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Abstract A new multi-factor short rate model is presented which is bounded from below
by a real-valued function of time. The mean-reverting short rate process is modeled by a sum
of pure-jump Ornstein–Uhlenbeck processes such that the related bond prices possess affine
representations. Also the dynamics of the associated instantaneous forward rate is provided
and a condition is derived under which the model can be market-consistently calibrated. The
analytical tractability of this model is illustrated by the derivation of an explicit plain vanilla
option price formula. With view on practical applications, suitable probability distributions are
proposed for the driving jump processes. The paper is concluded by presenting a post-crisis
extension of the proposed short and forward rate model.
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1 Introduction

Stochastic interest rate models play an important role in the modeling of financial
markets. The literature essentially distinguishes between short rate models, forward
rate models and market models. In the sequel, we give a brief survey on the different
classes of term structure models. For more detailed information, the reader is referred
to the respective research articles or the textbooks [7, 21] and [26].

Widely applied short rate models are for example the Vasicek model [38], the
Hull–White model [29] or the Cox–Ingersoll–Ross (CIR) model [10]. In [38] and
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[29] the short rate process is modeled by a stochastic differential equation (SDE)
of Ornstein–Uhlenbeck (OU) type driven by a Brownian motion (BM). As a conse-
quence, the short rate process is normally distributed in these models and may be-
come arbitrarily negative. Both features embody severe disadvantages with view on
real-world market behavior, as the distribution of interest rate data frequently deviates
from the normal distribution, while interest rates do not take arbitrarily large negative
values in practice. In the recent years, there indeed appeared negative interest rates
from time to time, but the negative values usually were small and stayed above some
lower bound. However, in [10] the short rate is modeled by a so-called square-root
process. This approach leads to a mean-reverting, strictly positive and chi-square dis-
tributed short rate process. In [6] the authors propose a time-homogeneous short rate
model which is extended by a deterministic shift function in order to allow for neg-
ative rates and a perfect fit to the initially observed term structure. A very detailed
overview on short rate models and their properties can be found in [7, 16] and [21].
In [26] and [33] short rate models in an extended multiple-curve framework are pre-
sented. The probably most famous forward rate model is the Heath–Jarrow–Morton
(HJM) model proposed in [27]. Therein, the instantaneous forward rate process is
modeled directly by an arithmetic SDE driven by a BM. In [4] the HJM model is
extended to a jump-diffusion setup where the forward rate process is affected by both
diffusion and random jump noise. HJM type models are also treated in [7] and Chap-
ter 7 in [28]. In [12] and [26] HJM forward rate models in an extended multi-curve
framework are discussed. The class of the so-called market models was introduced
in [5]. For example, the popular LIBOR model belongs to this modeling class. In
most cases, market models involve geometric SDEs such that the modeled interest
rates usually turn out to be strictly positive. In order to allow the modeled rates also
to take small negative values, shifted market model approaches have been proposed
recently. Numerous properties of affine LIBOR models are provided in [31]. Market
models are also presented in [7]. In [26] LIBOR models in an extended multi-curve
framework are discussed. In [17] the authors propose a Lévy forward price model in
a multi-curve setup which is able to generate negative interest rates. Term structure
models which are driven by Lévy processes have also been proposed in [18–20].

In the present paper, we introduce a new pure-jump multi-factor short rate model
which is bounded from below by a real-valued function of time which can be chosen
arbitrarily. The short rate process is modeled by a deterministic function plus a sum
of pure-jump zero-reverting Ornstein–Uhlenbeck processes. It turns out that the short
rate is mean-reverting and that the related bond price formula possesses an affine
representation. We also provide the dynamics of the related instantaneous forward
rate, the latter being of HJM type. We further derive a condition under which the for-
ward rate model can be market-consistently calibrated. The analytical tractability of
our model is illustrated by the derivation of a plain-vanilla option price formula with
Fourier transform methods. With view on practical applications, we make concrete
assumptions on the distribution of the jump noises and show how explicit formulas
can be deduced in these cases. We conclude the paper by presenting a post-crisis
extension of our short and forward rate model.

The outline of the paper is as follows: In Section 2 we introduce our new pure-
jump multi-factor short rate model which is bounded from below. Section 3 is ded-
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icated to the derivation of related bond price and forward rate representations. Sec-
tion 4 is devoted to option pricing. Section 5 contains guidelines for a practical appli-
cation, while putting a special focus on possible distributional choices for the model-
ing of the involved jump noises. In Section 6 we consider a post-crisis extension of
the proposed short and forward rate model.

