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Abstract Generalizing earlier work of Delbaen and Haezendonck for given compound re-
newal process S under a probability measure P we characterize all probability measures Q on
the domain of P such that Q and P are progressively equivalent and S remains a compound
renewal process under Q. As a consequence, we prove that any compound renewal process
can be converted into a compound Poisson process through a change of measures and we show
how this approach is related to premium calculation principles.
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1 Introduction

A basic method in mathematical finance is to replace the original probability mea-
sure with an equivalent martingale measure, sometimes called a risk-neutral measure.
This measure is used for pricing and hedging given contingent claims (e.g., options,
futures, etc.). In contrast to the situation of the classical Black–Scholes option pricing
formula, where the equivalent martingale measure is unique, in actuarial mathematics
that is certainly not the case.
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The above fact was pointed out by Delbaen and Haezendonck in their pioneering
paper [5], as the authors “tried to create a mathematical framework to deal with fi-
nance related to risk processes” in the frame of classical Risk Theory. Thus, they were
confronted with the problem of characterizing all equivalent martingale measures Q

such that a compound Poisson process under an original measure P remains a com-
pound Poisson one under Q. They solved positively the previous problem in [5], and
applied their results to the theory of premium calculation principles (see also Em-
brechts [7] for an overview). The method provided by [5] has been successfully ap-
plied to many areas of insurance mathematics such as pricing (re-)insurance contracts
(Holtan [11], Haslip and Kaishev [10]), simulation of ruin probabilities (Boogaert and
De Waegenaere [2]), risk capital allocation (Yu et al. [21]), pricing CAT derivatives
(Geman and Yor [9], Embrechts and Meister [8]), and has been generalized to the
case of mixed Poisson processes (see Meister [15]).

However, there is one vital point about the (compound) Poisson processes which
is their greatest weakness as far as practical applications are considered, and this is
the fact that the variance is a linear function of time t . The latter, together with the
fact that in some interesting real-life cases the interarrival times process associated
with a counting process remain independent but the exponential interarrival time dis-
tribution does not fit well into the observed data (cf. e.g. Chen et al. [3] and Wang et
al. [20]), implies that the induced counting process is a renewal but not a Poisson one.
This raises the question, whether the characterization of Delbaen and Haezendonck
can be extended to the more general compound renewal risk model (also known as the
Sparre–Andersen model), and it is precisely this problem the paper deals with. In par-
ticular, if the process S is under the probability measure P a compound renewal one,
it would be interesting to characterize all probability measures Q being equivalent to
P and converting S into a compound Poisson process under Q.

In Section 2, we prove the one direction of the desired characterization, see
Proposition 2.1, which provides characterization and explicit calculation of Radon–
Nikodým derivatives dQ/dP for well-known cases in insurance mathematics, see
Examples 2.1 and 2.2. Since the increments of a renewal process are not, in gen-
eral, independent and stationary we cannot use arguments similar to those used in the
main proof of [5, Proposition 2.2]. In an effort to overcome this obstacle we inserted
Lemma 2.1, which holds true for any (compound) counting process, and on which
the proof of Proposition 2.1 relies heavily.

In Section 3, the inverse direction is proven in Proposition 3.1, where a canonical
change of measures technique is provided, which seems to simplify the well-known
one involving the markovization of a (compound) renewal process, see Remark 3.2.
The desired characterization is given in Theorem 3.1, which completes and simplifies
the proof of the main result of [5]. As a consequence of Theorem 3.1, it is proven
in Corollary 3.1 that any compound renewal process can be converted into a com-
pound Poisson one through a change of measures, by choosing the “correct” Radon–
Nikodým derivative. The main result of [5, Proposition 2.2] follows as a special in-
stance of Theorem 3.1, see Remark 3.3 (a).

In Section 4, we apply our results to the financial pricing of insurance in a com-
pound renewal risk model. We first prove that given a compound renewal process S

under P , the process Z(P ) := {Zt }t∈R+ with Zt := St − t ·p(P ) for any t ≥ 0, where
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p(P ) is the premium density, is a martingale under P if and only if S is a compound
Poisson process under P , see Proposition 4.1, showing in this way that a martingale
approach to premium calculation principles leads in the case of compound renewal
processes immediately to compound Poisson ones. A consequence of Theorem 3.1
and Proposition 4.1 is a characterization of all progressively equivalent martingale
measures Q converting a compound renewal process S into a compound Poisson one,
see Proposition 4.2. Using the latter result, we find out canonical price processes
satisfying the condition of no free lunch with vanishing risk, see Theorem 4.1, con-
necting in this way our results with this basic notion of mathematical finance. Finally,
we present some applications of Corollary 3.1 and Theorem 4.1 to the computation
of some premium calculation principles, see Examples 4.1 to 4.3.

2 Compound renewal processes and progressively equivalent measures

Throughout this paper, unless stated otherwise, (Ω,Σ,P ) is a fixed but arbitrary
probability space and Υ := (0,∞). The symbols L1(P ) and L2(P ) stand for the
families of all real-valued P -integrable and P -square integrable functions on Ω , re-
spectively. Functions that are P -a.s. equal are not identified. We denote by σ(G) the
σ -algebra generated by a family G of subsets of Ω . Given a topology T on Ω we
write B(Ω) for its Borel σ -algebra on Ω , i.e. the σ -algebra generated by T. Our
measure theoretic terminology is standard and generally follows [4]. For the defini-
tions of real-valued random variables and random variables we refer to [4, p. 308].
We apply the notation PX := PX(θ) := K(θ) to mean that X is distributed according
to the law K(θ), where θ ∈ D ⊆ R

d (d ∈ N) is the parameter of the distribution.
We denote again by K(θ) the distribution function induced by the probability distri-
bution K(θ). Notation Ga(a, b), where a, b ∈ (0,∞), stands for the law of gamma
distribution (cf. e.g. [17, p. 180]). In particular, Ga(a, 1) = Exp(a) stands for the law
of exponential distribution. For two real-valued random variables X and Y we write
X = Y P -a.s. if {X �= Y } is a P -null set. If A ⊆ Ω , then Ac := Ω \ A, while χA

denotes the indicator (or characteristic) function of the set A. For a map f : D → E

and for a nonempty set A ⊆ D we denote by f � A the restriction of f to A. For the
unexplained terminology of Probability and Risk Theory we refer to [17].

