=1 Yi and∑N̄t

i=1 Ȳi , respectively.
It is worth pointing out that, here and subsequently, a sum is always set to 0 if the

upper summation index is less than the lower one. In particular, we have
∑0

i=1 Yi = 0
if Nt = 0, and

∑0
i=1 Ȳi = 0 if N̄t = 0. In what follows, we also assume that the

r.v.’s (Yi)i≥1 and (Ȳi)i≥1 have finite expectations μ > 0 and μ̄ > 0, respectively.
Furthermore, we suppose that (Yi)i≥1, (Ȳi)i≥1, (Nt )t≥0 and (N̄t )t≥0 are mutually
independent.

Next, we denote a non-negative initial surplus of the insurance company by x,
and let Xt(x) be its surplus at time t provided that the initial surplus is x. Then the
surplus process (Xt (x))t≥0 is defined by the equality

Xt(x) = x +
N̄t∑
i=1

Ȳi −
Nt∑
i=1

Yi, t ≥ 0. (1)

In contrast to the risk model considered in [5], we make the additional assumption
that the insurance company pays dividends to its shareholders according to a k-layer
dividend strategy with k ≥ 2. Let b = (b1, . . . , bk−1) be a (k−1)-dimensional vector
with real-valued components such that 0 < b1 < · · · < bk−1 < ∞. Besides that, we
set b0 = 0 and bk = ∞. Let (Xb

t (x))t≥0 denote the modified surplus process under
the k-layer dividend strategy b, which implies that dividends are paid continuously at
a rate dj > 0 whenever bj−1 ≤ Xb

t (x) < bj , i.e. the process (Xb
t (x))t≥0 is in the j th
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layer at time t , where 1 ≤ j ≤ k. Then

Xb
t (x) = x +

N̄t∑
i=1

Ȳi −
Nt∑
i=1

Yi −
∫ t

0

k∑
j=1

dj1
(
bj−1 ≤ Xb

s (x) < bj

)
ds, t ≥ 0, (2)

where 1(·) is the indicator function.
From now on, we suppose that the net profit condition holds, which in this case

means that
λ̄μ̄ > λμ + max

1≤j≤k
{dj }. (3)

Let (Dt )t≥0 denote the dividend distributing process. For the k-layer dividend
strategy described above, we have

dDt = dj ds if bj−1 ≤ Xb
t (x) < bj , 1 ≤ j ≤ k.

Next, let τb(x) = inf{t ≥ 0 : Xb
t (x) < 0} be the ruin time for the risk process

(Xb
t (x))t≥0 defined by (2). In what follows, we omit the dependence on x and write

τb instead of τb(x) when no confusion can arise.
For δ0 ≥ 0, the Gerber–Shiu function is defined by

m(x, b) = E
[
e−δ0τb w

(
Xb

τb−(x),
∣∣Xb

τb
(x)

∣∣) 1(τb < ∞) |Xb
0 (x) = x

]
, x ≥ 0,

where w(·, ·) is a bounded non-negative measurable function, Xb
τb−(x) is the surplus

immediately before ruin and |Xb
τb

(x)| is a deficit at ruin. Note that if w(·, ·) ≡ 1 and
δ0 = 0, then m(x, b) becomes the infinite-horizon ruin probability

ψ(x, b) = E
[
1(τb < ∞) |Xb

0 (x) = x
]
.

For δ > 0, the expected discounted dividend payments until ruin are defined by

v(x, b) = E

[∫ τb

0
e−δt dDt |Xb

0 (x) = x

]
, x ≥ 0.

For simplicity of notation, we also write m(x), ψ(x) and v(x) instead of m(x, b),
ψ(x, b) and v(x, b), respectively. For all 1 ≤ j ≤ k and bj−1 ≤ x ≤ bj , we also
set mj(x) = m(x, b), ψj(x) = ψ(x, b) and vj (x) = v(x, b). Thus, the functions
mj(x), ψj (x) and vj (x) are defined on [bj−1, bj ], and we have mj(bj ) = mj+1(bj ),
ψj(bj ) = ψj+1(bj ) and vj (bj ) = vj+1(bj ) for all 1 ≤ j ≤ k − 1.

Remark 1. Note that although we consider the interval [bk−1,∞) instead of [bj−1, bj ]
if j = k, for the sake of convenience and compactness, here and subsequently, we do
write [bj−1, bj ] for all 1 ≤ j ≤ k. In addition, in what follows, the derivatives of all
functions at the ends of the closed intervals [bj−1, bj ] are assumed to be one-sided.

3 Piecewise integro-differential equation for the Gerber–Shiu function

Theorem 1. Let the surplus process (Xb
t (x))t≥0 be defined by (2) under the above

assumptions, and let FY (y) and w(u1, u2) be continuous on R+ and R
2+, respectively.
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Then the function m(x) is differentiable on the intervals [bj−1, bj ] for all 1 ≤ j ≤ k

and satisfies the piecewise integro-differential equation

djm
′(x) + (λ + λ̄ + δ0)m(x) = λ

∫ x

0
m(x − y) dFY (y)

+ λ

∫ ∞

x

w(x, y − x) dFY (y) + λ̄

∫ ∞

0
m(x + y) dFȲ (y), x ∈ [bj−1, bj ]. (4)

Proof. We now fix any j such that 1 ≤ j ≤ k and deal with the case x ∈ [bj−1, bj ].
For all x ∈ [bj−1, bj ], we define the following functions:

a1(x) = (x − bj−1)/dj + (bj−1 − bj−2)/dj−1 + · · · + (b2 − b1)/d2 + (b1 − b0)/d1,

a2(x) = (x − bj−1)/dj + (bj−1 − bj−2)/dj−1 + · · · + (b2 − b1)/d2,

. . .

aj−1(x) = (x − bj−1)/dj + (bj−1 − bj−2)/dj−1,

aj (x) = (x − bj−1)/dj .

From these equalities we conclude that for all x ∈ [bj−1, bj ], the process
(Xb

t (x))t≥0 up to its first jump is in the j th layer if t ∈ [0, aj (x)] and in the ith
layer if t ∈ [ai+1(x), ai(x)], where 1 ≤ i ≤ j − 1. Thus, for any x ∈ [bj−1, bj ],
the sequence aj (x), aj−1(x), . . . , a1(x) defines the times when (Xb

t (x))t≥0 passes
through the values bj−1, bj−2, . . . , b0 provided that it has no jumps until those times.