2 A pure-jump multi-factor short rate model

Let
(
�,F,F = (Ft )t∈[0,T ] ,Q

)
be a filtered probability space satisfying the usual

hypotheses, i.e. Ft = Ft+ := ∩s>tFs constitutes a right-continuous filtration and F

denotes the sigma-algebra augmented by all Q-null sets (cf. [30, 35]). Here, Q is a
risk-neutral probability measure and T > 0 denotes a fixed finite time horizon. In this
setup, for arbitrary n ∈ N we define the stochastic short rate process r = (rt )t∈[0,T ]
via

rt := μ (t) +
n∑

k=1

Xk
t (2.1)

where μ (t) is a differentiable real-valued deterministic L1-function and Xk
t constitute

pure-jump zero-reverting Ornstein–Uhlenbeck (OU) processes satisfying the SDE

dXk
t = −λkX

k
t dt + σkdLk

t (2.2)

with deterministic initial values Xk
0 := xk ≥ 0, constant mean-reversion velocities

λk > 0 and constant volatility coefficients σk > 0. Herein, the independent, càdlàg,
increasing, pure-jump, compound Poisson Lévy processes Lk

t are defined by

Lk
t :=

∫ t

0

∫
Dk

zdNk (s, z) (2.3)

where Dk ⊆ R+ := ]0,∞[ ⊂ R denote jump amplitude sets and Nk constitute
Poisson random measures (PRMs). Note that the processes Xk

t and Lk
t always jump

simultaneously, while Xk
t decays exponentially between its jumps due to the damp-

ening linear drift term appearing in (2.2). A typical trajectory of a Lévy-driven OU
process is shown in Figure 15.1 in [9]. Further note that the background-driving time-
homogeneous Lévy processes Lk

t are increasing and thus, constitute so-called subor-
dinators. Moreover, for all k ∈ {1, . . . , n} and (s, z) ∈ [0, T ] × Dk we define the
Q-compensated PRMs

dÑ
Q
k (s, z) := dNk (s, z) − dνk (z) ds (2.4)

which constitute (F ,Q)-martingale integrators. Herein, the positive and σ -finite Lévy
measures νk satisfy the integrability conditions∫

Dk

(1 ∧ z) dνk (z) < ∞,

∫
z>1

e�zdνk (z) < ∞ (2.5)

for an arbitrary constant � ∈ R (cf. [9, 17]). For all k ∈ {1, . . . , n} and t ∈ [0, T ] we
obtain

EQ

[
Lk

t

] = t

∫
Dk

zdνk (z) , VarQ
[
Lk

t

] = t

∫
Dk

z2dνk (z)
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both being finite entities due to (2.5) (cf. Section 1 in [17]). We remark that the cur-
rently proposed multi-factor short rate model (2.1) has been inspired by the electricity
spot price model introduced in [2]. Arithmetic multi-factor models of this type have
also been investigated in [28] and Section 3.2.2 in [3].

Remark 2.1. (a) Since Lk
t is increasing and Xk

t is zero-reverting from above, the
function μ (t) is the mean-reversion floor or lower bound of the short rate process
rt , i.e. it holds rt ≥ μ (t) Q-a.s. for all t ∈ [0, T ], while rt is mean-reverting from
above to μ (t). Also note that the presence of a Brownian motion (BM) as driving
noise in one of the processes X1

t , . . . , X
n
t would destroy the lower boundedness of rt .

In contrast to the presented pure-jump approach, it appears difficult to set up (lower-)
bounded processes in arithmetic BM approaches. Moreover, we recall that negative
rates have been observed in real-world post-crisis interest rate markets. Such scenar-
ios can easily be captured by our model by choosing, e.g. μ (t) ≡ c, where c < 0 is
an arbitrary constant. (In practical applications, it may happen that the floor function
μ (t) needs to be readjusted, if interest rates evolve lower than anticipated. This issue
has been discussed in [1] in the context of the SABR model.)

(b) Our pure-jump model (2.1) is able to generate short rate trajectories which
closely resemble those stemming from common Brownian motion approaches, if we
allow for small jump sizes only, i.e. Dk = [

εk
1 , εk

2

]
with small constants 0 < εk

1 < εk
2 .

