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Abstract We analyze almost sure asymptotic behavior of extreme values of a regenerative
process. We show that under certain conditions a properly centered and normalized running
maximum of a regenerative process satisfies a law of the iterated logarithm for the lim sup
and a law of the triple logarithm for the lim inf. This complements a previously known result
of Glasserman and Kou [Ann. Appl. Probab. 5(2) (1995), 424–445]. We apply our results to
several queuing systems and a birth and death process.
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1 Introduction and main results

Various problems related to asymptotic behavior of extreme values of regenerative
processes is of considerable practical interest and has attracted a lot of attention in
probabilistic community. For example, extremes in queuing systems and of birth and
death processes have been investigated in [2, 3, 6, 13, 20], to name but a few. Analy-
sis carried out in the above papers is mostly based on the classical theory of extreme
values for independent identically distributed (i.i.d.) random variables. A survey of
early results in this direction can be found, among other, in paper [3]. In recent pa-
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per [22] a slightly different approach to the asymptotic analysis of extreme values of
regenerative processes using a nonlinear time transformations has been proposed.

The aforementioned works were mostly aimed at the derivation of weak limit the-
orems for extremes of regenerative processes. In this article instead, we are interested
in almost sure (a.s.) behavior of general regenerative processes and in particular of re-
generative processes appearing in queuing and birth–death systems. Our main results
formulated in Theorems 1 and 2 below provide the laws of iterated and triple loga-
rithms for the running maximum of regenerative processes. A distinguishing feature
of our results is a different scaling required for lim sup and lim inf. Under the assump-
tion that the right tail of the maximum of a regenerative process over its regeneration
cycle has an exponential tail, this type of behavior has already been observed in [11],
see Proposition 3.2 therein. Our theorems provide a generalization of the aforemen-
tioned result and cover, for example, regenerative processes with Weibull-like tails of
the maximum over a regeneration cycle. As in many other papers dealing with ex-
tremes of regenerative processes, our approach relies on analyzing the a.s. behavior
of the running maximum of i.i.d. random variables. In this respect, let us also mention
papers [16, 17, 19] dealing with a.s. growth rate of the running maximum, see Section
3.5 in [8] for a survey.

Before formulating the results we introduce necessary definitions. Let us recall,
see [4], that a positive measurable function U defined in some neighbourhood of +∞
is called regularly varying at +∞ with index κ ∈ R if U(x) = xκV (x), and the
function V is slowly varying at +∞, that is

lim
t→+∞

V (tx)

V (t)
= 1 for all x > 0.

Given a function H : R → R we denote by H−1 its generalized inverse defined
by

H−1(y) = inf {x ∈ R : H(x) > y} , y ∈ R. (1)

The following definition is of crucial importance for our main results.

Definition 1. We say that a function H : R → R satisfies condition (U) if the
following holds:

1. limx→+∞ H(x) = +∞;

2. the function H is eventually nondecreasing and differentiable;

3. the derivative h(x) := H ′(x) is such that for some κ ∈ R the function

ĥ(x) = (H−1(x))′ = 1

h(H−1(x))
, x ∈ R,

is regularly varying at +∞ with index κ .

Note that the assumption of regular variation of ĥ implies that h is eventually
positive. Thus, H is eventually strictly increasing and the generalized inverse H−1

defined by (1) eventually coincides with the usual inverse.
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Let X = (X(t))t≥0 be a regenerative random process, that is,

X(t) = ξk(t − Sk−1) for t ∈ [Sk−1, Sk), k ∈ N,

where
S0 = 0, Sk = T1 + · · · + Tk, k ∈ N,

and (Tk, ξk(·))k∈N is a sequence of independent copies of a pair (T , ξ(·)), see, for
example, [21, Part II, Chapter 2] and [9, Chapter 11, §8]. The points (Sk) are called
regeneration epochs and the interval [Sk−1, Sk) is the k-th period of regeneration.

For t ≥ 0, put
X̄(t) = sup

0≤s<t

X(s),

and note that X̄(T1) is the maximum of the process X on the first period of regenera-
tion. Let F be the distribution function of X̄(T1), that is,

F(x) := P(X̄(T1) ≤ x).