A sequence W := {Wn}n∈N of positive real-valued random variables on Ω is
called a (claim) interarrival process (cf. e.g. [17, p. 7]). The (claim) arrival pro-
cess T := {Tn}n∈N0 induced by W is defined by means of T0 := 0 and Tn :=∑n

k=1 Wk for any n ∈ N (cf. e.g. [17, p. 7]). A counting (or claim number) pro-
cess N := {Nt }t∈R+ is defined by means of Nt := ∑∞

n=1 χ{Tn≤t} for any t ≥ 0 (cf.
e.g. [17, Theorem 2.1.1]). In particular, if W is P -i.i.d. with common distribution
K(θ) : B(Υ ) → [0, 1] (θ ∈ D ⊆ R

d ), the counting process N is a P -renewal pro-
cess with parameter θ ∈ D ⊆ R

d and interarrival time distribution K(θ) (written
P -RP(K(θ)) for short). If θ > 0 and K(θ) = Exp(θ) then a P -RP(K(θ)) becomes a
P -Poisson process with parameter θ (cf. e.g. [17, p. 23 for the definition]). Note that
if N is a P -RP(K(θ)) then EP [Nm

t ] < ∞ for any t ≥ 0 and m ∈ N (cf. e.g. [18,
Proposition 4, p. 101]); hence according to [17, Corollary 2.1.5], it has zero proba-
bility of explosion, i.e. P({supn∈N Tn < ∞}) = 0. Furthermore, if X := {Xn}n∈N is
another sequence of P -i.i.d. positive real-valued random variables on Ω , called claim
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size process (cf. e.g. [17, p. 103]), which is independent of N , define the aggregate
claims process S := {St }t∈R+ by means of St := ∑Nt

n=1 Xn for any t ≥ 0 (cf. e.g.
[17, p. 103]). In particular, if N is a P -RP(K(θ)), the aggregate claims process is a
P -compound renewal process (P -CRP for short) with parameters K(θ) and PX1 .
In the special case where N is a P -Poisson process with parameter θ , the aggregate
claims process S is called a P -compound Poisson process (P -CPP for short) with
parameters θ and PX1 .

Henceforth, unless stated otherwise, S := {St }t∈R+ is a P -CRP with parameters
K(θ) and PX1 , FW := {FW

n }n∈N, FX := {FX
n }n∈N and F := {Ft }t∈R+ are the

natural filtrations of W , X and S, respectively.
The next lemma is a general and helpful result, as it provides a clear understanding

of the structure of F , and it is essential for the proofs of our main results. Lemma 2.1
is a part of [13, Lemma III.1.29], but we write it with its proof in a form suitable for
our results.

Lemma 2.1. For every t ≥ 0 and n ∈ N0 the following

Ft ∩ {Nt = n} = σ
(
FW

n ∪ FX
n

) ∩ {Nt = n}
holds true.

Proof. Fix an arbitrary t ≥ 0 and n ∈ N0.
Clearly, for n = 0 we get FX

0 = FW
0 = {∅,Ω} and Ft ∩ {Nt = 0} = {∅,Ω} ∩

{Nt = 0}; hence Ft ∩ {Nt = 0} = σ(FW
0 ∪ FX

0 ) ∩ {Nt = 0}.
(a) Inclusion σ(FW

n ∪ FX
n ) ∩ {Nt = n} ⊆ Ft ∩ {Nt = n} holds true.

To show (a), fix an arbitrary k ∈ {1, . . . , n}. Note that S is progressively measur-
able with respect to F (cf. e.g. [14, p. 4 for the definition]), since St is Ft -measurable
and has right continuous paths (cf. e.g. [14, Proposition 1.13]). The latter, together
with the fact that Tk is a stopping time of F , implies that STk

is FTk
-measurable,

where FTk
:= {A ∈ Σ : A ∩ {Tk ≤ v} ∈ Fv for any v ≥ 0} (cf. e.g. [14, Proposi-

tion 2.18]). But Tk−1 < Tk yields FTk−1 ⊆ FTk
(cf. e.g. [14, Lemma 2.15]), implying

that STk−1 is FTk
-measurable. Consequently, the random variable Xk = STk

− STk−1

is FTk
-measurable; hence FX

n ∩ {Nt = n} ⊆ Ft ∩ {Nt = n}.
Since Wk is FTk

-measurable, standard computations yield FW
n ∩ {Nt = n} ⊆

Ft ∩ {Nt = n}, completing in this way the proof of (a).
(b) Inclusion Ft ∩ {Nt = n} ⊆ σ(FW

n ∪ FX
n ) ∩ {Nt = n} holds true.

To show (b), let A ∈ ⋃
u≤t σ (Su). There exist an index u ∈ [0, t] and a set

B ∈ B(Υ ) such that A = S−1
u (B) = ⋃

m∈N0
({Nu = m} ∩ Bm), where Bm :=

(
∑m

j=1 Xj)
−1(B) ∈ FX

m for any m ∈ N0, implying

A ∩ {Nt = n} = Dn ∩ {Nt = n}),
where Dn := (

⋃n−1
m=0({Nu = m} ∩ Bm)) ∪ ({Tn ≤ u} ∩ Bn) ∈ σ(FW

n ∪ FX
n ); hence⋃

u≤t σ (Su) ∩ {Nt = n} ⊆ σ(FW
n ∪ FX

n ) ∩ {Nt = n}, implying (b). This completes
the proof of the lemma.

Lemma 2.2. Let Q be a probability measure on Σ .



A characterization of equivalent martingale measures for CRPs 47

(a) If X is Q-i.i.d., QX1 ∼ PX1 and h is a real-valued, one-to-one, B(Υ )-
measurable function, then there exists a PX1 -a.s. unique real-valued B(Υ )-measur-
able function γ such that

(i) EP [h−1 ◦ γ ◦ Xj ] = 1;

(ii) for every n ∈ N0 and for all A ∈ FX
n the condition

Q(A) = EP

[
χA ·

n∏
j=1

(
h−1 ◦ γ ◦ Xj

)]
(1)

holds true.

(b) If W is Q-i.i.d. and QW1 ∼ PW1 , then there exists a PW1 -a.s. unique positive
function r ∈ L1(PW1) such that for every n ∈ N0 and for all D ∈ FW

n the condition

Q(D) = EP

[
χD ·

n∏
j=1

(r ◦ Wj)

]

holds true.