In this context, we emphasize that the well-established pure-jump variance gamma
model is likewise able to generate suitable price trajectories, although there is neither
any diffusion component involved (cf. Section 2.6.3 in [3], Table 4.5 in [9], Sec-
tion 5.3.7 in [37]). On top of that, our pure-jump model might even provide more
flexibility concerning the modeling of distributional properties than common BM ap-
proaches, since we are able to implement tailor-made distributions via an appropriate
choice of the Lévy measures νk which fit the empirical behavior of the rates in a
best possible manner. This topic is further discussed in Section 5 below. For instance,
(generalized) inverse Gaussian, tempered stable or gamma distributions might em-
body suitable choices (recall Appendix B.1.2 on p. 151 in [37]). We finally recall that
a model of the type (2.1) has been fitted to real market data in [2] (yet in an electricity
market context).

For a time partition 0 ≤ t ≤ s ≤ T the solution of (2.2) under Q can be expressed
as

Xk
s = Xk

t e
−λk(s−t) + σk

∫ s

t

∫
Dk

e−λk(s−u)zdNk (u, z) (2.6)

where we used (2.3). The representation (2.6) implies

Xk
t = xke

−λkt + σk

∫ t

0

∫
Dk

e−λk(t−s)zdNk (s, z) (2.7)

where 0 ≤ t ≤ T . For all t ∈ [0, T ] we next define the historical filtration

Ft := σ {L1
s , . . . , L

n
s : 0 ≤ s ≤ t}.

Proposition 2.2. For 0 ≤ u ≤ t ≤ T we have

EQ (rt |Fu) = μ (t) +
n∑

k=1

(
Xk

ue
−λk(t−u) + σk

1 − e−λk(t−u)

λk

∫
Dk

zdνk (z)

)
,
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VarQ (rt |Fu) =
n∑

k=1

σ 2
k

1 − e−2λk(t−u)

2λk

∫
Dk

z2dνk (z)

where the short rate process rt satisfies (2.1). Both entities are finite due to (2.5).

(Here and in what follows, we omit all proofs which are straightforward.) Taking
u = 0 in Proposition 2.2, we find for all t ∈ [0, T ]

EQ [rt ] = μ (t) +
n∑

k=1

(
xke

−λkt + σk

1 − e−λkt

λk

∫
Dk

zdνk (z)

)
,

VarQ [rt ] =
n∑

k=1

σ 2
k

1 − e−2λkt

2λk

∫
Dk

z2dνk (z) .

Note that it is possible to identify the entities EQ

[
Xk

t

]
and VarQ

[
Xk

t

]
inside the latter

equations due to (2.1). Moreover, suppose that μ (t) → μ̃ for t → ∞ where μ̃ ∈ R

is a finite constant. Then we observe

lim
t→∞EQ [rt ] = μ̃ +

n∑
k=1

σk

λk

∫
Dk

zdνk (z) ,

lim
t→∞VarQ [rt ] =

n∑
k=1

σ 2
k

2λk

∫
Dk

z2dνk (z)

which both constitute finite constants. This limit behavior entirely stands in line with
the requirements imposed on short rate models claimed on p. 46 in [7]. In the next
step, we investigate the characteristic function of rt which is defined via

�rt (u) := EQ

[
eiurt

]
where u ∈ R and t ∈ [0, T ].

Proposition 2.3. For k ∈ {1, . . . , n} we define the deterministic functions

	k (s, z) := σke
−λk(t−s)z, ψk (t, u) := iue−λkt ,

ρk (t, u) :=
∫ t

0

∫
Dk

[
eiu	k(s,z) − 1

]
dνk (z) ds.

Then for any u ∈ R and t ∈ [0, T ] the characteristic function of rt can be decomposed
as

�rt (u) = eiuμ(t)

n∏
k=1

�Xk
t
(u)

where the characteristic function of Xk
t is given by

�Xk
t
(u) = eψk(t,u)xk+ρk(t,u)

with deterministic and affine characteristic exponent.
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An immediate consequence of Proposition 2.3 is the subsequent affine represen-
tation

�rt (u) =
n∏

k=1

eψk(t,u)xk+φk(t,u) (2.8)

where we introduced the deterministic functions

φk (t, u) := ρk (t, u) + iuμ (t)/n.