Put
R(x) := − log(1 − F(x)), x ∈ R,

and
αT = ET1 = ET .

Note also that it is always possible to write a decomposition

R(x) = R0(x) + R1(x), x ∈ R, (2)

where
|R1(x)| ≤ C1 < ∞, x ∈ R. (3)

Here and hereafter we denote by C,C1, C2 etc. some positive constants which may
vary from place to place and may depend on parameters of the process X(·).

We are ready to formulate our first result.

Theorem 1. Let (X(t))t≥0 be a regenerative random process. Assume that there ex-
ists a decomposition (2) such that (3) holds and the function R0 satisfies condition
(U). Suppose further that αT < ∞. For large enough x ∈ R, let r0 be the derivative
of R0. Then

lim sup
t→∞

r0(A0(t))(X̄(t) − A0(t))

L2(t)
= 1 a.s., (4)

and

lim inf
t→∞

r0(A0(t))(X̄(t) − A0(t))

L3(t)
= −1 a.s., (5)

where

A0(t) = R−1
0

(
log

t

αT

)
, L2(t) = log log t, L3(t) = log log log t.
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Our next result is a counterpart of Theorem 1 for discrete processes taking values
in some lattice in R. Such processes are important, among other fields, in the queuing
theory. Assume that

P(X(t) ∈ {0, 1, 2, 3, . . .}) = 1, t ≥ 0, (6)

and, for k = 0, 1, 2, 3, . . . , put

Rk := − log P(X̄(T1) > k).

Similarly to (2) and (3) we can write a decomposition

Rk = R0(k) + R1(k), k = 0, 1, 2, 3, . . . , (7)

where R0 : R → R and R1 : R → R are real-valued functions and R1 is such that

|R1(k)| ≤ C1 < ∞, k = 0, 1, 2, 3, . . . . (8)

Theorem 2. Let (X(t))t≥0 be a regenerative random process such that (6) holds.
Assume that there exists a decomposition (7) such that (8) is fulfilled and the function
R0 satisfies condition (U). Suppose also that αT < ∞.

(i) The asymptotic relation

r0(R
−1
0 (x)) = o(log x), x → ∞, (9)

entails

lim sup
t→∞

r0(A0(t))(X̄(t) − A0(t))

L2(t)
= 1 a.s. (10)

(ii) The asymptotic relation

r0(R
−1
0 (x)) = o(log log x), x → ∞, (11)

entails

lim inf
t→∞

r0(A0(t))(X̄(t) − A0(t))

L3(t)
= −1 a.s. (12)

The functions A0 and r0 were defined in Theorem 1.

Remark 1. In the discrete setting we assume that there exist extensions of the se-
quences (R0(k)) and (R1(k)) to functions defined on the whole real line with the
extension of R0 being smooth. While such an assumption might look artificial, it is
necessary for keeping the paper homogeneous and allows us to work both in contin-
uous and discrete settings with the same class of functions U.

The article is organized as follows. In Section 2 we collect and prove some auxil-
iary results needed in the proofs of our main theorems. They are given in Section 3.
In Section 4 we apply Theorems 1 and 2 to some queuing systems and birth–death
processes.
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2 Preliminaries

Let us consider a sequence (ξk)k∈N of independent copies of a random variable ξ with
the distribution function Fξ (x) = P(ξ ≤ x) =: 1 − exp(−Rξ (x)). Put

zn = max
1≤i≤n

ξi . (13)

The following result was proved in [1], see Theorem 1 therein.

Lemma 1. Assume that the distribution of ξ is such that Rξ satisfies condition (U).
With a(n) = R−1

ξ (log n) it holds

lim sup
n→∞

rξ (a(n))(zn − a(n))

L2(n)
= 1 a.s., (14)

and

lim inf
n→∞

rξ (a(n))(zn − a(n))

L3(n)
= −1 a.s., (15)

where, for large enough x ∈ R,

rξ (x) := R′
ξ (x) = F ′

ξ (x)

1 − F ′
ξ (x)

.