It is easily seen that the time of the first jump of (Xb
t (x))t≥0 is exponentially

distributed with mean 1/(λ + λ̄). Considering the time and the size of the first jump
of that process and applying the law of total probability we obtain

m(x) = Ij (x) + Ij−1(x) + · · · + I1(x) + I0(x), x ∈ [bj−1, bj ], (5)

where

Ij (x) =
∫ aj (x)

0
e−(λ+λ̄)t

(
λ

∫ x−dj t

0
e−δ0t m(x − dj t − y) dFY (y)

+ λ

∫ ∞

x−dj t

e−δ0t w(x − dj t, y − x + dj t) dFY (y)

+ λ̄

∫ ∞

0
e−δ0t m(x − dj t + y) dFȲ (y)

)
dt,

Ij−1(x) =
∫ aj−1(x)

aj (x)

e−(λ+λ̄)t

(
λ

∫ bj−1−dj−1(t−aj (x))

0
e−δ0t

× m
(
bj−1 − dj−1

(
t − aj (x)

) − y
)

dFY (y)

+ λ

∫ ∞

bj−1−dj−1(t−aj (x))

e−δ0t w
(
bj−1 − dj−1

(
t − aj (x)

)
,

y − bj−1 + dj−1
(
t − aj (x)

))
dFY (y)

+ λ̄

∫ ∞

0
e−δ0t m

(
bj−1 − dj−1

(
t − aj (x)

) + y
)

dFȲ (y)

)
dt,
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. . .

I1(x) =
∫ a1(x)

a2(x)

e−(λ+λ̄)t

(
λ

∫ b1−d1(t−a2(x))

0
e−δ0t

× m
(
b1 − d1

(
t − a2(x)

) − y
)

dFY (y)

+ λ

∫ ∞

b1−d1(t−a2(x))

e−δ0t w
(
b1 − d1

(
t − a2(x)

)
,

y − b1 + d1
(
t − a2(x)

))
dFY (y)

+ λ̄

∫ ∞

0
e−δ0t m

(
b1 − d1

(
t − a2(x)

) + y
)

dFȲ (y)

)
dt,

I0(x) = e−(λ+λ̄+δ0) a1(x) w(0, 0).

Note that the term Ii(x), 1 ≤ i ≤ j , in (5) corresponds to the case where
(Xb

t (x))t≥0 is in the ith layer when its first jump occurs, and the term I0(x) cor-
responds to the case where there are no jumps of (Xb

t (x))t≥0 up to the time a1(x).
Changing the variable x −dj t = s in the outer integral in the expression for Ij (x)

yields

Ij (x) = 1

dj

e−(λ+λ̄+δ0)x/dj

∫ x

bj−1

e(λ+λ̄+δ0)s/dj

(
λ

∫ s

0
m(s − y) dFY (y)

+ λ

∫ ∞

s

w(s, y − s) dFY (y) + λ̄

∫ ∞

0
m(s + y) dFȲ (y)

)
ds. (6)

Changing the variable bj−1 − dj−1(t − aj (x)) = s in the outer integral in the
expression for Ij−1(x) gives

Ij−1(x) = 1

dj−1
e−(λ+λ̄+δ0)(aj (x)+bj−1/dj−1)

×
∫ bj−1

bj−2

e(λ+λ̄+δ0)s/dj−1

(
λ

∫ s

0
m(s − y) dFY (y)

+ λ

∫ ∞

s

w(s, y − s) dFY (y) + λ̄

∫ ∞

0
m(s + y) dFȲ (y)

)
ds. (7)

In the same manner we change variables in all the outer integrals on the right-
hand side of (5). Finally, changing the variable b1 − d1(t − a2(x)) = s in the outer
integral in the expression for I1(x) yields

I1(x) = 1

d1
e−(λ+λ̄+δ0)(a2(x)+b1/d1)

∫ b1

b0

e(λ+λ̄+δ0)s/d1

×
(

λ

∫ s

0
m(s − y) dFY (y) + λ

∫ ∞

s

w(s, y − s) dFY (y)

+ λ̄

∫ ∞

0
m(s + y) dFȲ (y)

)
ds. (8)
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Thus, from the above and equality (5) we deduce that m(x) is continuous on
[bj−1, bj ], and hence, on R+. Therefore, (6) implies that Ij (x) is differentiable on
[bj−1, bj ], and for all x ∈ [bj−1, bj ], we get

I ′
j (x) = −λ + λ̄ + δ0

dj

Ij (x) + 1

dj

(
λ

∫ x

0
m(x − y) dFY (y)

+ λ

∫ ∞

x

w(x, y − x) dFY (y) + λ̄

∫ ∞

0
m(x + y) dFȲ (y)

)
.

Moreover, it is easily seen, e.g. from (7) and (8), that all the functions Ij−1(x), . . . ,

I1(x) and I0(x) are differentiable on [bj−1, bj ], and for all x ∈ [bj−1, bj ], we
have

I ′
j−1(x) = −λ + λ̄ + δ0

dj

Ij−1(x), . . . , I ′
1(x) = −λ + λ̄ + δ0

dj

I1(x),

I ′
0(x) = −λ + λ̄ + δ0

dj

I0(x).

From (5) it follows that m(x) is also differentiable on [bj−1, bj ]. Differentiat-
ing (5) and taking into account expressions for I ′

j (x), I ′
j−1(x), . . . , I ′

1(x), I ′
0(x) we

obtain

m′(x) = −λ + λ̄ + δ0

dj

m(x) + 1

dj

(
λ

∫ x

0
m(x − y) dFY (y)

+ λ

∫ ∞

x

w(x, y − x) dFY (y) + λ̄

∫ ∞

0
m(x + y) dFȲ (y)

)
, x ∈ [bj−1, bj ],

from which equation (4) follows immediately.

Remark 2. To solve equation (4), we use the following boundary conditions. The
first k − 1 conditions are easily obtained from the equality mj(bj ) = mj+1(bj ) or,
equivalently, limx↑bj

m(x) = limx↓bj
m(x) for all 1 ≤ j ≤ k − 1. In addition, for

the ruin probability, using standard considerations (see, e.g., [28, 30, 33]) we can
show that limx→∞ ψ(x) = 0 provided that the net profit condition holds. Finally, it
is evident that ψ(0) = 1. Although equation (4) is not solvable analytically in the
general case, we can find explicit expressions for the corresponding ruin probability
in the case where claim and premium sizes are exponentially distributed (see Sec-
tion 5). The uniqueness of the required solution to (4) should be justified in each
case.