We emphasize that rt is an affine function of the factors X1
t , . . . , X

n
t such that our

model turns out to be a special case of the affine short rate models considered in
Section 3.3 in [14]. To read more on affine processes we refer to [7, 14, 16, 26] and
[31]. We next define the moment generating function of rt via

κrt (v) := EQ

[
evrt

]
(2.9)

which implies the well-known equalities �rt (u) = κrt (iu) and κrt (v) = �rt (−iv).
Note that the moment generating function κrt (v) is well-defined due to (2.5). In the
sequel, we derive the time dynamics of the short rate process.

Proposition 2.4. For all t ∈ [0, T ] the short rate process follows the dynamics

drt =
(

μ′ (t) −
n∑

k=1

λkX
k
t

)
dt +

n∑
k=1

σk

∫
Dk

zdNk (t, z) . (2.10)

Remark 2.5. We recall that our model constitutes an extension of the short rate model
proposed in [6], whereas we work with multiple pure-jump processes L1

t , . . . , L
n
t as

driving noises instead of the single Brownian motion Wt appearing in Eq. (1) in [6].
Moreover, comparing Eq. (3) in [6] with Eq. (2.1) above, we see that xt and ϕ (t; α)

in [6] correspond in our setup to
∑n

k=1 Xk
t and μ (t), respectively.

3 Bond prices and forward rates

In this section, we derive representations for zero-coupon bond prices, forward rates
and the interest rate curve related to the short rate model introduced in Section 2. To
begin with, we introduce a bank account with stochastic interest rate rt satisfying

dβt = rtβtdt (3.1)

with normalized initial capital β0 = 1. The solution of (3.1) reads as

βt = exp

{∫ t

0
rsds

}
(3.2)

where t ∈ [0, T ]. In this setup, the (zero-coupon) bond price at time t ≤ T with
maturity T is given by

P (t, T ) := βtEQ

(
β−1

T |Ft

)
= EQ

(
exp

{
−

∫ T

t

rsds

} ∣∣∣∣Ft

)
(3.3)
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where t ∈ [0, T ] (cf. [6, 7, 26]). Note that P (t, T ) > 0 Q-a.s. ∀ t ∈ [0, T ] by
construction. Since rt ≥ μ (t) Q-a.s. ∀ t ∈ [0, T ] [recall Remark 2.1 (a)], we observe

P (t, T ) ≤ Mt,T := exp

{
−

∫ T

t

μ (s) ds

}
(3.4)

Q-a.s. ∀ t ∈ [0, T ] due to (3.3) and the monotonicity of conditional expectations.
The upper bound Mt,T appearing in (3.4) is deterministic and strictly positive for all
0 ≤ t ≤ T . If μ (t) ≥ 0, then it holds P (t, T ) ≤ 1 Q-a.s. ∀ t ∈ [0, T ] (similar to,
e.g., the CIR model [10]; also see [7, 21]). On the other hand, if μ (t) < 0, then we
only know that Mt,T > 1.

Proposition 3.1. For k ∈ {1, . . . , n} and t ∈ [0, T ] we define the deterministic
functions

Ak (t, T ) :=
∫ T

t

(
−μ (s)

n
+

∫
Dk

[
eσkBk(s,T )z − 1

]
dνk (z)

)
ds,

Bk (t, T ) := e−λk(T −t) − 1

λk

≤ 0.

(3.5)

Then the bond price at time t ≤ T with maturity T possesses the affine representation

P (t, T ) =
n∏

k=1

eAk(t,T )+Bk(t,T )Xk
t (3.6)

where the factors Xk
t satisfy (2.7).

Proof. First of all, we put (2.6) into (2.1) and obtain

rs = μ (s) +
n∑

k=1

Xk
t e

−λk(s−t) +
n∑

k=1

∫ s

t

∫
Dk

σke
−λk(s−u)zdNk (u, z)

where 0 ≤ t ≤ s ≤ T . We next substitute the latter equation into (3.3), hereafter
apply Fubini’s theorem and identify the functions Bk (·, T ). This procedure yields

P (t, T ) = exp

{
−

∫ T

t

μ (s) ds +
n∑

k=1

Bk (t, T )Xk
t

}

× EQ

(
exp

{
n∑

k=1

∫ T

t

∫
Dk

σkBk (s, T ) zdNk (s, z)

} ∣∣∣∣Ft

)
.