The proof of Lemma 1, given in [1], consists of two steps. Firstly, the claim is
established for the standard exponential distribution τ e, that is, assuming P(ξ ≤ x) =
P(τ e ≤ x) = 1 − exp(−x). In the second step the claim is proved for an arbitrary Rξ

using regular variation and the representation

R−1
ξ (τ e)

d= ξ and R−1
ξ (ze

n)
d= zn. (16)

Here and hereafter ze
n = max1≤i≤n τ e

i and (τ e
i )i∈N are independent copies of τ e.

We need the following generalization of Lemma 1.

Lemma 2. Assume that the law of ξ is such that the function Rξ possesses a decom-
position (2) with R1 satisfying (3) and R0 satisfying condition (U). Then

lim sup
n→∞

r0(a0(n))(zn − a0(n))

L2(n)
= 1 a.s., (17)

and

lim inf
n→∞

r0(a0(n))(zn − a0(n))

L3(n)
= −1 a.s., (18)

where a0(n) = R−1
0 (log n) and r0(x) = R′

0(x).

To prove Lemma 2 we need the following simple result, see Theorem 3.1 in [5].

Lemma 3. Let H be a function regularly varying at +∞ and let (cn)n∈N and (dn)n∈N
be two sequences of real numbers such that limn→∞ cn = +∞, limn→∞ cn/dn = 1.
Then

lim
n→∞

H(cn)

H(dn)
= 1.
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Proof of Lemma 2. Fix a sequence of standard exponential random variables (τ e
i )i∈N

and assume without loss of generality that the sequence (zn)n∈N is constructed from
(τ e

i )i∈N via formula (16). The subsequent proof is divided into two steps.
STEP 1. Suppose additionally that the function R0 is everywhere nondecreasing, dif-
ferentiable, and R0(−∞) = 0. Then F0(x) := 1 − exp(−R0(x)) is a distribution
function. Put ξ ′

i = R−1
0 (τ e

i ) for i ∈ N and let z′
n = max1≤i≤n ξ ′

i . From Lemma 1 we
infer

lim sup
n→∞

r0(a0(n))(z′
n − a0(n))

L2(n)
= 1 a.s. (19)

Let C1 be a constant such that (3) holds. From the definition of the function R−1
ξ and

decomposition (2) we obtain

R−1
0 (x − C1) ≤ R−1

ξ (x) ≤ R−1
0 (x + C1), x ∈ R,

and thereupon
R−1

0 (ze
n − C1) ≤ R−1

ξ (ze
n) ≤ R−1

0 (ze
n + C1).

Hence, by monotonicity of R−1
0 , we have

|R−1
ξ (ze

n)−R−1
0 (ze

n)| ≤ R−1
0 (ze

n +C1)−R−1
0 (ze

n −C1) = 2C1r̂0(z
e
n +C1(2θn − 1)),

(20)
where the equality follows from the mean value theorem for differentiable functions,
r̂0(x) = (R−1

0 (x))′ and 0 ≤ θn ≤ 1.
It is known, see [10, Chapter 4, Example 4.3.3], that

lim
n→∞

ze
n

log n
= 1 a.s.

Thus, from Lemma 3 we deduce

lim
n→∞

r̂0(z
e
n + C1(2θn − 1))

r̂0(log n)
= 1 a.s.

In conjunction with (20) this yields

|R−1
ξ (ze

n) − R−1
0 (ze

n)| ≤ 2C1r̂0(log n)(1 + o(1)) = 2C1

r0(a0(n))
(1 + o(1)). (21)

Taking together relations (19), (21) we arrive at (17).
Similarly, from Lemma 1 we have

lim inf
n→∞

r0(a0(n))(z′
n − a0(n))

L3(n)
= −1 a.s. (22)

Therefore, (18) follows from (22) and (21).
STEP 2. Let us now turn to the general case where the function R0 is nondecreasing
and differentiable on some interval [x0,∞) with x0 > 0. Recall decomposition (2).
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Let R̃0 : R → R and R̃1 : R → R be arbitrary nondecreasing differentiable functions
such that

R̃0(x) = R0(x) and R̃1(x) = R1(x) for x ≥ x0,

R̃0(x) = R̃1(x) = 0 for x ≤ 0.

Put
R̃(x) := R̃0(x) + R̃1(x), x ∈ R.