Remark 3. In the assertion of Theorem 1, we require the continuity of FY (y). Note
that if FY (y) has positive points of discontinuity, then m(x) may be not differentiable
at some interior points of the intervals [bj−1, bj ], 1 ≤ j ≤ k (for details, see [28, 30]).
Moreover, it is easily seen from (4) that m(x) is not differentiable at x = bj , 1 ≤ j ≤
k − 1, since its one-sided derivatives do not coincide at those points.
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4 Piecewise integro-differential equation for the expected discounted dividend
payments until ruin

Theorem 2. Let the surplus process (Xb
t (x))t≥0 be defined by (2) under the above

assumptions, and let FY (y) be continuous on R+. Then the function v(x) is differ-
entiable on the intervals [bj−1, bj ] for all 1 ≤ j ≤ k and satisfies the piecewise
integro-differential equation

djv
′(x) + (λ + λ̄ + δ)v(x) = λ

∫ x

0
v(x − y) dFY (y)

+ λ̄

∫ ∞

0
v(x + y) dFȲ (y) + dj , x ∈ [bj−1, bj ]. (9)

Proof. We now fix any j such that 1 ≤ j ≤ k and deal with the case x ∈ [bj−1, bj ].
As in the proof of Theorem 1, considering the time and the size of the first jump of
(Xb

t (x))t≥0 and applying the law of total probability we have

v(x) = I1,j (x) + I2,j (x) + I1,j−1(x) + I2,j−1(x) + · · ·
+ I1,1(x) + I2,1(x) + I1,0(x), x ∈ [bj−1, bj ], (10)

where

I1,j (x) =
∫ aj (x)

0
(λ + λ̄)e−(λ+λ̄)t

(∫ t

0
dj e

−δs ds

)
dt,

I2,j (x) =
∫ aj (x)

0
e−(λ+λ̄)t

(
λ

∫ x−dj t

0
e−δt v(x − dj t − y) dFY (y)

+ λ̄

∫ ∞

0
e−δt v(x − dj t + y) dFȲ (y)

)
dt,

I1,j−1(x) =
∫ aj−1(x)

aj (x)

(λ + λ̄)e−(λ+λ̄)t

(∫ aj (x)

0
dj e

−δs ds +
∫ t

aj (x)

dj−1e
−δs ds

)
dt,

I2,j−1(x) =
∫ aj−1(x)

aj (x)

e−(λ+λ̄)t

(
λ

∫ bj−1−dj−1(t−aj (x))

0
e−δt

× v
(
bj−1 − dj−1

(
t − aj (x)

) − y
)

dFY (y)

+ λ̄

∫ ∞

0
e−δt v

(
bj−1 − dj−1

(
t − aj (x)

) + y
)

dFȲ (y)

)
dt,

. . .

I1,1(x) =
∫ a1(x)

a2(x)

(λ + λ̄)e−(λ+λ̄)t

(∫ aj (x)

0
dj e

−δs ds +
∫ aj−1(x)

aj (x)

dj−1e
−δs ds + · · ·

+
∫ a2(x)

a3(x)

d2e
−δs ds +

∫ t

a2(x)

d1e
−δs ds

)
dt,
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I2,1(x) =
∫ a1(x)

a2(x)

e−(λ+λ̄)t

(
λ

∫ b1−d1(t−a2(x))

0
e−δt

× v
(
b1 − d1

(
t − a2(x)

) − y
)

dFY (y)

+ λ̄

∫ ∞

0
e−δt v

(
b1 − d1

(
t − a2(x)

) + y
)

dFȲ (y)

)
dt,

I1,0(x) =
∫ ∞

a1(x)

(λ + λ̄)e−(λ+λ̄)t

(∫ aj (x)

0
dj e

−δs ds +
∫ aj−1(x)

aj (x)

dj−1e
−δs ds + · · ·

+
∫ a2(x)

a3(x)

d2e
−δs ds +

∫ a1(x)

a2(x)

d1e
−δs ds

)
dt,

and the functions a1(x), a2(x), . . . , aj (x) are defined in the proof of Theorem 1.
Note that the terms I1,i (x) and I2,i (x), 1 ≤ i ≤ j , in (10) correspond to the case

where (Xb
t (x))t≥0 is in the ith layer when its first jump occurs, and the term I1,0(x)

corresponds to the case where there are no jumps of (Xb
t (x))t≥0 up to the time a1(x).

The terms I1,i (x), 0 ≤ i ≤ j , are equal to the discounted dividend payments until
the first jump of (Xb

t (x))t≥0 provided that the process is in the ith layer, whereas
the terms I2,i (x), 1 ≤ i ≤ j , are equal to the corresponding expected discounted
dividend payments after that time.

Next, we set

I1,∗(x) = I1,j (x) + I1,j−1(x) + · · · + I1,1(x) + I1,0(x), x ∈ [bj−1, bj ]. (11)

Thus, I1,∗(x) describes the expected discounted dividend payments until the first
jump of (Xb

t (x))t≥0.
Rearranging terms in the expression for I1,∗(x) gives

I1,∗(x) = (λ + λ̄)

( ∫ aj (x)

0
e−(λ+λ̄)t

(∫ t

0
dj e

−δs ds

)
dt

+
∫ aj−1(x)

aj (x)

e−(λ+λ̄)t

(∫ t

aj (x)

dj−1e
−δs ds

)
dt + · · ·

+
∫ a1(x)

a2(x)

e−(λ+λ̄)t

(∫ t

a2(x)

d1e
−δs ds

)
dt

+
∫ ∞

aj (x)

e−(λ+λ̄)t

(∫ aj (x)

0
dj e

−δs ds

)
dt

+
∫ ∞

aj−1(x)

e−(λ+λ̄)t

(∫ aj−1(x)

aj (x)

dj−1e
−δs ds

)
dt + · · ·

+
∫ ∞

a1(x)

e−(λ+λ̄)t

(∫ a1(x)

a2(x)

d1e
−δs ds

)
dt

)
. (12)

Taking all the integrals on the right-hand side of (12) and simplifying the resulting
expression we get

I1,∗(x) = dj

λ + λ̄ + δ

(
1 − e−(λ+λ̄+δ) aj (x)

)
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+ dj−1

λ + λ̄ + δ

(
e−(λ+λ̄+δ) aj (x) − e−(λ+λ̄+δ) aj−1(x)

) + · · ·

+ d1

λ + λ̄ + δ

(
e−(λ+λ̄+δ) a2(x) − e−(λ+λ̄+δ) a1(x)

)
. (13)

Changing the variable x − dj t = s in the outer integral in the expression for
I2,j (x) gives

I2,j (x) = 1

dj

e−(λ+λ̄+δ)x/dj

∫ x

bj−1

e(λ+λ̄+δ)s/dj

×
(

λ

∫ s

0
v(s − y) dFY (y) + λ̄

∫ ∞

0
v(s + y) dFȲ (y)

)
ds. (14)

Likewise, changing the variable bj−1 − dj−1(t − aj (x)) = s in the outer integral
in the expression for I2,j−1(x) yields

I2,j−1(x) = 1

dj−1
e−(λ+λ̄+δ)(aj (x)+bj−1/dj−1)

∫ bj−1

bj−2

e(λ+λ̄+δ)s/dj−1

×
(

λ

∫ s

0
v(s − y) dFY (y) + λ̄

∫ ∞

0
v(s + y) dFȲ (y)

)
ds. (15)

Next, in the same manner we change variables in all those outer integrals on the
right-hand side of (10) that are not included in the sum (11). Eventually, changing the
variable b1 − d1(t − a2(x)) = s in the outer integral in the expression for I2,1(x) we
obtain

I2,1(x) = 1

d1
e−(λ+λ̄+δ)(a2(x)+b1/d1)

∫ b1

b0

e(λ+λ̄+δ)s/d1

×
(

λ

∫ s

0
v(s − y) dFY (y) + λ̄

∫ ∞

0
v(s + y) dFȲ (y)

)
ds. (16)

From (13) it follows immediately that I ′
1,∗(x) is differentiable on [bj−1, bj ], and

for all x ∈ [bj−1, bj ], we get

I ′
1,∗(x) = −λ + λ̄ + δ

dj

(
I1,∗(x) − dj

λ + λ̄ + δ

)
.