Taking the independent increment property of the (Q-independent) Lévy processes
L1, . . . , Ln into account, we obtain

EQ

(
exp

{
n∑

k=1

∫ T

t

∫
Dk

σkBk (s, T ) zdNk (s, z)

} ∣∣∣∣Ft

)
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=
n∏

k=1

EQ

[
exp

{∫ T

t

∫
Dk

σkBk (s, T ) zdNk (s, z)

}]

where t ∈ [0, T ]. The usual expectations appearing here can be handled by the Lévy–
Khinchin formula for additive processes (see, e.g., [9, 30, 36]) which leads us to

EQ

[
exp

{∫ T

t

∫
Dk

σkBk (s, T ) zdNk (s, z)

}]

= exp

{∫ T

t

∫
Dk

[
eσkBk(s,T )z − 1

]
dνk (z) ds

}
.

Putting the latter equations together and identifying the functions Ak (·, T ), we end
up with the asserted representation (3.6).

Recall that the bond price in (3.6) is the product of exponential affine functions
of the factors X1

t , . . . , X
n
t (but not of rt ). Also note that for all k ∈ {1, . . . , n} and

t ∈ [0, T ] it holds
Ak (t, t) = Bk (t, t) = 0. (3.7)

We remark that the functions Bk (t, T ) in (3.5) possess the same structure as the
corresponding ones in the Vasicek model (cf. [38], or [7, 16, 21]). For all t ∈ [0, T ]
Eq. (3.6) can be rewritten as

P (t, T ) = exp

{
n∑

k=1

[
Ak (t, T ) + Bk (t, T ) Xk

t

]}
(3.8)

which implies P (T , T ) = 1 due to (3.7). Moreover, from (3.5) we infer the time
derivatives

A′
k (t, T ) = μ (t)

n
−

∫
Dk

[
eσkBk(t,T )z − 1

]
dνk (z) , B ′

k (t, T ) = e−λk(T −t) > 0

(3.9)
where A′

k := ∂tAk and B ′
k := ∂tBk . Hence, the functions Bk (t, T ) ≤ 0 are strictly

monotone increasing in t . Also note that the formulas found in (3.9) entirely stand in
line with those claimed in (4.4)–(4.5) in [31]. From (3.5), (3.7) and (3.9) we deduce
the following system of ordinary differential equations (ODEs)

Ak (t, T ) = −
∫ T

t

A′
k (s, T ) ds, B ′

k (t, T ) = 1 + λkBk (t, T ) ,

Ak (T , T ) = Bk (T , T ) = 0

where t ∈ [0, T ] and k ∈ {1, . . . , n}. We are now prepared to derive the time dynam-
ics of the bond price process (P (t, T ))t∈[0,T ].

Proposition 3.2. For k ∈ {1, . . . , n}, t ∈ [0, T ] and z ∈ Dk we define the determin-
istic functions

ζk (t, T , z) := eσkBk(t,T )z − 1 (3.10)
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with Bk (t, T ) as in (3.5). Then the bond price satisfies the t-dynamics under Q

dP (t, T )

P (t−, T )
= rtdt +

n∑
k=1

∫
Dk

ζk (t, T , z) dÑ
Q
k (t, z) . (3.11)

Recall that it holds ζk (t, T , z) ≤ 0, since σk Bk (t, T ) z ≤ 0 for all k, t and z.
We stress that (3.11) possesses the same structure as the corresponding Eq. (10.9) in
[37], whereas the latter stems from a Brownian motion model without jumps. In the
next step, we provide the solution of the SDE (3.11).

Proposition 3.3. For all t ∈ [0, T ] the solution of (3.11) under Q reads as

P (t, T ) = P (0, T ) exp

{∫ t

0
rsds −

n∑
k=1

∫ t

0

∫
Dk

ζk (s, T , z) dνk (z) ds

+
n∑

k=1

∫ t

0

∫
Dk

σkBk (s, T ) zdNk (s, z)

}
(3.12)

where the initial value P (0, T ) is deterministic and fulfills P (0, T ) > 0.

Furthermore, for all t ∈ [0, T ] let us introduce the discontinuous Doléans-Dade
exponential

�k
t := E

(
hk ∗ Ñ

Q
k

)
t
:= exp

{∫ t

0

∫
Dk

hk (s, z) dÑ
Q
k (s, z)

−
∫ t

0

∫
Dk

[
ehk(s,z) − 1 − hk (s, z)

]
dνk (z) ds

}
(3.13)

where hk (s, z) is an arbitrary integrable deterministic function (which may also de-
pend on T ). We recall that �k

0 = 1 and that
(
�k

t

)
t∈[0,T ] constitutes a local Q-

martingale. With definition (3.13) at hand, we can express Eq. (3.12) as follows.