The functions R̃0, R̃1 and R̃ satisfy all the assumptions of Step 1. Thus, if we set

ξ̃i = R̃−1(τ e
i ), z̃n = max

1≤i≤n
ξ̃i ,

then the sequence (z̃n)n∈N satisfies (17) and (18) with the same normalizing functions
r0(a0(n)) and a0(n). The latter holds true since for sufficiently large x > 0 we have
R̃−1

0 (x) = R−1
0 (x).

It remains to note that the asymptotics of (z̃n) and (zn) are the same. Indeed, set

n0 := min(i ≥ 1 : τ e
i ≥ y0),

where y0 := R(x0) = R̃(x0). Then zn = z̃n for n ≥ n0 and we see that both (17) and
(18) hold for (zn) as well. This finishes the proof of Lemma 3.

The next lemma is a counterpart of Lemma 2 for discrete distributions. Assume
that ξ has distribution

P(ξ = k) = pk,

where pk ≥ 0 and
∑∞

k=0 pk = 1. Put

q(k) =
∑
i>k

pi = exp(−Rξ,k).

Lemma 4. Let ξ be a random variable taking values in {0, 1, 2, 3, . . .} and let Rξ,k

be such that there exists a decomposition (7) with R1 satisfying (8) and R0 satisfying
condition (U).

(i) if (9) holds, then (zn) satisfies equality (17);

(ii) if (11) holds, then (zn) also satisfies (18).

Proof. Similarly to Lemma 2 the proof is divided into two steps. We provide the
details only for the first step leaving the second step for an interested reader. Thus,
we put ξ ′

i = R−1
0 (τ e

i ) for i ∈ N. Note that ξ ′
i are i.i.d. with the distribution function

F0(x) = 1 − exp(−R0(x)). Thus, for z′
n = max1≤i≤n ξ ′

i , equality (19) holds.
Let us consider

	R−1
ξ,k(y)
 = inf

{
k = 0, 1, 2, 3, . . . : Rξ,k ≥ y

}
,

then
|R−1

ξ,k(y) − 	R−1
ξ,k(y)
| ≤ 1,
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for all y ∈ R, and therefore

|R−1
ξ,k(z

e
n) − 	R−1

ξ,k(z
e
n)
| ≤ 1, |R−1

0 (ze
n) − 	R−1

0 (ze
n)
| ≤ 1.

Further, condition (8) and monotonicity of the function 	·
 both imply

	R−1
0 (ze

n − C1)
 ≤ 	R−1
ξ,k(z

e
n)
 ≤ 	R−1

0 (ze
n + C1)
.

Combining the above estimates, we derive

R−1
0 (ze

n − C1) − 2 ≤ R−1
ξ,k(z

e
n) ≤ R−1

0 (ze
n + C1) + 2.

This means

|R−1
ξ,k(z

e
n) − R−1

0 (ze
n)| ≤ R−1

0 (ze
n + C1) − R−1

0 (ze
n − C1) + 4

≤ 2C1

r0(a0(n))
(1 + o(1)) + 4, (23)

see estimates (20), (21).
Assuming (9) we see that (17) holds. Similarly, condition (11) yields (18).

The next simple lemma is probably known, however we prefer to give an elemen-
tary few lines proof.

Lemma 5. For arbitrary p > 1 and b ∈ R it holds

�n :=
n∑

k=1

pk

kb
= pn+1

(p − 1)nb
(1 + o(1)), n → ∞. (24)

Proof. By the Stolz–Cesáro theorem we have

lim
n→∞

(p − 1)nb�n

pn+1 = lim
n→∞

�n − �n−1

pn+1

(p−1)nb − pn

(p−1)(n−1)b

= lim
n→∞

pn

nb

pn+1

(p−1)nb − pn

(p−1)(n−1)b

= lim
n→∞

p − 1

p − nb

(n−1)b

= 1.

The proof is complete.

3 Proofs of Theorems 1 and 2

Proof of Theorem 1. Let us start with a proof of equality (4). To this end, we intro-
duce the following notation

Yk = sup
Sk−1≤t<Sk

X(t), Zn = max
1≤k≤n

Yk, k ∈ N.
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Since (Sk) are the moments of regeneration of the process (X(t))t≥0, (Yk) are i.i.d.
random variables. Furthermore, it is clear that the sequence (Yk) satisfies conditions
of Lemma 2. Therefore,

lim sup
n→∞

r0(a0(n))(Zn − a0(n))

L2(n)
= 1 a.s. (25)

Denote by N the counting process for the sequence (Sk), that is,

N(t) = max{k ≥ 0 : Sk ≤ t}, t ≥ 0.