Proof. For (a): First note that h(Υ ) := {h(y) : y ∈ Υ } ∈ B(R) (cf. e.g. [4, The-
orem 8.3.7]) and that the function h−1 is B(h(Υ ))-B(Υ )-measurable (cf. e.g. [4,
Proposition 8.3.5]). Since PX1 ∼ QX1 , by the Radon–Nikodým Theorem there exists
a positive Radon–Nikodým derivative f ∈ L1(PX1) of QX1 with respect to PX1 . Put
γ := h ◦ f . An easy computation justifies the validity of (i).

To check the validity of (ii), fix an arbitrary n ∈ N0 and consider the family
Cn := {⋂n

j=1 Aj : Aj ∈ σ(Xj )}. Standard computations show that any A ∈ Cn

satisfies condition (1). By a monotone class argument it can be shown that (1) remains
valid for any A ∈ FX

n .
Applying similar arguments as above we obtain (b).

Notations 2.1. (a) Let h be a function as in Lemma 2.2. The class of all real-valued
B(Υ )-measurable functions γ such that EP [h−1 ◦ γ ◦ X1] = 1 will be denoted by
FP,h := FP,X1,h.

(b) Let us fix an arbitrary θ ∈ D ⊆ R
d and let �(θ̃ ) be a probability distribution

on B(Υ ), where θ̃ := ρ(θ) is a parameter depending on θ and ρ is a function from D

into R
k (d, k ∈ N). The class of all probability measures Q on Σ being progressively

equivalent to P , i.e. Q � Ft ∼ P � Ft for any t ≥ 0, and S is a Q-CRP with
parameters �(θ̃) and QX1 will be denoted by MS,�(θ̃). In the special case d = k and
ρ := idD we write MS,�(θ) := MS,�(θ̃), for simplicity.

From now on, unless stated otherwise, h is a function as in Lemma 2.2, D, θ and
θ̃ are as in Notation 2.1 (b).

For the definition of a (P,Z)-martingale, where Z := {Zt }t∈R+ is a filtration
on (Ω,Σ) we refer to [17, p. 25]. A (P,Z)-martingale {Zt }t∈R+ is P -a.s. positive
if Zt is P -a.s. positive for each t ≥ 0. For Z = F we write P -martingale instead of
(P,F)-martingale, for simplicity.
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For a given aggregate claims process S on (Ω,Σ), in order to investigate the
existence of progressively equivalent martingale measures (see Section 4), one has to
be able to characterize Radon–Nikodým derivatives dQ/dP . Proposition 2.1 follows
also as a special case of [12, Proposition 4.3 and Theorem 5.1], but we write it in a
form suitable for our purposes, and we present a rather elementary proof.

Proposition 2.1. Let Q be a probability measure on Σ such that S is a Q-CRP with
parameters �(θ̃ ) and QX1 . Then the following are equivalent:

(i) Q � Ft ∼ P � Ft for any t ≥ 0;

(ii) QX1 ∼ PX1 and QW1 ∼ PW1;

(iii) there exists a PX1-a.s. unique function γ ∈ FP,h such that

Q(A) =
∫

A

M
(γ )
t (θ) dP for all A ∈ Ft , (RRM)

with

M
(γ )
t (θ) :=

[ Nt∏
j=1

(
h−1 ◦ γ

)
(Xj ) · dQW1

dPW1

(Wj )

]
· 1 − �(θ̃)(t − TNt )

1 − K(θ)(t − TNt )
,

where the family M(γ )(θ) := {M(γ )
t (θ)}t∈R+ is a P -a.s. positive P -martingale

satisfying the condition EP [M(γ )
t (θ)] = 1.

Proof. Fix an arbitrary t ≥ 0.
For (i) =⇒ (ii): Statement QX1 ∼ PX1 follows by [5, Lemma 2.1]. To show

statement QW1 ∼ PW1 , let B ∈ B(Υ ) such that QW1(B) = 0. Since PW1(B) =
limm→∞ P(W−1

1 (B)∩{T1 ≤ m}), W−1
1 (B)∩{T1 ≤ m} ∈ Fm and Q � Fm ∼ P � Fm

we get P(W−1
1 (B) ∩ {T1 ≤ m}) = 0 for any m ∈ N, implying that PW1(B) = 0.

Replacing Q by P leads to QW1 ∼ PW1 .
For (ii) =⇒ (iii): Let A ∈ Ft be given. By Lemma 2.1, for every k ∈ N0 there

exists a set Bk ∈ σ(FW
k ∪ FX

k ) such that A ∩ {Nt = k} = Bk ∩ {Nt = k}. Thus, due
to the fact that N has zero probability of explosion, we get

Q(A) =
∞∑

k=0

Q
(
Bk ∩ {Nt = k})

=
∞∑

k=0

Q
(
Bk ∩ {Tk ≤ t} ∩ {Wk+1 > t − Tk}

)
. (2)

Fix an arbitrary n ∈ N0 and put G := ⋂n
j=1(W

−1
j (Ej ) ∩ X−1

j (Fj )) ∩ {Wn+1 >

t − Tn} where Ej , Fj ∈ B(Υ ) for any j ∈ {1, . . . , n}. Then the set G satisfies the
condition

Q(G) =
∫

G

[ n∏
j=1

(
h−1 ◦ γ

)
(Xj ) · dQW1

dPW1

(Wj )

]
· 1 − �(θ̃)(t − Tn)

1 − K(θ)(t − Tn)
dP. (3)
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In fact, by Lemma 2.2 and Fubini’s Theorem we get

Q(G) =
∫ [ n∏

j=1

χFj
(xj ) · χEj

(wj ) · (
h−1 ◦ γ

)
(xj ) · r(wj )

]
· Q({Wn+1 > t − w})
P ({Wn+1 > t − w}) ·

P
({Wn+1 > t − w})PX1,...,Xn;W1,...Wn

(
d(x1, . . . , xn; w1, . . . , wn)

)
=

∫
χG ·

[ n∏
j=1

(
h−1 ◦ γ

)
(Xj ) · r(Wj )

]
· 1 − �(θ̃)(t − Tn)

1 − K(θ)(t − Tn)
dP,

where w := ∑n
j=1 wj and r(wj ) := dQW1

dPW1
(wj ) for any j ∈ {1, . . . , n}; hence condi-

tion (3) follows. By a monotone class argument it can be shown that (3) remains valid
for any C ∈ σ(FW

n ∪ FX
n ) ∩ {Wn+1 > t − Tn}.