Corollary 3.4. For all 0 ≤ t ≤ T the bond price satisfies

P (t, T ) = P (0, T ) βt

n∏
k=1

E
(
ξk ∗ Ñ

Q
k

)
t

(3.14)

where βt is the bank account process given in (3.2), E denotes the Doleáns-Dade
exponential defined in (3.13) and ξk (s, z) := σk Bk (s, T ) z = log (1 + ζk (s, T , z))

is a deterministic function.

Moreover, for all 0 ≤ t ≤ T we define the discounted bond price

P̂ (t, T ) := P (t, T )

βt

(3.15)

where P̂ (0, T ) = P (0, T ). From (3.3) we deduce P̂ (t, T ) = EQ(β−1
T | Ft ) such

that P̂ (t, T ) constitutes an Ft -adapted (true) martingale under Q, as required by the
risk-neutral pricing theory. Plugging (3.14) into (3.15), for all t ∈ [0, T ] we obtain

P̂ (t, T ) = P (0, T )

n∏
k=1

E
(
ξk ∗ Ñ

Q
k

)
t

(3.16)
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where P (0, T ) is deterministic and ξk is such as defined in Corollary 3.4. We obtain
the following result.

Proposition 3.5. For all t ∈ [0, T ] the discounted bond price satisfies the Q-mar-
tingale dynamics

dP̂ (t, T )

P̂ (t−, T )
=

n∑
k=1

∫
Dk

ζk (t, T , z) dÑ
Q
k (t, z)

where the deterministic functions ζk (t, T , z) are such as defined in (3.10).

With reference to [7], we define the instantaneous forward rate at time t with
maturity T via

f (t, T ) := −∂T log P (t, T ) (3.17)

where t ∈ [0, T ] and ∂T denotes the differential operator with respect to T . Equation
(3.17) is equivalent to the representation

P (t, T ) = exp

{
−

∫ T

t

f (t, u) du

}
. (3.18)

Lemma 3.6. For all k ∈ {1, . . . , n} and t ∈ [0, T ] it holds

∂T Ak (t, T ) = −μ (T )

n
− σk

∫ T

t

∫
Dk

zeσkBk(s,T )z−λk(T −s)dνk (z) ds,

∂T Bk (t, T ) = −e−λk(T −t).

Proof. By the definition of Bk (t, T ) claimed in (3.5) we find

∂T Bk (t, T ) = −e−λk(T −t) (3.19)

so that the functions Bk (t, T ) are strictly monotone decreasing in T . From (3.5) and
(3.10) we further deduce

∂T Ak (t, T ) = −μ (T )

n
+ ∂T

(∫ T

t

∫
Dk

ζk (s, T , z) dνk (z) ds

)

whereas Fubini’s theorem (see, e.g., Theorem 2.2 in [3]) leads us to

∂T

(∫ T

t

∫
Dk

ζk (s, T , z) dνk (z) ds

)
=

∫
Dk

∂T

(∫ T

t

ζk (s, T , z) ds

)
dνk (z) .

(We are able to apply Fubini’s theorem here, since the deterministic function ζk(s,T ,z)

is measurable and square-integrable with respect to s ∈ [0, T ] and z ∈ Dk .) The Leib-
niz formula for parameter integrals (see Lemma 2.4.1 on p. 13 in [28]) yields

∂T

(∫ T

t

ζk (s, T , z) ds

)
= ζk (T , T , z) +

∫ T

t

∂T ζk (s, T , z) ds

= −σk

∫ T

t

zeσkBk(s,T )z−λk(T −s)ds

where we used (3.10), (3.7) and (3.19). Putting these formulas together, the proof is
complete.
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Proposition 3.7. For all t ∈ [0, T ] the instantaneous forward rate can be represented
as

f (t, T ) = μ (T )+
n∑

k=1

∫ T

t

∫
Dk

σkze
σkBk(s,T )z−λk(T −s)dνk (z) ds +

n∑
k=1

Xk
t e

−λk(T −t)

(3.20)
where the factor processes Xk

t satisfy (2.7) and Bk (s, T ) is like defined in (3.5).

Proof. We substitute (3.8) into (3.17) and obtain

f (t, T ) = −
n∑

k=1

[
∂T Ak (t, T ) + Xk

t ∂T Bk (t, T )
]
.