Next, from the above and equality (10) we conclude that v(x) is continuous on
[bj−1, bj ], and hence, on R+. Hence, (14) implies that I2,j (x) is differentiable on
[bj−1, bj ], and for all x ∈ [bj−1, bj ], we have

I ′
2,j (x) = −λ + λ̄ + δ

dj

I2,j (x)

+ 1

dj

(
λ

∫ x

0
v(x − y) dFY (y) + λ̄

∫ ∞

0
v(x + y) dFȲ (y)

)
.
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Furthermore, it follows immediately, e.g. from (15) and (16), that all the functions
I2,j−1(x), . . . , I2,1(x) are differentiable on [bj−1, bj ], and for all x ∈ [bj−1, bj ], we
obtain

I ′
2,j−1(x) = −λ + λ̄ + δ

dj

I2,j−1(x), . . . , I ′
2,1(x) = −λ + λ̄ + δ

dj

I2,1(x).

By (10), we conclude that v(x) is also differentiable on [bj−1, bj ]. Differentiating
(10) and taking into account expressions for I ′

1,∗(x), I ′
2,j (x), I ′

2,j−1(x), . . . , I ′
2,1(x)

we get

v′(x) = −λ + λ̄ + δ

dj

v(x) + 1 + 1

dj

(
λ

∫ x

0
v(x − y) dFY (y)

+ λ̄

∫ ∞

0
v(x + y) dFȲ (y)

)
, x ∈ [bj−1, bj ],

which immediately yields equation (9).

Remark 4. To solve equation (9), we obtain the first k −1 boundary conditions from
the equality vj (bj ) = vj+1(bj ) or, equivalently, limx↑bj

v(x) = limx↓bj
v(x) for all

1 ≤ j ≤ k−1. Moreover, if the net profit condition holds, applying arguments similar
to those in [34, p. 70] we can show that limx→∞ v(x) = dk/δ. Lastly, it is easily seen
that v(0) = 0. The uniqueness of the required solution to (9) should be justified in
each case. Explicit expressions for v(x) in the case where claim and premium sizes
are exponentially distributed are given in Section 5.

Remark 5. If FY (y) has positive points of discontinuity, then v(x) may be not differ-
entiable at some interior points of the intervals [bj−1, bj ], 1 ≤ j ≤ k. Furthermore,
from (9) we deduce that v(x) is not differentiable at x = bj , 1 ≤ j ≤ k − 1.

5 Exponentially distributed claim and premium sizes

In this section, we concentrate on the case where claim and premium sizes are expo-
nentially distributed, i.e.

fY (y) = 1

μ
e−y/μ and fȲ (y) = 1

μ̄
e−y/μ̄, y ≥ 0. (17)

5.1 Explicit formulas for the ruin probability

Let now w(·, ·) ≡ 1 and δ0 = 0. Taking into account (17), equation (4) for the ruin
probability can be written as

djψ
′(x) + (λ + λ̄)ψ(x)

= λ

μ
e−x/μ

∫ x

0
ψ(u)eu/μ du + λe−x/μ + λ̄

μ̄
ex/μ̄

∫ ∞

x

ψ(u)e−u/μ̄ du (18)

for all x ∈ [bj−1, bj ] and 1 ≤ j ≤ k.
We now reduce piecewise integro-differential equation (18) to a piecewise linear

differential equation with constant coefficients.
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Lemma 1. Let the surplus process (Xb
t (x))t≥0 be defined by (2) under the above

assumptions, and let claim and premium sizes be exponentially distributed with means
μ and μ̄, respectively. Then ψ(x) is a solution to the piecewise differential equation

djμμ̄ψ ′′′(x) + (
dj (μ̄ − μ) + μμ̄(λ + λ̄)

)
ψ ′′(x) + (λ̄μ̄ − λμ − dj )ψ

′(x) = 0 (19)

for all x ∈ [bj−1, bj ] and 1 ≤ j ≤ k.

Proof. It is easily seen that the right-hand side of (18) is differentiable on [bj−1, bj ].
Therefore, ψ(x) is twice differentiable on [bj−1, bj ]. Differentiating (18) gives

djψ
′′(x) + (λ + λ̄)ψ ′(x) = − 1

μ

(
λ

μ
e−x/μ

∫ x

0
ψ(u)eu/μ du + λe−x/μ

)

+ λ̄

μ̄2 ex/μ̄

∫ ∞

x

ψ(u)e−u/μ̄ du +
(

λ

μ
− λ̄

μ̄

)
ψ(x), x ∈ [bj−1, bj ]. (20)

Multiplying (20) by μ and adding (18) we get

djμψ ′′(x) + (
dj + μ(λ + λ̄)

)
ψ ′(x) + λ̄

(
1 + μ

μ̄

)
ψ(x)

= λ̄

μ̄

(
1 + μ

μ̄

)
ex/μ̄

∫ ∞

x

ψ(u)e−u/μ̄ du, x ∈ [bj−1, bj ]. (21)

From (21) it follows that ψ(x) has the third derivative on x ∈ [bj−1, bj ]. Differ-
entiating (21) yields

djμψ ′′′(x) + (
dj + μ(λ + λ̄)

)
ψ ′′(x) + λ̄

(
1 + μ

μ̄

)
ψ ′(x)

= λ̄

μ̄2

(
1 + μ

μ̄

)
ex/μ̄

∫ ∞

x

ψ(u)e−u/μ̄ du − λ̄

μ̄

(
1 + μ

μ̄

)
ψ(x), x ∈ [bj−1, bj ].

(22)

Finally, multiplying (22) by (−μ̄) and adding (21) we obtain (19).

For 1 ≤ j ≤ k, we now define the following constants, which are used in the
assertion of Theorem 3 below:

Dj = (
dj (μ + μ̄) + μμ̄(λ − λ̄)

)2 + 4λλ̄μ2μ̄2,

z1,j = −(dj (μ̄ − μ) + μμ̄(λ + λ̄)) + √
Dj

2djμμ̄

and

z2,j = −(dj (μ̄ − μ) + μμ̄(λ + λ̄)) − √
Dj

2djμμ̄
.