But since Bk ∩ {Tk ≤ t} ∈ σ(FW
k ∪ FX

k ) for any k ∈ N0, conditions (2) and (3)
imply

Q(A) =
∞∑

k=0

EP

[
χA∩{Nt=k} ·

[ Nt∏
j=1

(
h−1 ◦ γ

)
(Xj ) · r(Wj )

]
· 1 − �(θ̃ )(t − TNt )

1 − K(θ)(t − TNt )

]
.

Thus,
Q(A) = EP

[
χA · M

(γ )
t (θ)

]
for all A ∈ Ft , (4)

implying∫
A

M
(γ )
u (θ) dP =

∫
A

M
(γ )
t (θ) dP for all u ∈ [0, t] and A ∈ Fu;

hence M(γ )(θ) is a P -martingale. The latter together with condition (4) proves con-
dition (RRM).

By (RRM) for A = Ω we obtain

EP

[
M

(γ )
t (θ)

] =
∫

Ω

M
(γ )
t (θ) dP = Q(Ω) = 1.

Note that
1−�(θ̃)(t−TNt )

1−K(θ)(t−TNt )
is P -a.s. positive. The latter, together with the fact that h−1◦γ

and r are PX1 - and PW1 -a.s. positive functions, respectively, implies P({M(γ )
t (θ) >

0}) = 1.
The implication (iii)=⇒(i) is immediate.

Proposition 2.1 allows us to explicitly calculate Radon–Nikodým derivatives for
the most important insurance risk processes, as the following two examples illustrate.
In the first example we consider the case of the Poisson process with parameter θ .

Example 2.1. Take h := ln, θ, θ̃ ∈ D := Υ , and let P ∈ MS,Exp(θ) and Q ∈
MS,Exp(θ̃). By Proposition 2.1 there exists a PX1 -a.s. unique function γ ∈ FP,ln
defined by means of γ := ln f , where f is a Radon–Nikodým derivative of QX1 with
respect to PX1 , such that for all A ∈ Ft

Q(A) =
∫

A

e
∑Nt

j=1 γ (Xj ) ·
(

θ̃

θ

)Nt

· e−t ·(θ̃−θ) dP .
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In our next example we consider a renewal process with gamma distributed inter-
arrival times.

Example 2.2. Assume that h := ln, θ = (ξ1, κ1) ∈ D := Υ × N, θ̃ = (ξ2, κ2) ∈ D,
and let P ∈ MS,Ga(θ) and Q ∈ MS,Ga(θ̃). By Proposition 2.1 there exists a PX1 -a.s.
unique function γ ∈ FP,ln such that for all A ∈ Ft

Q(A) =
∫

A

e
∑Nt

j=1 γ (Xj ) ·
(

ξ
κ2
2 · �(κ1)

ξ
κ1
1 · �(κ2)

)Nt

· e−t ·(ξ2−ξ1) ·
∑κ2−1

i=0
(ξ2·(t−TNt ))

i

i!∑κ1−1
i=0

(ξ1·(t−TNt ))
i

i!

·
Nt∏

j=1

W
κ2−κ1
j dP .

3 The characterization

We know from Proposition 2.1 that under the weak conditions QX1 ∼ PX1 and
QW1 ∼ PW1 , the measures P and Q are equivalent on each σ -algebra Ft , a result
that does not, in general, hold true for F∞ := σ(

⋃
t∈R+ Ft ). Let us start with the

following helpful lemma.

Lemma 3.1. The following holds true

F∞ = F (W,X)∞ := σ

( ⋃
n∈N0

FW
n ∪

⋃
n∈N0

FX
n

)
.

Proof. Inclusion F∞ ⊆ F (W,X)∞ follows immediately by Lemma 2.1 and the fact that
N has zero probability of explosion.

To check the validity of the inverse inclusion, fix an arbitrary n ∈ N0. Since
Xn is FTn -measurable, we get X−1

n (B) ∩ {Tn ≤ 
} ∈ F∞ for all B ∈ B(Υ ) and

 ∈ N0; hence X−1

n (B) ∈ F∞, implying together with the F∞-measurability of Tn

that F (W,X)∞ ⊆ F∞.

Note that the above lemma remains true, without the assumption P ∈ MS,K(θ),
under the weaker assumption that N has zero probability of explosion.

Remark 3.1. Let Q ∈ MS,�(θ̃). If PX1 �= QX1 or PW1 �= QW1 , applying Lemma 3.1
together with the strong law of large numbers, it can be easily seen that the probability
measures P and Q are singular on F∞, implying that P and Q are equivalent of F∞
if and only if P � F∞ = Q � F∞ if and only if PX1 = QX1 and PW1 = QW1 .

Before we formulate the inverse of Proposition 2.1 (i.e. that for a given function
γ ∈ FP,h there exists a unique probability measure Q ∈ MS,�(θ̃) satisfying (RRM))
we remind a simple construction of canonical probability spaces admitting compound
renewal processes.

By (Ω × Ξ,Σ ⊗ H,P ⊗ R) we denote the product probability space of the
probability spaces (Ω,Σ,P ) and (Ξ,H,R). If I is an arbitrary nonempty index set,
we write PI for the product measure on ΩI and ΣI for its domain.
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Throughout what follows, we put Ω̃ := Υ N, Σ̃ := B(Ω̃) = B(Υ )N, Ω :=
Ω̃ × Ω̃ and Σ := Σ̃ ⊗ Σ̃ for simplicity.

For all n ∈ N and for any fixed θ ∈ D ⊆ R
d , let Qn(θ) := K(θ) and Rn := R

be probability measures on B(Υ ). Define the probability measure P on Σ by means
of P := K(θ)N ⊗ RN, and for any ω = (w1, . . . , wn, . . . ; x1, . . . , xn, . . .) ∈ Ω put
Wn(ω) := wn and Xn(ω) := xn. It then follows that X := {Xn}n∈N is a claim size
process satisfying the condition PXn = R for any n ∈ N, and that W := {Wn}n∈N
is a P -independent claim interarrival process with PWn = K(θ) for any n ∈ N.
Putting Tn := ∑n

k=1 Wk for any n ∈ N0 and T := {Tn}n∈N0 , we define by means
of Nt := ∑∞

n=1 χ{Tn≤t} for any t ≥ 0 the counting process N := {Nt }t∈R+ induced

by T (cf. e.g. [17, Theorem 2.1.1]). Setting St := ∑Nt

n=1 Xn for any t ≥ 0 and
S := {St }t∈R+ we get that S is a P -CRP with parameters K(θ) and PX1 . Moreover,

according to Lemma 3.1 we have that Σ = F (W,X)∞ = F∞.
The following proposition shows that after changing the measure the process S

remains a compound renewal one if the Radon–Nikodým derivative has the “right”
structure on each σ -algebra Ft . To formulate it, we use the following notation and
assumption.