Combining this equality with Lemma 3.6, we derive the claimed representation (3.20).

Replacing T by t in (3.20), we immediately find f (t, t) = rt due to (2.1). This
equality stands in line with the usual conventions in interest rate theory (see, e.g.,
[7, 16, 21]).

Proposition 3.8. For all t ∈ [0, T ] the instantaneous forward rate fulfills the pure-
jump multi-factor HJM type equation

f (t, T ) = f (0, T ) +
n∑

k=1

∫ t

0

∫
Dk

σkze
−λk(T −s)

{
dNk (s, z) − eσkBk(s,T )zdνk (z) ds

}
(3.21)

where the deterministic initial value is given by f (0, T ) = −∂T log P (0, T ).

In what follows, we illustrate how our forward rate model can be fitted to the ini-
tially observed term structure. This procedure is often called market-consistent cali-
bration in the literature. For this purpose, we denote by f M (0, T ) the deterministic
initial forward rate. If f (0, T ) = f M (0, T ) and hence, if P (0, T ) = P M (0, T ) for
all maturity times T > 0, then the underlying model is called market-consistent.

Proposition 3.9. The forward rate model (3.20)–(3.21) can be market-consistently
calibrated to a given term structure f M (0, T ) by choosing the floor function μ (·) in

(3.20) according to

μ (T ) = f M (0, T ) −
n∑

k=1

(
xke

−λkT +
∫ T

0

∫
Dk

σkze
σkBk(s,T )z−λk(T −s)dνk (z) ds

)
(3.22)

for all maturity times T > 0.

Note that the floor function μ (t) for all t ∈ [0, T ] can be obtained from (3.22) by
replacing T by t therein. Moreover, we define the interest rate curve at time t < T

with maturity T via

R (t, T ) := log P (t, T )

t − T
. (3.23)
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This object is called continuously-compounded spot rate on p. 60 in [7]. It obviously
holds

P (t, T ) = e−(T −t)R(t,T ) (3.24)

where t ∈ [0, T [. Comparing the exponent in (3.24) with that in (3.8), we infer

R (t, T ) = 1

t − T

n∑
k=1

[
Ak (t, T ) + Bk (t, T ) Xk

t

]

where Ak and Bk are such as defined in (3.5). Hence, it turns out that the interest
rate curve R (t, T ) can be represented as a sum of affine functions of the pure-jump
OU factors X1

t , . . . , X
n
t . In this sense, our short rate model possesses an affine term

structure (cf. Section 3.2.4 in [7], or [14, 16, 21]). The latter observation entirely
stands in line with (3.8).

Proposition 3.10. For all t ∈ [0, T [ the interest rate curve possesses the representa-
tion

R (t, T ) = 1

t − T

(
log P (0, T ) +

∫ t

0
rsds −

n∑
k=1

∫ t

0

∫
Dk

ζk (s, T , z) dνk (z) ds

+
n∑

k=1

∫ t

0

∫
Dk

σkBk (s, T ) zdNk (s, z)

)

where ζk and Bk are such as defined in (3.10) and (3.5), respectively.

Proposition 3.11. For all t ∈ [0, T ] the integrated short rate process can be repre-
sented as

It :=
∫ t

0
rsds =

∫ t

0
μ (s) ds −

n∑
k=1

xkBk (0, t) −
n∑

k=1

∫ t

0

∫
Dk

σkBk (s, t) zdNk (s, z)

(3.25)
where the deterministic functions Bk are such as defined in (3.5).

Proof. We substitute (2.1) and (2.7) into the definition of It and obtain

It =
∫ t

0
μ (s) ds −

n∑
k=1

xkBk (0, t) +
n∑

k=1

∫ t

0

∫ s

0

∫
Dk

σke
−λk(s−u)zdNk (u, z) ds

where Bk is like defined in (3.5). An application of Fubini’s theorem (see Theorem
2.2 in [3]) yields∫ t

0

∫ s

0

∫
Dk

σke
−λk(s−u)zdNk (u, z) ds = −

∫ t

0

∫
Dk

σkBk (u, t) zdNk (u, z) ,

so that the proof is complete.