Theorem 3. Let the surplus process (Xb
t (x))t≥0 be defined by (2) under the above

assumptions, and let claim and premium sizes be exponentially distributed with means
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μ and μ̄, respectively. If the net profit condition (3) holds, then we have

ψj(x) = C1,j e
z1,j x + C2,j e

z2,j x + C3,j (23)

for all x ∈ [bj−1, bj ] and 1 ≤ j ≤ k, where C3,k = 0 and all the other constants
C1,j , C2,j and C3,j are determined from the system of linear equations (24)–(27):

λe−bj−1/μ

j−1∑
l=1

( 2∑
i=1

Ci,l

μzi,l + 1

(
e(zi,l+1/μ)bl − e(zi,l+1/μ)bl−1

)

+ (
ebl/μ−ebl−1/μ

)
C3,l

)
+

2∑
i=1

(
λ̄ebj−1/μ̄

μ̄zi,j − 1

(
e(zi,j −1/μ̄)bj −e(zi,j −1/μ̄)bj−1

)

− (dj zi,j + λ + λ̄)ezi,j bj−1

)
Ci,j − (

λ̄e(bj−1−bj )/μ̄ + λ
)
C3,j

+ λ̄ebj−1/μ̄
k∑

l=j+1

( 2∑
i=1

Ci,l

μ̄zi,l − 1

(
e(zi,l−1/μ̄)bl − e(zi,l−1/μ̄)bl−1

)

− (
e−bl/μ̄ − e−bl−1/μ̄

)
C3,l

)
= −λe−bj−1/μ, 1 ≤ j ≤ k, (24)

C1,1 + C2,1 + C3,1 = 1, (25)

dj

2∑
i=1

zi,j e
zi,j bj Ci,j − dj+1

2∑
i=1

zi,j+1e
zi,j+1bj Ci,j+1 = 0, 1 ≤ j ≤ k − 1, (26)

and

2∑
i=1

ezi,j bj Ci,j + C3,j −
2∑

i=1

ezi,j+1bj Ci,j+1 − C3,j+1 = 0, 1 ≤ j ≤ k − 1, (27)

provided that its determinant is not equal to 0.

Proof. Taking into account the notation introduced in Section 2 and applying
Lemma 1 we conclude that the function ψj (x) is a solution to (19) on x ∈ [bj−1, bj ]
for each 1 ≤ j ≤ k. The corresponding characteristic equation has the form

djμμ̄z3 + (
dj (μ̄ − μ) + μμ̄(λ + λ̄)

)
z2 + (λ̄μ̄ − λμ − dj )z = 0 (28)

for all 1 ≤ j ≤ k. We first show that the equation

djμμ̄z2 + (
dj (μ̄ − μ) + μμ̄(λ + λ̄)

)
z + (λ̄μ̄ − λμ − dj ) = 0 (29)

has two negative roots. Indeed, its discriminant is equal to
(
dj (μ̄ − μ) + μμ̄(λ + λ̄)

)2 − 4djμμ̄(λ̄μ̄ − λμ − dj )

= d2
j (μ̄ − μ)2 + μ2μ̄2(λ + λ̄)2 + 2djμμ̄(λ + λ̄)(μ̄ − μ)

+ 4djμμ̄(dj + λμ − λ̄μ̄)
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= d2
j (μ + μ̄)2 + μ2μ̄2(λ + λ̄)2 + 2djμμ̄(λ − λ̄)(μ + μ̄)

= (
dj (μ + μ̄) + μμ̄(λ − λ̄)

)2 + 4λλ̄μ2μ̄2.

Hence, it is positive and coincides with the constant Dj defined above. Consequently,
z1,j and z2,j defined before the assertion of the theorem are two real roots of equation
(29). By the net profit condition (3), we have

λ̄μ̄ − λμ − dj > 0

and

dj (μ̄ − μ) + μμ̄(λ + λ̄) = μ(λ̄μ̄ − λμ − dj ) + λμ2 + λμμ̄ + dj μ̄ > 0

for all 1 ≤ j ≤ k, which implies that z1,j < 0 and z2,j < 0.
Therefore, z1,j < 0, z2,j < 0 and z3,j = 0 are roots of equation (28), and

we get (23) with some constants C1,j , C2,j and C3,j . Moreover, since condition (3)
holds, using standard considerations (see, e.g., [28, 30, 33]) we can easily show that
limx→∞ ψ(x) = 0, which yields C3,k = 0.

To determine all the other constants C1,j , C2,j and C3,j , we use the following
boundary conditions. The first k conditions are obtained by letting x = bj−1 in (18)
for 1 ≤ j ≤ k:

djψ
′(bj−1) + (λ + λ̄)ψ(bj−1) = λ

μ
e−bj−1/μ

∫ bj−1

0
ψ(u)eu/μ du

+ λe−bj−1/μ + λ̄

μ̄
ebj−1/μ̄

∫ ∞

bj−1

ψ(u)e−u/μ̄ du. (30)

One more condition is obtained from the equality ψ(0) = 1. Finally, the last
2(k − 1) conditions are derived from the equalities djψ

′
j (bj ) = dj+1ψ

′
j+1(bj ) and

ψj(bj ) = ψj+1(bj ) for 1 ≤ j ≤ k − 1. Note that the first equality easily follows
from (18).

Taking into account (23), for all 1 ≤ j ≤ k, we get:

ψ ′
j (x) = C1,j z1,j e

z1,j x + C2,j z2,j e
z2,j x , x ∈ [bj−1, bj ], (31)

∫ bj−1

0
ψ(u)eu/μ du =

j−1∑
l=1

∫ bl

bl−1

ψl(u)eu/μ du =
j−1∑
l=1

( 2∑
i=1

Ci,l

zi,l + 1/μ

× (
e(zi,l+1/μ)bl − e(zi,l+1/μ)bl−1

) + C3,lμ
(
ebl/μ − ebl−1/μ

))
(32)

and
∫ ∞

bj−1

ψ(u)e−u/μ̄ du =
k∑

l=j

∫ bl

bl−1

ψl(u)e−u/μ̄ du =
k∑

l=j

( 2∑
i=1

Ci,l

zi,l − 1/μ̄

× (
e(zi,l−1/μ̄)bl − e(zi,l−1/μ̄)bl−1

) − C3,l μ̄
(
e−bl/μ̄ − e−bl−1/μ̄

))
. (33)
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Substituting (23), (31), (32) and (33) into (30) and doing some simplifications
yield (24). Next, from the equality ψ(0) = 1 we get (25). Lastly, substituting (31)
into djψ

′
j (bj ) = dj+1ψ

′
j+1(bj ) and (23) into ψj(bj ) = ψj+1(bj ) for 1 ≤ j ≤ k − 1

immediately yields (26) and (27), respectively.
Thus, we get the system of 3k − 1 linear equations (24)–(27) to determine 3k − 1

unknown constants. That system has a unique solution provided that its determinant
is not equal to 0. Hence, piecewise differential equation (19) has a unique solution
satisfying certain conditions and that solution is given by (23). Since we have derived
(19) from (18) without any additional assumptions concerning the differentiability of
ψ(x), we conclude that the functions ψj (x), 1 ≤ j ≤ k, given by (23) are unique
solutions to (18) on the intervals [bj−1, bj ] satisfying certain conditions. This guar-
anties that the functions ψj (x) we have found coincide with the ruin probability on
[bj−1, bj ], which completes the proof.