Notation 3.1. Let K(θ) and �(θ̃) be probability distributions on B(Υ ) such that
K(θ) ∼ �(θ̃). For any n ∈ N0 the class of all likelihood ratios gn := gθ,θ̃,n :
Υ n+1 → Υ defined by means of

gn(w1, . . . , wn, t) :=
[ n∏

j=1

d�(θ̃)

dK(θ)
(wj )

]
· 1 − �(θ̃)(t − w)

1 − K(θ)(t − w)

for any (w1, . . . , wn, t) ∈ Υ n+1, where w := ∑n
j=1 wj , will be denoted by Gn,θ,θ̃ .

Notation Gθ,θ̃ stands for the set {g = {gn}n∈N0 : gn ∈ Gn,θ,θ̃ for any n ∈ N0} of all
sequences of elements of Gn,θ,θ̃ .

Throughout what follows K(θ), �(θ̃) and g ∈ Gθ,θ̃ are as in Notation 3.1, and P ,
S are those constructed before Notation 3.1.

Proposition 3.1. Let γ ∈ FP,h. Then for all A ∈ Ft the condition

Q(A) =
∫

A

[ Nt∏
j=1

(
h−1 ◦ γ ◦ Xj

)] · gNt (W1, . . . ,WNt , t) dP

determines a unique probability measure Q ∈ MS,�(θ̃ ).

Proof. Fix an arbitrary t ≥ 0, and define the set-functions qQn(θ), qR : B(Υ ) → R

by means of qQn(θ)(B1) := EP [χ
W−1

1 (B1)
· ( d�(θ̃)

dK(θ)
◦W1)] and qR(B2) := EP [χ

X−1
1 (B2)

·
(h−1 ◦ γ ◦ X1)] for any B1, B2 ∈ B(Υ ), respectively. Applying a monotone class
argument it can be seen that qQn(θ) = �(θ̃), while Lemma 2.2 (a) (i) implies that qR

is a probability measure. Therefore, we may construct a probability measure qQ :=
�(θ̃)N ⊗ qRN on Σ such that S is a qQ-CRP with parameters �(θ̃) and qQX1 = qR,
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implying that qQX1 ∼ PX1 and qQW1 ∼ PW1 . Applying now Proposition 2.1 we obtain
qQ � Ft ∼ P � Ft , or equivalently

qQ(A) =
∫

A

[ Nt∏
j=1

(
h−1 ◦ γ ◦ Xj

)] · gNt (W1, . . . ,WNt , t) dP

for all A ∈ Ft . Thus Q � Ft = qQ � Ft ; hence Q � qΣ = qQ � qΣ where qΣ :=⋃
t∈R+ Ft , implying that Q is σ -additive on qΣ and that qQ is the unique extension of

Q on Σ = σ( qΣ).

Remark 3.2. A well-known change of measure technique for compound renewal
processes is to markovize the process and then to change the measure (cf. e.g. [1,
Chapter VI, Proposition 3.4] or [16, p. 139]). Our method seems to simplify the above
one.

The next result is the desired characterization. Its proof is an immediate conse-
quence of Propositions 2.1 and 3.1.

Theorem 3.1. The following hold true:

(i) for any Q ∈ MS,�(θ̃) there exists a PX1-a.s. unique function γ ∈ FP,h satisfy-
ing condition (RRM);

(ii) conversely, for any function γ ∈ FP,h there exists a unique probability measure
Q ∈ MS,�(θ̃) satisfying condition (RRM).

In order to formulate the next results of this section, let us denote by F̃P,θ the
class of all real-valued B(Υ )-measurable functions βθ , such that βθ := γ + αθ ,
where γ ∈ FP,ln and αθ is a real number depending on θ .

The following result allows us to convert any compound renewal process into a
compound Poisson one through a change of measure.

Corollary 3.1. If W1 ∈ L1(P ) then the following hold true:

(i) for any θ̃ ∈ Υ and any probability measure Q ∈ MS,Exp(θ̃) there exists a

PX1-a.s. unique function βθ ∈ F̃P,θ satisfying together with Q the conditions

αθ = ln θ̃ + lnEP [W1] (∗)

and

Q(A) =
∫

A

M
(β)
t (θ) dP for all A ∈ Ft , (RPM)

where M
(β)
t (θ) := e

∑Nt
j=1 βθ (Xj )−θ̃ ·(t−TNt

)·(θ̃ ·EP [W1])−Nt

1−K(θ)(t−TNt )
· [∏Nt

j=1
dQW1
dPW1

(Wj )];

(ii) conversely, for any function βθ ∈ F̃P,θ there exist a θ̃ ∈ Υ and a unique
probability measure Q ∈ MS,Exp(θ̃) satisfying together with βθ conditions (∗)
and (RPM).
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Proof. Fix an arbitrary t ≥ 0.
For (i): Under the assumptions of statement (i), according to Theorem 3.1 (i)

there exists a PX1 -a.s. unique function γ ∈ FP,ln defined by means of γ := ln f ,
where f is a Radon–Nikodým derivative of QX1 with respect to PX1 , such that

Q(A) =
∫

A

e
∑Nt

j=1 γ (Xj )−θ̃ ·(t−TNt )

1 − K(θ)(t − TNt )
·
[ Nt∏

j=1

dQW1

dPW1

(Wj )

]
dP (5)

for all A ∈ Ft . Define αθ := ln θ̃ + lnEP [W1], and put βθ := γ + αθ . It then follows
that βθ ∈ F̃P,θ and that condition (∗) is valid. The latter together with condition (5)
implies condition (RPM).

For (ii): Let βθ = γ +αθ ∈ F̃P,θ and define θ̃ := eαθ

EP [W1] . By Theorem 3.1 (ii) for
the function γ = βθ − αθ there exists a unique probability measure Q ∈ MS,Exp(θ̃ )

satisfying condition (RRM) or equivalently condition (RPM).