Since limt→∞ N(t) = +∞ a.s. and N(t) runs through all positive integers, from (25)
we obtain

lim sup
t→∞

r0(R
−1
0 (log N(t)))(ZN(t) − R−1

0 (log N(t)))

L2(N(t))
= 1 a.s. (26)

By the strong law of large numbers for N we have

lim
t→∞

N(t)

t
= 1

αT

a.s., (27)

whence, as t → ∞,

log N(t) = log
t

αT

+ o(1) a.s.

In what follows o(1) is a random function which converges to zero a.s. as t → ∞.
Plugging the above representations into (26), we obtain

lim sup
t→∞

r0(R
−1
0 (log t

αT
+ o(1)))(ZN(t) − R−1

0 (log t
αT

+ o(1)))

L2(
t

αT
(1 + o(1)))

= 1 a.s. (28)

Further, by the slow variation of L2 we can replace the denominator in (28) by L2(t).
Let us recall that under the assumptions of Theorem 1, the function r̂0(x) =

(R−1
0 (x))′ is regularly varying at infinity. So using once again Lemma 3, we obtain

the equalities

r̂0

(
log

t

αT

+ o(1)

)
= r̂0

(
log

t

αT

)
(1 + o(1)) = 1 + o(1)

r0(R
−1
0 (log t

αT
))

, t → ∞,

and

R−1
0

(
log

t

αT

+ o(1)

)
− R−1

0

(
log

t

αT

)
= o(1)r̂0

(
log

t

αT

+ o(1)

)
, t → ∞.

Combining the above relations, from (28) we derive

lim sup
t→∞

r0(A0(t))(ZN(t) − A0(t))

L2(t)
= 1 a.s., (29)
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with A0(t) and r0(t) as in Theorem 1. The same argument with N(t) replaced by
N(t) + 1 yields

lim sup
t→∞

r0(A0(t))(ZN(t)+1 − A0(t))

L2(t)
= 1 a.s.

It remains to note that
ZN(t) ≤ X̄(t) ≤ ZN(t)+1 a.s.

Summarizing this gives equality (4). The proof of the relation (5) utilizes equality
(18) of Lemma 2 and is similar. We omit the details.

The derivation of Theorem 2 is based on Lemma 4 and basically repeats the proof
of Theorem 1. We leave the details to a reader.

Suppose that under the assumptions of Theorem 1 the parameter t runs over a
countable set t ∈ T := {t0 = 0 < t1 < t2 < · · · } such that limi→∞ ti = +∞ as
i → ∞. The set T can be random and the process X can depend on T . Assume that
P(Si ∈ T ) = 1 for all i ∈ N.

Put Xi := X(ti) and X̄n = max0≤i≤n Xi . Assume that extreme values of the
process X are attained at the points of the set T . More precisely, for all t ≥ 0,

sup
0≤s≤t

X(s) = max
0≤ti≤t

Xi a.s. (30)

In what follows the next proposition will be useful.

Proposition 1. Under the assumptions of Theorem 1 suppose that there exists a set
T such that condition (30) holds and, further,

lim
n→∞

tn

n
= α a.s. (31)

Then

lim sup
t→∞

r0(A(n))(X̄n − A(n))

L2(n)
= 1 a.s., (32)

and

lim inf
n→∞

r0(A(n))(X̄n − A(n))

L3(n)
= −1 a.s., (33)

where

A(n) = R−1
0

(
log

αn

αT

)
.

Proof. A proof given below is similar to the proof of Theorem 1. From equations
(27) and (31) we obtain, as n → ∞,

N(tn)

n
= N(tn)

tn

tn

n
→ α

αT

a.s. (34)

Further, replacing n by N(tn) in equality (25), which is possible because N(tn) di-
verges to infinity through all positive integers, we get

lim sup
n→∞

r0(R
−1
0 (log N(tn)))(ZN(tn) − R−1

0 (log N(tn)))

L2(N(tn))
= 1 a.s. (35)
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Directly from (30) we derive

ZN(tn) ≤ X̄n ≤ ZN(tn)+1 a.s.