Remark 6. In particular, if k = 2, then C3,2 = 0 and the constants C1,1, C2,1, C3,1,
C1,2 and C2,2 are determined from the system of linear equations (34)–(38):

2∑
i=1

(
λ̄

μ̄zi,1 − 1

(
1 − e(zi,1−1/μ̄)b1

) + d1zi,1 + λ + λ̄

)
Ci,1

+ (
λ̄e−b1/μ̄ + λ

)
C3,1 +

2∑
i=1

λ̄e(zi,2−1/μ̄)b1

μ̄zi,2 − 1
Ci,2 = λ, (34)

2∑
i=1

λe−b1/μ

μzi,1 + 1

(
1 − e(zi,1+1/μ)b1

)
Ci,1 + λ

(
e−b1/μ − 1

)
C3,1

+
2∑

i=1

(
λ̄ezi,2b1

μ̄zi,2 − 1
+ (d2zi,2 + λ + λ̄)ezi,2b1

)
Ci,2 = λe−b1/μ, (35)

C1,1 + C2,1 + C3,1 = 1, (36)

d1

2∑
i=1

zi,1e
zi,1b1Ci,1 − d2

2∑
i=1

zi,2e
zi,2b1Ci,2 = 0 (37)

and
2∑

i=1

ezi,1b1Ci,1 + C3,1 −
2∑

i=1

ezi,2b1Ci,2 = 0 (38)

provided that its determinant is not equal to 0.

The proposition below enables us to check whether the system of equations (34)–
(38) has a unique solution. Let

� = 1

λ̄(μ + μ̄)2

× (
d1μ̄(z1,1 − z2,1)

(
eb1/μ̄ − e−b1/μ

)(
(λ̄μ̄ − λμ − d1)e

b1/μ̄ − (λ̄μ̄ − λμ − d2)
)

− d1μ̄eb1/μ̄(z1,1 − z2,1)(λ̄μ̄ − λμ − d1)
(
eb1/μ̄ − e−b1/μ

)
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+ d1μ(1 − 1/μ̄)
(
ez1,1b1 − ez2,1b1

)(
(λ̄μ̄ − λμ − d1)e

b1/μ̄ − (λ̄μ̄ − λμ − d2)
)

+ (d2 − d1)
(
ez1,1b1 − ez2,1b1

)
(λ̄μ̄ − λμ − d1)

(
eb1/μ̄ − e−b1/μ

)
+ d2

1μeb1/μ̄(μ̄ − 1)
(
z2,1e

z1,1b1 − z1,1e
z2,1b1

)
+ d1μ̄(d2 − d1)

(
eb1/μ̄ − e−b1/μ

)(
z2,1e

z1,1b1 − z1,1e
z2,1b1

))
.

Proposition 1. The system of linear equations (34)–(38) has a unique solution if and
only if � �= 0.

Proof. From (36) we have C3,1 = 1 − C1,1 − C2,1. Substituting that into (34), (35)
and (38) yields

2∑
i=1

(
λ̄

μ̄zi,1 − 1

(
1 − e(zi,1−1/μ̄)b1

) + d1zi,1 + λ̄ − λ̄e−b1/μ̄

)
Ci,1

+
2∑

i=1

λ̄e(zi,2−1/μ̄)b1

μ̄zi,2 − 1
Ci,2 = −λ̄e−b1/μ̄, (39)

2∑
i=1

(
λe−b1/μ

μzi,1 + 1

(
1 − e(zi,1+1/μ)b1

) + λ
(
1 − e−b1/μ

))
Ci,1

+
2∑

i=1

(
λ̄ezi,2b1

μ̄zi,2 − 1
+ (d2zi,2 + λ + λ̄)ezi,2b1

)
Ci,2 = λ (40)

and
2∑

i=1

(
ezi,1b1 − 1

)
Ci,1 −

2∑
i=1

ezi,2b1Ci,2 = −1. (41)

Thus, the system of equations (34)–(38) has a unique solution if and only if the
system of equations (39), (40), (37) and (41) does.

Multiplying (41) by (−d2z1,2), adding (37) and rearranging the terms we obtain

ez2,2b1C2,2 = d2z1,2 − ∑2
i=1(d1zi,1e

zi,1b1 + d2z1,2(1 − ezi,1b1))Ci,1

d2(z1,2 − z2,2)
. (42)

Similarly, multiplying (41) by (−d2z2,2), adding (37) and rearranging the terms
we obtain

ez1,2b1C1,2 = d2z2,2 − ∑2
i=1(d1zi,1e

zi,1b1 + d2z2,2(1 − ezi,1b1))Ci,1

d2(z2,2 − z1,2)
. (43)

Substituting (42) and (43) into (39) and doing some simplifications yield

2∑
i=1

(
μ̄zi,1e

b1/μ̄ − ezi,1b1

μ̄zi,1 − 1
+ d1zi,1e

b1/μ̄ − 1

+ −d1μ̄zi,1e
zi,1b1 + d2(1 − μ̄z1,2 − μ̄z2,2)(1 − ezi,1b1)

d2(μ̄z1,2 − 1)(μ̄z2,2 − 1)

)
Ci,1
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= − μ̄2z1,2z2,2

(μ̄z1,2 − 1)(μ̄z2,2 − 1)
. (44)

By Vieta’s theorem applied to (29) for j = 2, we have

z1,2z2,2 = λ̄μ̄ − λμ − d2

d2μμ̄
,

1 − μ̄z1,2 − μ̄z2,2 = d2μ̄ + μμ̄(λ + λ̄)

d2μ

and

(μ̄z1,2 − 1)(μ̄z2,2 − 1) = λ̄μ̄(μ + μ̄)

d2μ
.