Remark 3.3. (a) In the special case P ∈ MS,Exp(θ), Corollary 3.1 yields the main
result of Delbaen and Haezendonck [5, Proposition 2.2].

(b) Theorem 3.1 remains true if we replace the classes MS,�(θ̃) and FP,h by

their subclasses M

S,�(θ̃)

:= {Q ∈ MS,�(θ̃) : EQ[X

1] < ∞]} and F


P,h := {γ ∈
FP,h : EP [X


1 · (h−1 ◦ γ ◦ X1)] < ∞} for 
 = 1, 2, respectively. As a consequence,
Corollary 3.1 remains true if we replace the class F̃P,θ by its subclass F̃


P,θ := {βθ =
γ + αθ : γ ∈ F


P,ln and αθ ∈ R} for 
 = 1, 2.

The following example translates the results of Corollary 3.1 to a well-known
compound renewal process appearing in applications.

Example 3.1. Fix an arbitrary t ≥ 0, let θ := (ξ, 2) ∈ D := Υ 2, and let P ∈
MS,Ga(θ) such that PX1 = Ga(η), where η := (b, 2) ∈ D. Let θ̃ ∈ Υ and Q ∈
MS,Exp(θ̃) such that QX1 = Exp(ζ ), where ζ is a positive real constant. By Corol-

lary 3.1 (i), there exists a PX1 -a.s. unique function βθ := γ + αθ ∈ F̃P,θ , where

γ (x) := ln ζ ·e−ζ ·x
b2·x·e−b·x for any x ∈ Υ and αθ := ln θ̃ + lnEP [W1] = ln 2·θ̃

ξ
, satisfying

together with Q the condition

Q(A) =
∫

A

(
1

2ξ

)Nt

· e
∑Nt

j=1 βθ (Xj )−t ·θ̃+tξ

[∏Nt

j=1 Wj ] · (1 + ξ · (t − TNt ))
dP (6)

for all A ∈ Ft .
Conversely, let ζ be as above and consider the function βθ := γ + αθ ,

where γ (x) := ln ζ ·e−ζ ·x
b2·x·e−b·x for any x ∈ Υ and αθ ∈ R. It then follows easily that

EP [eγ (X1)] = 1, implying that γ ∈ FP,ln; hence βθ ∈ F̃P,θ . Thus, we may apply
Corollary 3.1 (ii) to get a θ̃ ∈ Υ and a unique probability measure Q ∈ MS,Exp(θ̃ )

satisfying together with βθ conditions (∗) and (6). But then applying Lemma 2.2 (a),
we get

QX1(B) = EP

[
χ

X−1
1 (B)

· eγ (X1)
] =

∫
B

ζ · e−ζ ·x λ(dx) for any B ∈ B(Υ ),

implying that QX1 = Exp(ζ ).
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4 Applications

In this section we first show that a martingale approach to premium calculation prin-
ciples leads in the case of CRPs to CPPs, providing in this way a method to find
progressively equivalent martingale measures. Next, using our results we show that if
F̃2

P,θ �= ∅ then there exist canonical price processes (called claim surplus processes
in Risk Theory) satisfying the condition of no free lunch with vanishing risk.

In order to present the results of this section we recall the following notions. For
a given real-valued process Y := {Yt }t∈R+ on (Ω,Σ) a probability measure Q on
Σ is called a martingale measure for Y , if Y is a Q-martingale. We will say that
Y satisfies condition (PEMM) if there exists a progressively equivalent martin-
gale measure (PEMM for short) for Y , i.e. a probability measure Q on Σ such that
Q � Ft ∼ P � Ft for any t ≥ 0 and Y is a Q-martingale. Moreover, let T > 0,
T := [0, T ], QT := Q � FT , YT := {Yt }t∈T and FT := {Ft }t∈T. We will say that
the process YT satisfies condition (EMM) if there exists an equivalent martingale
measures for YT, i.e. a probability measure QT on FT such that QT ∼ PT and YT is
a (QT ,FT)-martingale.

Suppose that X1,W1 ∈ L1(P ) and define the premium density as

p(P ) := EP [X1]
EP [W1] ∈ Υ.

Consider the process Z(P ) := {Zt }t∈R+ with Zt := St − t · p(P ) for any t ≥ 0. The
following auxiliary result could be of independent interest, since it says that if S is
under P a CRP and the process Z(P ) is a P -martingale, then Nt must have a Poisson
distribution so that S is actually a CPP.

Proposition 4.1. Let θ̃ := 1
EP [W1] . Consider the following statements:

(i) P is a martingale measure for Z(P );

(ii) P ∈ M1
S,Exp(θ̃)

;

(iii) P is a martingale measure for Z(P ) such that Zt ∈ L2(P ) for any t ≥ 0;

(iv) P ∈ M2
S,Exp(θ̃)

.

Then statements (i) and (ii) as well as statements (iii) and (iv) are equivalent.
Moreover, if X1 ∈ L2(P ) then all statements (i) to (iv) are equivalent.

Proof. Fix an arbitrary t ≥ 0.
For (i) =⇒ (ii): Since P is martingale measure for Z(P ), we have EP [Zt ] = 0

implying EP [St ] = t · EP [X1]
EP [W1] , or equivalently EP [Nt ] = t · θ̃ .

Claim. The following are equivalent:

(a) N is a P -Poisson process with parameter θ ;

(b) EP [Nt ] = tθ .
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Proof. The above claim is well known (cf. e.g. [18, Remark 21, p. 110]), but since
we have not seen its proof anywhere, we insert it for completeness. The implication
(a) =⇒ (b) is immediate.