These inequalities and relations (34), (35) yield equality (32). The same argument
can be applied for proving (33).

4 Applications

Example 1 (Queuing system GI/G/1). Let us consider a single-channel queuing
system with customers arriving at 0 = t0 < t1 < t2 < · · · < ti < · · · . Let 0 =
W0,W1,W2, . . . ,Wi, . . . be the actual waiting times of the customers. Thus, at time
t = 0 a first customer arrives and the service starts immediately. Denote by ζi =
ti−ti−1, for i ∈ N, the interarrival times between successive customers, and ηi , i ∈ N,
is the service time of the i-th customer. Suppose that (ζi) and (ηi) are independent
sequences of i.i.d. random variables. In the standard notation, this queuing system has
the type GI/G/1, see [12, 14].

Let W(t) be the waiting time of the last customer in the queue at time t ≥ 0, that
is,

W(t) = Wν(t), where ν(t) = max(k ≥ 0 : tk ≤ t),

and
W(tn) = W(tn+) = Wn.

Set
W̄ (t) = sup

0≤s≤t

W(s) = max
0≤tk≤t

Wk,

then
W̄n = max

1≤i≤n
Wi = W̄ (tn).

Denote Eζi = a, Eηi = b and assume that both expectations are finite. Further, we
impose the following conditions on ζi and ηi :

ρ := b

a
< 1 (36)

and for some γ > 0, it holds

E exp(γ (ηi − ζi)) = 1, E(ηi − ζi) exp(γ (ηi − ζi)) < ∞. (37)

Under these assumptions the evolution of the queuing system can be decomposed
into busy periods, when a customer is in service, interleaved by idle periods, when
the system is empty. Let us introduce regeneration moments (Sk) of the process W as
follows: S0 = 0 and, for i ∈ N, Si is the arrival time of a new customer at the end
of i-th idle period. Let Ti be the duration of the i-th regeneration cycle, and W̄ (T1)

be the maximum waiting time during the first regeneration cycle. It is known, see [3]
and [13], that under conditions (36) and (37), we have

P(W̄ (T1) > x) = (C + o(1)) exp(−γ x), x → ∞.
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Condition (36) also guarantees that the average duration of the i-th regeneration cycle
is finite, that is, αT = ETi < ∞, see [14, Chapter 14, §3, Theorem 3.2].

Thus, if we set X(t) = W(t), R0(x) = γ x, R1(x) = log C +o(1) and r0(x) = γ ,
then from Theorem 1 and Proposition 1 we derive the corollary.

Corollary 1. Assume that the queuing system GI/G/1 satisfies conditions (36) and
(37). Then

lim sup
t→∞

γ W̄(t) − log t

L2(t)
= lim sup

n→∞
γ W̄n − log n

L2(n)
= 1 a.s., (38)

and

lim inf
t→∞

γ W̄(t) − log t

L3(t)
= lim inf

n→∞
γ W̄n − log n

L3(n)
= −1 a.s. (39)

Remark 2. (i) Suppose that

P(ζi ≤ x) = 1 − exp(−λx), P(ηi ≤ x) = 1 − exp(−μx), x ≥ 0,

that is, we consider the queuing system M/M/1. Assume further, that ρ :=
λ/μ < 1. It is easy to check that conditions (36) and (37) are fulfilled, and
therefore equalities (38) and (39) hold with γ = μ − λ = μ(1 − ρ).

(ii) Suppose that
P(ζi ≤ x) = 1 − exp(−λx), x ≥ 0,

and P(ηi = const = d) = 1. Assume further, that ρ := λd < 1. Then relations
(36)–(39) hold with γ = xρ/d , with xρ > 0 being the unique positive root of
the equation

ex = 1 + x

ρ
.

Example 2 (Queuing system M/M/m). Let us now consider a queuing system with
m servers and customers which arrive according to the Poisson process with inten-
sity λ, and service times being independent copies of a random variable η with an
exponential distribution

P(η ≤ x) = 1 − exp(−μx), x ≥ 0.