Substituting these equalities into (44) gives

2∑
i=1

(
μ̄zi,1e

b1/μ̄ − ezi,1b1

μ̄zi,1 − 1
+ d1zi,1e

b1/μ̄ − 1

+ −d1μzi,1e
zi,1b1 + (d2 + μ(λ + λ̄))(1 − ezi,1b1)

λ̄(μ + μ̄)

)
Ci,1

= d2 + λμ − λ̄μ̄

λ̄(μ + μ̄)
. (45)

Next, multiplying (41) by (λ + λ̄) and adding (37) and (40) we get

2∑
i=1

(
λe−b1/μ

μzi,1 + 1

(
1 − e(zi,1+1/μ)b1

) + λ
(
1 − e−b1/μ

) + d1zi,1e
zi,1b1

+ (λ + λ̄)
(
ezi,1b1 − 1

))
Ci,1 +

2∑
i=1

λ̄ezi,2b1

μ̄zi,2 − 1
Ci,2 = −λ̄. (46)

Multiplying (39) by (−eb1/μ̄) and adding (46) we obtain

2∑
i=1

(−λμzi,1e
−b1/μ − λezi,1b1

μzi,1 + 1
+ −λ̄eb1/μ̄ + λ̄ezi,1b1

μ̄zi,1 − 1

− (d1zi,1 + λ̄)eb1/μ̄ + (d1zi,1 + λ + λ̄)ezi,1b1

)
Ci,1 = λ − λ̄. (47)

Thus, if the system of equations (45) and (47) has a unique solution, then C1,2
and C2,2 can be found from (43) and (42), respectively. Consequently, the system of
equations (39), (40), (37) and (41) has a unique solution if and only if the system of
equations (45) and (47) does.

A standard computation shows that the determinant of the system of equations
(45) and (47) is equal to � defined above. In particular, here we use Vieta’s theorem
applied to (29) for j = 1. Therefore, the system of equations (34)–(38) has a unique
solution if and only if � �= 0.
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5.2 Explicit formulas for the expected discounted dividend payments until ruin

By (17), equation (9) for the expected discounted dividend payments can be written
as

djv
′(x) + (λ + λ̄ + δ)v(x)

= λ

μ
e−x/μ

∫ x

0
v(u)eu/μ du + λ̄

μ̄
ex/μ̄

∫ ∞

x

v(u)e−u/μ̄ du + dj (48)

for all x ∈ [bj−1, bj ] and 1 ≤ j ≤ k.
The piecewise integro-differential equation (48) can also be reduced to a piece-

wise linear differential equation with constant coefficients.

Lemma 2. Let the surplus process (Xb
t (x))t≥0 be defined by (2) under the above

assumptions, and let claim and premium sizes be exponentially distributed with means
μ and μ̄, respectively. Then v(x) is a solution to the piecewise differential equation

djμμ̄v′′′(x) + (
dj (μ̄ − μ) + μμ̄(λ + λ̄ + δ)

)
v′′(x)

+ (
μ̄(λ̄ + δ) − μ(λ + δ) − dj

)
v′(x) − δv(x) = −dj (49)

for all x ∈ [bj−1, bj ] and 1 ≤ j ≤ k.

The proof of the lemma is similar to the proof of Lemma 1.
For 1 ≤ j ≤ k, let

D̃j = −18δdjμμ̄
(
dj (μ̄ − μ) + μμ̄(λ + λ̄ + δ)

)(
μ̄(λ̄ + δ) − μ(λ + δ) − dj

)
+ 4δ

(
dj (μ̄ − μ) + μμ̄(λ + λ̄ + δ)

)3

+ (
dj (μ̄ − μ) + μμ̄(λ + λ̄ + δ)

)2(
μ̄(λ̄ + δ) − μ(λ + δ) − dj

)2

− 4djμμ̄
(
μ̄(λ̄ + δ) − μ(λ + δ) − dj

)3 − 27(δdjμμ̄)2.

Theorem 4. Let the surplus process (Xb
t (x))t≥0 be defined by (2) under the above

assumptions, and let claim and premium sizes be exponentially distributed with means
μ and μ̄, respectively. If the net profit condition (3) holds and min1≤j≤k D̃j > 0, then
we have

vj (x) = C̃1,j e
z̃1,j x + C̃2,j e

z̃2,j x + C̃3,j e
z̃3,j x + dj/δ (50)

for all x ∈ [bj−1, bj ] and 1 ≤ j ≤ k, where z̃1,j , z̃2,j and z̃3,j are distinct real roots
of the cubic equation

djμμ̄z3+(
dj (μ̄−μ)+μμ̄(λ+λ̄+δ)

)
z2+(

μ̄(λ̄+δ)−μ(λ+δ)−dj

)
z−δ = 0, (51)

C̃3,k = 0 and all the other constants C̃1,j , C̃2,j and C̃3,j are determined from the
system of linear equations (52)–(55):

λe−bj−1/μ

j−1∑
l=1

( 3∑
i=1

C̃i,l

μz̃i,l + 1

(
e(z̃i,l+1/μ)bl − e(z̃i,l+1/μ)bl−1

))

+
3∑

i=1

(
λ̄ebj−1/μ̄

μ̄z̃i,j − 1

(
e(z̃i,j −1/μ̄)bj − e(z̃i,j −1/μ̄)bj−1

)
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− (dj z̃i,j + λ + λ̄ + δ)ez̃i,j bj−1

)
C̃i,j

+ λ̄ebj−1/μ̄
k∑

l=j+1

( 3∑
i=1

C̃i,l

μ̄z̃i,l − 1

(
e(z̃i,l−1/μ̄)bl − e(z̃i,l−1/μ̄)bl−1

))

= dj (λ + λ̄)

δ
− λe−bj−1/μ

δ

j−1∑
l=1

dl

(
ebl/μ − ebl−1/μ

)

+ λ̄ebj−1/μ̄

δ

k∑
l=j

dl

(
e−bl/μ̄ − e−bl−1/μ̄

)
, 1 ≤ j ≤ k, (52)

C̃1,1 + C̃2,1 + C̃3,1 = −d1/δ, (53)

dj

3∑
i=1

z̃i,j e
z̃i,j bj C̃i,j − dj+1

3∑
i=1

z̃i,j+1e
z̃i,j+1bj C̃i,j+1

= dj − dj+1, 1 ≤ j ≤ k − 1, (54)

and

3∑
i=1

ez̃i,j bj C̃i,j −
3∑

i=1

ez̃i,j+1bj C̃i,j+1 = dj+1 − dj

δ
, 1 ≤ j ≤ k − 1, (55)

provided that its determinant is not equal to 0.

Proof. By Lemma 2 and the notation introduced in Section 2, we deduce that the
function vj (x) is a solution to (49) on x ∈ [bj−1, bj ] for each 1 ≤ j ≤ k. In
addition, it is easily seen that (51) is the corresponding characteristic equation and
its discriminant coincides with the constant D̃j introduced above. The assumption
min1≤j≤k D̃j > 0 guarantees that cubic equation (51) has three distinct real roots
z̃1,j , z̃2,j and z̃3,j . Hence, the general solution to (49) is given by (50) with some
constants C̃1,j , C̃2,j and C̃3,j .

By Vieta’s theorem, we conclude that (51) has either two or no negative roots for
each 1 ≤ j ≤ k. Since the net profit condition (3) holds, applying arguments similar
to those in [34, p. 70] shows that limx→∞ vk(x) = dk/δ. Consequently, if equation
(51) for j = k had no negative roots, the function vk(x) would be constant, which
is impossible. Therefore, equation (51) for j = k has two negative roots. We denote
those negative roots by z̃1,k and z̃2,k , and let z̃3,k be the third root. Since z̃3,k > 0, we
conclude that C̃3,k = 0.