For (b) =⇒ (a): To prove this implication, let us recall that the renewal function
associated with the distribution K(θ) is defined by

U(u) :=
∞∑

n=0

K∗n(θ)(u) for any u ∈ R

where K∗n(θ) is the n-fold convolution of K(θ) (cf. e.g. [18, Definition 17, p. 108]).
Clearly U(u) = 1 + EP [Nu] for any u ≥ 0. Assuming that EP [Nt ] = tθ , we get
U(t) = 1 + tθ , implying that the Laplace–Stieltjes transform Û (s) of U(t) is given
by

Û (s) =
∫
R+

e−s·u dU(u) = e−s·0 ·U(0)+
∫ ∞

0
θe−s·u du = s + θ

s
for every s ≥ 0,

where the second equality follows from the fact that
∫
R+ e−s·u dU(u) is a Riemann–

Stieltjes integral and U has a density for u > 0, U(u) = 0 for u < 0 and it has a unit
jump at u = 0 (cf. e.g. [18, pp. 108–109]). It then follows that

K̂(θ)(s) = Û (s) − 1

Û (s)
= θ

θ + s
for any s ≥ 0,

where K̂(θ) denotes the Laplace–Stieltjes transform of the distribution of Wn for any
n ∈ N (cf. e.g. [18, Proposition 20, p. 109]); hence PWn = Exp(θ) for any n ∈ N.
But since W is also P -independent, it follows that N is a P -Poisson process with
parameter θ (cf. e.g. [17, Theorem 2.3.4]).

Thus, according to the above claim statement (ii) follows.
For (ii) =⇒ (i): Since P ∈ M1

S,Exp(θ̃)
, it follows that S has independent incre-

ments (cf. e.g. [17, Theorem 5.1.3]). Thus, for all u ∈ [0, t] and A ∈ Fu we get∫
A

(
St − EP [St ]

) − (
Su − EP [Su]

)
dP

=
∫

Ω

χA dP ·
∫

Ω

(
(St − Su) − EP [St − Su]

)
dP = 0,

implying that the process {St − EP [St ]}t∈R+ is a P -martingale. But since EP [St ] =
t · EP [S1], statement (i) follows.

For (iii) =⇒ (iv): Since P is a martingale measure for Z(P ), it follows by the
equivalence of statements (i) and (ii) that P ∈ M1

S,Exp(θ̃)
. But since Zt ∈ L2(P ), we

have VarP [Zt ] = EP [Nt ] ·VarP [X1]+VarP [Nt ] ·E2
P [X1] < ∞, where VarP denotes

the variance under the measure P ; hence VarP [X1] < ∞, implying statement (iv).
For (iv) =⇒ (iii): Since P ∈ M2

S,Exp(θ̃)
and M2

S,Exp(θ̃)
⊆ M1

S,Exp(θ̃)
, it follows

again by the equivalence of statements (i) and (ii) that P is a martingale measure for
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V . But VarP [Zt ] = VarP [St ] = EP [Nt ]·VarP [X1]+VarP [Nt ]·E2
P [X1] < ∞, where

the inequality follows by the fact that P ∈ M2
S,Exp(θ̃)

; hence statement (iii) follows.

Moreover, assuming statement (ii) and X1 ∈ L2(P ), we get immediately state-
ment (iv), implying that all statements (i)–(iv) are equivalent.

In the next proposition we find out a wide class of canonical processes converting
the progressively equivalent measures Q of Theorem 3.1 into martingale measures.
In this way, a characterization of all progressively equivalent martingale measures,
similar to that of Theorem 3.1, is provided.

Proposition 4.2. If 
 = 1, 2 and P ∈ M

S,K(θ) the following hold true:

(i) for every θ̃ ∈ Υ and Q ∈ M

S,Exp(θ̃)

there exists a PX1-a.s. unique function

βθ ∈ F̃

P,θ satisfying together with Q conditions (∗) and (RPM), and the pro-

cess V := {Vt }t∈R+ , defined by means of Vt := St − t · EP [X1·eβθ (X1)]
EP [W1] for any

t ≥ 0, such that Q is a PEMM for V ;

(ii) conversely, for every function βθ ∈ F̃

P,θ and for the process V defined in

(i), there exist a θ̃ ∈ Υ and a unique probability measure Q ∈ M

S,Exp(θ̃ )

satisfying together with βθ conditions (∗) and (RPM), and such that Q is a
PEMM for V .

In both cases V = Z(Q).

Proof. Fix 
 = 1 or 
 = 2.
For (i): Under the assumptions of (i), by Corollary 3.1 (i) and Remark 3.3 (b)

there exists a PX1 -a.s. unique function βθ ∈ F̃

P,θ satisfying together with Q con-

ditions (∗) and (RPM). It then follows by Lemma 2.2 (a) and condition (∗) that
V = Z(Q); hence by Proposition 4.1 we get that Q is a PEMM for V .

For (ii): Under the assumptions of (ii), by Corollary 3.1 (ii) and Remark 3.3
(b) there exist a θ̃ ∈ Υ and a unique probability measure Q ∈ M


S,Exp(θ̃)
satisfying

together with βθ conditions (∗) and (RPM); hence according to Proposition 4.1 the
process Z(Q) is a Q-martingale. Again by Lemma 2.2 (a) and condition (∗) we obtain
that V = Z(Q).

The next theorem connects our results with the basic notion of no free lunch
with vanishing risk ((NFLVR) for short) (see [6, Definition 8.1.2]) of Mathematical
Finance.

Theorem 4.1. Let P ∈ M2
S,K(θ), βθ ∈ F̃2

P,θ and V be as above. There exist a

θ̃ ∈ Υ and a unique probability measure Q ∈ M2
S,Exp(θ̃)

satisfying together with βθ

conditions (∗) and (RPM), and such that for every T > 0 the process VT := {Vt }t∈T
satisfies condition (NFLVR).

Proof. Fix an arbitrary T > 0 and let βθ ∈ F̃2
P,θ . By Proposition 4.2 (ii) there exist

a θ̃ ∈ Υ and a unique probability measure Q ∈ M2
S,Exp(θ̃)

satisfying together with

βθ conditions (∗) and (RPM), and such that V is a Q-martingale with Vt ∈ L2(Q)
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for any t ≥ 0; hence VT is a (QT ,FT)-martingale, implying that it is a (QT ,FT)-
semi-martingale (cf. e.g. [19, Definition 7.1.1]). The latter implies that VT is also a
(PT ,FT)-semi-martingale since QT ∼ PT (cf. e.g. [19, Theorem 10.1.8]). But since
the process V satisfies condition (PEMM) we have that VT satisfies condition (EMM).
Thus, applying the Fundamental Theorem of Asset Pricing (FTAP for short) for un-
bounded stochastic processes, see [6, Theorem 14.1.1], we obtain that the process VT

satisfies condition (NFLVR).