In the standard notation, this queuing system has the type M/M/m, see [12, 14].
We impose the following assumption on the parameters λ and μ ensuring exis-

tence of the stationary regime:

ρ := λ

mμ
< 1. (40)

For t ≥ 0, let Q(t) denote the length of the queue at time t , that is, the total number
of customers in service or pending. Set

Q̄(t) = sup
0≤s<t

Q(s), t ≥ 0.
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In the same way as in Example 1, one can introduce regeneration moments (Sk) for
the process Q: S0 := 0 and, for i ∈ N, Si is the arrival time of a new customer after
the i-th busy period. Let Ti be the duration of the i-th regeneration cycle and Q̄(T1)

be the maximum length of the queue in the first regeneration cycle. Put

P(Q̄(T1) > x) = exp(−R(x)). (41)

In recent paper [7] the authors established that function R in (41) satisfies conditions
(7) and (8) with

R0(x) = −x log ρ, r0(x) = − log ρ.

Using Theorem 2 we infer

Corollary 2. Assume that for a queuing system M/M/m, 1 ≤ m < ∞, the condition
(40) is fulfilled. Then

lim sup
t→∞

Q̄(t) log 1
ρ

− log t

L2(t)
= 1 a.s., (42)

and

lim inf
t→∞

Q̄(t) log 1
ρ

− log t

L3(t)
= −1, a.s. (43)

Remark 3. Relations (42) and (43) have been proved in [7] by direct calculations.
Let us note that in case m = ∞, which has also been treated in [7], the asymptotics
of Q̄(t) is of completely different form, see also [18].

Example 3 (Birth and death processes). Let X = (X(t))t≥0 be a birth and death
processes with parameters

λn = λn + a, μn = μn, λ,μ, a > 0, n = 0, 1, 2, . . . , (44)

see [14, Ch. 7, §6]. That is, (X(t))t≥0 is a time-homogeneous Markov process such
that, for t ≥ 0, given {X(t) = n} the probability of transition to state n + 1 over a
small period of time δ is (λn + a)δ + o(δ), n = 0, 1, 2, 3, . . . , and the probability of
transition to n−1 is μnδ+o(δ), n = 1, 2, 3, . . . . The parameter a can be interpreted as
the infinitesimal intensity of population growth due to immigration. The birth–death
process X is usually called the process with linear growth and immigration.

We assume that X(0) = 0 and

ρ := λ

μ
< 1. (45)

Put

θ0 = 1, θk =
k∏

i=1

λi−1

μi

, k ∈ N.

It is not difficult to check that condition (45) ensures
∑
k≥1

θk < ∞, (46)
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and ∑
k≥1

1

λkθk

= ∞. (47)

Under conditions (46) and (47), see [14] and [15], there exists a stationary regime,
that is,

lim
t→∞ P(X(t) = k) = pk,

with

pk = θkp0, k = 0, 1, 2, 3, . . . , where p0 =
( ∞∑

k=0

θk

)−1

. (48)

Further, X is a regenerative process with regeneration moments (Sk), where
S0 = 0 and Si , i ∈ N, is the moment of i-th return to state 0. It is known that

ETk = 1

(λ0 + μ0)p0
= 1

ap0
,

where Tk = Sk − Sk−1 is the duration of the k-th regeneration cycle, see Eq. (32) in
[22]. If (45) holds, then

M(t) := EX(t) → a

μ − λ
, t → ∞,

see [14]. We are interested in the asymptotic behavior of extreme values

X̄(t) = sup
0≤s<t

X(s), t ≥ 0.

Let us show how to apply Theorem 2 to the asymptotic analysis of X̄(t). Firstly, we
need to evaluate accurately the sequence (R(n)) defined by

q(n) := P(X̄(T1) > n) = exp(−R(n)).

It is known, see [3] or Eq. (34) in [22], that

q(n) = 1∑n
k=0 αk

, (49)

where α0 = 1 and αk = ∏k
i=1

μi

λi
for k ∈ N.