To determine all the other constants C̃1,j , C̃2,j and C̃3,j , we need 3k−1 boundary
conditions. The first k conditions are obtained by letting x = bj−1 in (48) for 1 ≤
j ≤ k:

djv
′(bj−1) + (λ + λ̄ + δ)v(bj−1)

= λ

μ
e−bj−1/μ

∫ bj−1

0
v(u)eu/μ du + λ̄

μ̄
ebj−1/μ̄

∫ ∞

bj−1

v(u)e−u/μ̄ du + dj . (56)



304 O. Ragulina

One more condition is obtained from the equality v(0) = 0. The last 2(k − 1)

conditions are derived from the equalities djv
′
j (bj ) − dj = dj+1v

′
j+1(bj ) − dj+1,

which easily follow from (48), and vj (bj ) = vj+1(bj ) for 1 ≤ j ≤ k − 1.
Substituting (50) into (56) as well as into the equalities v(0) = 0, djv

′
j (bj )−dj =

dj+1v
′
j+1(bj ) − dj+1 and vj (bj ) = vj+1(bj ) for 1 ≤ j ≤ k − 1 and doing some

simplifications yield the system of linear equations (52)–(55), which has a unique
solution provided that its determinant is not equal to 0. Thus, piecewise differential
equation (49) has a unique solution satisfying certain conditions, and that solution is
given by (50). Applying arguments similar to those in the proof of Theorem 3 guar-
anties that the functions vj (x) we have found coincide with the expected discounted
dividend payments until ruin on [bj−1, bj ], which completes the proof.

Remark 7. In particular, if k = 2, then C̃3,2 = 0 and the constants C̃1,1, C̃2,1, C̃3,1,
C̃1,2 and C̃2,2 are determined from the system of linear equations (57)–(61):

3∑
i=1

(
λ̄

μ̄z̃i,1 − 1

(
1 − e(z̃i,1−1/μ̄)b1

) + d1z̃i,1 + λ + λ̄ + δ

)
C̃i,1

+
2∑

i=1

λ̄e(z̃i,2−1/μ̄)b1

μ̄z̃i,2 − 1
C̃i,2 = −d1λ

δ
− λ̄(d1 − d2)e

−b1/μ̄

δ
, (57)

λe−b1/μ
3∑

i=1

C̃i,1

μz̃i,1 + 1

(
1 − e(z̃i,1+1/μ)b1

) +
2∑

i=1

(
λ̄ez̃i,2b1

μ̄z̃i,2 − 1

+ (d2z̃i,2 + λ + λ̄ + δ)ez̃i,2b1

)
C̃i,2 = λ(d1 − d2)

δ
− d1λe−b1/μ

δ
, (58)

C̃1,1 + C̃2,1 + C̃3,1 = −d1/δ, (59)

d1

3∑
i=1

z̃i,1e
z̃i,1b1C̃i,1 − d2

2∑
i=1

z̃i,2e
z̃i,2b1C̃i,2 = d1 − d2 (60)

and
3∑

i=1

ez̃i,1b1C̃i,1 −
2∑

i=1

ez̃i,2b1C̃i,2 = d2 − d1

δ
(61)

provided that its determinant is not equal to 0.

6 Numerical illustrations

To present numerical examples for the results obtained in Section 5, we set λ = 0.1,
λ̄ = 2.3, μ = 3, μ̄ = 0.2, b = 5 and δ = 0.01.

In addition, we denote by ψ∗(x) the ruin probability in the corresponding model
without dividend payments. It is given by

ψ∗(x) = λ(μ + μ̄)

μ̄(λ + λ̄)
exp

(
− (λ̄μ̄ − λμ)x

μμ̄(λ + λ̄)

)
, x ∈ [0,∞),

(see [5, 28]). For the parameters chosen above, ψ∗(x) ≈ 0.666667e−0.111111x .
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Table 1. The ruin probabilities without and with dividend payments and the expected dis-
counted dividend payments, d1 = 0.05 and d2 = 0.1

x ψ∗(x) ψ(x) v(x)

0 0.666667 1 0
1 0.596560 0.777184 3.663273
2 0.533825 0.737542 4.283457
5 0.382502 0.636926 5.911685
7 0.306284 0.575029 6.716708
10 0.219462 0.492173 7.623108
15 0.125917 0.379750 8.612682
20 0.072245 0.293007 9.190265
50 0.002577 0.061825 9.967986
70 0.000279 0.021912 9.996285

Moreover, let now d1 = 0.05 and d2 = 0.1. Applying Theorems 3 and 4 as
well as Remarks 6 and 7 we can calculate the ruin probability ψ(x) and the expected
discounted dividend payments until ruin v(x):

ψ1(x) ≈ 0.530821e−0.084781x + 0.179668e−43.248552x + 0.289512, x ∈ [0, 5],
ψ2(x) ≈ 0.826718e−0.051863x − 7.043723 · 1038e−19.28147x, x ∈ [5,∞);

v1(x) ≈ 5 − 2.992137e−43.470279x − 4.421273e−0.124597x

+ 2.41341e0.061543x, x ∈ [0, 5],
v2(x) ≈ 10 − 2.198169 · 1040e−19.405407x − 6.97712e−0.107684x, x ∈ [5,∞).

Table 1 presents the results of calculations for some values of x.
Next, for d1 = 0.1 and d2 = 0.05, we get

ψ1(x) ≈ 1.204304e−0.051863x + 0.218067e−19.28147x − 0.42237, x ∈ [0, 5],
ψ2(x) ≈ 0.772527e−0.084781x + 1.012903 · 1091e−43.248552x, x ∈ [5,∞);

v1(x) ≈ 10 − 2.219094e−19.405407x − 5.609737e−0.107684x

− 2.171169e0.079758x, x ∈ [0, 5],
v2(x) ≈ 5 + 5.716149 · 1092e−43.470279x − 2.857069e−0.124597x, x ∈ [5,∞).

The values of ψ∗(x), ψ(x) and v(x) for some x are given in Table 2.
The results presented in Tables 1 and 2 indicate that dividend payments substan-

tially increase the ruin probability. The first strategy is much more profitable, although
the corresponding ruin probability is larger in that case.
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Table 2. The ruin probabilities without and with dividend payments and the expected dis-
counted dividend payments, d1 = 0.1 and d2 = 0.05

x ψ∗(x) ψ(x) v(x)

0 0.666667 1 0
1 0.596560 0.721066 2.611525
2 0.533825 0.663275 2.930525
5 0.382502 0.506845 3.490686
7 0.306284 0.426750 3.805635
10 0.219462 0.330912 4.178134
15 0.125917 0.216577 4.559200
20 0.072245 0.141747 4.763582
50 0.002577 0.011141 4.994372
70 0.000279 0.002044 4.999534
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