Remark 4.1. It is well known that the FTAP of Delbaen and Schachermayer uses
P.A. Meyer’s usual conditions (cf. e.g. [19, Definition 2.1.5]). These conditions play a
fundamental role in the definition of the stochastic integral with respect to a (semi-)mar-
tingale. Nevertheless, the stochastic integral can be defined for any semi-martingale
without the usual conditions (see [19, pp. 22–23 and p. 150]). As a consequence,
the easy implication of the FTAP of Delbaen and Schachermayer (i.e. (EMM) =⇒
(NFLVR)) holds true without the usual conditions.

We have seen that the initial probability measure P can be replaced by another
progressively equivalent probability measure Q such that S is converted into a Q-
CPP. The idea is to define a probability measure Q in order to give more weight
to less favourable events. More precisely Q must be defined in such a way that the
corresponding premium density p(Q) includes the safety loading, i.e. p(P ) < p(Q).
This led Delbaen and Haezendonck to define a premium calculation principle as a
probability measure Q ∈ M1

S,Exp(λ), for some λ ∈ Υ (compare [5, Definition 3.1]).
In the next Examples 4.1 to 4.3, applying Proposition 4.2 and Theorem 4.1, we

show how to construct premium calculation principles Q satisfying the desired prop-
erty p(P ) < p(Q) < ∞, and such that for any T > 0 the process VT has the property
of (NFLVR). For a discussion on how to rediscover some well-known premium cal-
culation principles in the frame of classical Risk Theory using change of measures
techniques we refer to [5, Examples 3.1 to 3.3].

Example 4.1. Let θ := (ξ, k) ∈ D := Υ 2, and let P ∈ M2
S,Ga(θ)

be such that PX1 =
Ga(η), where η := (ζ, 2) ∈ D. Consider the real-valued function βθ := γ + αθ with
γ (x) := ln EP [X1]

2c
− ln x + 2(c−1)

cEP [X1] · x for any x ∈ Υ , where c > 2 is a real constant,

and αθ := ln(
ξ
d

· EP [W1]), where d < k is a positive constant. It can be easily seen

that EP [eγ (X1)] = 1 and EP [X2
1 · eγ (X1)] = 2c2

ζ
< ∞, implying γ ∈ F2

P,ln; hence

βθ ∈ F̃2
P,θ . Define θ̃ by means of θ̃ := eαθ /EP [W1]. Thus, due to Proposition 4.2

(ii), there exists a unique premium calculation principle Q ∈ M2
S,Exp(θ̃)

satisfying

conditions (∗) and (RPM), and such that Q is a PEMM for the process V with Vt :=
St − t · ξ

d
· EP [X1]

2c
· EP [e 2·(c−1)

c·EP [X1] ·X1] ∈ L2(Q) for any t ≥ 0. Therefore, applying
Lemma 2.2 (a) we get

QX1(B) =
∫

B

ζ

c
· e− ζ

c
·x λ(dx) for any B ∈ B(Υ ),

implying that QX1 = Exp(
ζ
c
); hence p(P ) < p(Q) < ∞. In particular, according to

Theorem 4.1 for any T > 0 the process VT satisfies the (NFLVR) condition.
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Example 4.2. Let θ := (k, b) ∈ D := Υ 2, let W(θ) be the Weibull distribution over
B(Υ ) defined by

W(θ)(B) :=
∫

B

k

bk
· xk−1 · e−(x/b)k λ(dx) for any B ∈ B(Υ ),

and let P ∈ M2
S,W(θ) such that PX1 = Exp(η), where η ∈ Υ . Consider the real-

valued function βθ := γ + αθ with γ (x) := ln(1 − c · EP [X1]) + c · x for any
x ∈ Υ , where c < η is a positive constant, and αθ := 0. It can be easily seen
that EP [eγ (X1)] = 1 and EP [X2

1 · eγ (X1)] = 2
(η−c)2 < ∞, implying γ ∈ F2

P,ln;

hence βθ ∈ F̃2
P,θ . Define θ̃ by θ̃ := eαθ /EP [W1]. Applying now Proposition 4.2

(ii) we get that there exists a unique premium calculation principle Q ∈ M2
S,Exp(θ̃ )

satisfying conditions (∗) and (RPM), and such that Q is a PEMM for the process V

with Vt := St − t · (1−c·EP [X1])·EP [X1·ec·X1 ]
b·�(1+1/k)

∈ L2(Q) for any t ≥ 0. The latter together
with Lemma 2.2 (a) yields

QX1(B) =
∫

B

(η − c) · e−(η−c)·x λ(dx) for any B ∈ B(Υ ),

implying that QX1 = Exp(η−c). Thus, p(P ) < p(Q) < ∞. In particular, according
to Theorem 4.1 for any T > 0 the process VT satisfies the (NFLVR) condition.

In our next example we show how one can obtain the Esscher principle by apply-
ing Proposition 4.2 (ii).

Example 4.3. Take θ := (ξ, 2) ∈ D := Υ 2, and let P ∈ M2
S,Ga(θ)

such that PX1 =
Ga(η), where η := (b, a) ∈ D. Consider the real-valued function βθ := γ + αθ with
γ (x) := c · x − lnEP [ec·X1] for any x ∈ Υ , where c < b is a positive constant,
and αθ := 0. It can be easily seen that EP [eγ (X1)] = 1 and EP [X2

1 · eγ (X1)] =
a·(a+1)

(b−c)2 < ∞, implying γ ∈ F2
P,ln; hence βθ ∈ F̃2

P,θ . Define θ̃ by θ̃ := eαθ /EP [W1].
Thus, due to Proposition 4.2 (ii) there exists a unique premium calculation principle
Q ∈ M2

S,Exp(θ̃)
satisfying conditions (∗) and (RPM), and such that Q is a PEMM for

the process V with Vt := St − t · ξ
2 · EP [X1·ec·X1 ]

EP [ec·X1 ] ∈ L2(Q) for any t ≥ 0. But then,
according to Lemma 2.2 (a), we have

QX1(B) =
∫

B

(b − c)a

�(a)
· xa−1 · e−(b−c)·x λ(dx) for any B ∈ B(Υ ).

The latter yields QX1 = Ga(̃η), where η̃ := (b − c, a) ∈ Υ 2, and

EQ[X1] = EP [X1 · ec·X1]
EP [ec·X1] = a

b − c
>

a

b
= EP [X1];

hence p(P ) < p(Q) < ∞. In particular, according to Theorem 4.1 for any T > 0
the process VT satisfies the (NFLVR) condition.
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