Using equalities (44) and (45) we can rewrite αk as follows:

αk = βk

ρk
, βk =

k∏
i=1

(
1 − 1

1 + iλ/a

)
. (50)

Further, using Taylor’s expansion

log(1 + x) = x − x2

2
+ x3

3
− · · · , |x| < 1,
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we have

log βk =
k∑

i=1

log

(
1 − 1

1 + iλ/a

)
= −

k∑
i=1

1

1 + iλ/a
+ dk, (51)

where dk has a finite limit, as k → ∞. Combining the relation

∣∣∣∣∣
k∑

i=1

1

1 + iλ/a
−

k∑
i=1

1

iλ/a

∣∣∣∣∣ =
k∑

i=1

a

λi(1 + iλ/a)
= C1 + o(1), k → ∞, (52)

and the fact

lim
n→∞

n∑
i=1

1

i
− log n = γ, (53)

with γ = 0.577 . . . being the Euler–Mascheroni constant, we conclude

k∑
i=1

log

(
1 − 1

1 + iλ/a

)
= −a

λ
log k + C2 + o(1), k → ∞.

Therefore,
βk = Ck−a/λ(1 + o(1)), (54)

where

C = eC2 := lim
n→∞ na/λ

n∏
i=1

(
1 − 1

1 + iλ/a

)
. (55)

Now we can apply Lemma 5 to obtain

�n =
n∑

k=1

ρ−k

ka/λ
= ρ−n−1

( 1
ρ

− 1)na/λ
(1 + o(1)), n → ∞.

Taking into account equality (54), we obtain

n∑
k=0

αk = Cρ−n−1

(1/ρ − 1)na/λ
(1 + o(1)), n → ∞.

Thus,

q(n) = 1/ρ − 1

C
ρn+1na/λ(1 + o(1)), n → ∞, (56)

and we have the following representation

R(n) = − log q(n) = R0(n) + R1(n),

where

R0(n) = −n log ρ− a

λ
log n, R1(n) = − log

1/ρ − 1

C
−log ρ+o(1), n → ∞.
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The function R0(x) = −x log ρ − a
λ

log x is increasing for x ≥ x0 = − a
λ log ρ

and,
furthermore, satisfies condition (U).

Since r0(x) = − log ρ − a
λx

, conditions (9), (11) of Theorem 2 hold.
It remains to find a simple formula for the function A0 in (10) and (12). To this

end, let us write

log

(
t

αT

)
= R0(A0(t)) = −A0(t) log ρ − a

λ
log A0(t) = A0(t) (− log ρ + o(1)) ,

as t → ∞. Upon taking logarithms we get

log A0(t) = log log

(
t

αT

)
+ O(1), t → ∞,

and plugging this back into the initial equality yields

A0(t) = log t + a
λ
L2(t) + O(1)

− log ρ
.

Thus, from Theorem 2 we infer the following.

Corollary 3. Let (X(t))t≥0 be the birth and death process with parameters λn =
λn + a, μn = μn, where λ,μ, a > 0, n = 0, 1, 2, 3, . . . . Suppose also that (45)
holds. Then

lim sup
t→∞

X̄(t) log 1
ρ

− log t

L2(t)
= 1 + a

λ
, a.s., (57)

and

lim inf
t→∞

X̄(t) log 1
ρ

− log t − a
λ
L2(t)

L3(t)
= −1, a.s. (58)

Remark 4. It is clear from the above calculations that the condition X(0) = 0 can
be removed, that is, equations (57) and (58) hold true for an arbitrary starting point
X(0) ∈ {0, 1, 2, . . .}.

Let us finally mention without a proof a statement which follows easily from
equations (48), (56) and Theorem 2 in [22].

Corollary 4. Let (X(t))t≥0 be the birth and death process that satisfies all conditions
of Corollary 3. Then

lim
n→∞ P(X̄(t∗n ) ≥ n) = 1 − exp(−ap0x), x > 0, (59)

where t∗n = Cρ−nn−a/λx/(1/ρ − 1), while p0 and C are defined by (48) and (55).
This relation can also be recast in a more transparent way as follows:

lim
n→∞ P(C−1(1/ρ − 1)ρnna/λX−1(n) > x) = exp(−ap0x), (60)

where X−1(n) = inf{t ∈ R : X(t) = n} is the first time when (X(t))t≥0 visits state
n ∈ N, that is, the distribution of ρnna/λX−1(n) converges to an exponential law.
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