Recall that the last jump integral in (3.25) constitutes a so-called Volterra inte-
gral, as the time parameter t appears both inside the integrand and inside the upper
integration bound. Also note that it holds It = log βt with I0 = 0 due to (3.2).
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4 Option pricing

In this section, we investigate the evaluation of a plain vanilla option written on the
zero-coupon bond price P (·, T ). With reference to the risk-neutral pricing theory, the
price at time t ≤ τ of an option with payoff Hτ at the maturity time τ reads as

Ct = βtEQ

(
β−1

τ Hτ |Ft

) = EQ

(
e− ∫ τ

t rsdsHτ |Ft

)
(4.1)

where β is the bank account process given in (3.2) and Q denotes a risk-neutral pric-
ing measure (cf. Eq. (3.1) in [7]). We now consider a call option written on the bond
price P (·, T ) with maturity time T satisfying T ≥ τ . The payoff of the call option
written on P (τ, T ) with deterministic strike price K > 0 and maturity time τ is then
given by

Hτ = [P (τ, T ) − K]+ := max {0, P (τ, T ) − K} . (4.2)

In what follows, we define the Fourier transform, respectively inverse Fourier trans-
form, of a real-valued deterministic function p (·) ∈ L1 (R) via

p̂ (y) := 1

2π

∫
R

p (u) e−iyudu, p (u) =
∫
R

p̂ (y) eiyudy.

Proposition 4.1. [call option on bond price] For all 0 ≤ t ≤ τ ≤ T the price of a
call option with payoff Hτ given in (4.2), strike price K > 0 and maturity time τ can
be expressed as

Ct =
∫
R

q̂ (y) exp

{
It + θ (τ, y) +

n∑
k=1

ψk (t, τ, y)

+
n∑

k=1

∫ t

0

∫
Dk

ηk (s, z, y) dNk (s, z)

}
dy (4.3)

where the integrated short rate process It is such as defined in (3.25) and

ηk (s, z, y) := ηk (s, z, T , τ, y)

:= σk [(a + iy) Bk (s, T ) − (a + iy − 1) Bk (s, τ )] z,

q̂ (y) := P (0, T )a+iy

2π (a + iy) (a + iy − 1)Ka+iy−1 ,

ψk (t, τ, y) :=
∫ τ

t

∫
Dk

[
eηk(s,z,y) − 1

]
dνk (z) ds, (4.4)

θ (τ, y) := (a + iy − 1)

(∫ τ

0
μ (s) ds −

n∑
k=1

xkBk (0, τ )

)

− (a + iy)

n∑
k=1

∫ τ

0

∫
Dk

ζk (s, T , z) dνk (z) ds

constitute deterministic functions, while a > 1 is an arbitrary real-valued constant.
Herein, the functions ζk and Bk are such as defined in (3.10) and (3.5), respectively,
while P (0, T ) denotes the deterministic initial bond price.
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Proof. We substitute (4.2) and (3.12) into (4.1) and obtain

Ct = EQ

(
eIt−Iτ

[
P (0, T ) eGτ − K

]+|Ft

)
where It denotes the integrated short rate process defined in (3.25) and

Gτ := Iτ −
n∑

k=1

∫ τ

0

∫
Dk

ζk (s, T , z) dνk (z) ds +
n∑

k=1

∫ τ

0

∫
Dk

σkBk (s, T ) zdNk (s, z)

is a real-valued stochastic process. For u ∈ R we introduce the deterministic function

q (u) := e−au
[
P (0, T ) eu − K

]+
where a > 1 is a constant real-valued dampening parameter ensuring the integrability
of the payoff function. Indeed, it holds q (·) ∈ L1 (R). With the latter definition at
hand, we obtain

Ct = EQ

(
eIt−Iτ +aGτ q (Gτ ) |Ft

)
.

With reference to [8] (also see [18]), we apply the inverse Fourier transform on the
latter equation and hereafter, use Fubini’s theorem which leads us to

Ct =
∫
R

q̂(y)EQ

(
eZt,τ |Ft

)
dy

where we have set
Zt,τ := It − Iτ + (a + iy) Gτ

for all 0 ≤ t ≤ τ . By merging the definition of Gτ and (3.25) into the definition of
Zt,τ we deduce

Zt,τ = It + θ (τ, y) +
n∑

k=1

∫ τ

0

∫
Dk

ηk (s, z, y) dNk (s, z)

where we identified the deterministic functions θ (τ, y) and ηk (s, z, y) defined in
(4.4). Hence,

EQ

(
eZt,τ |Ft

) = exp

{
It + θ (τ, y) +

n∑
k=1

∫ t

0

∫
Dk

ηk (s, z, y) dNk (s, z)

}

× EQ

[
exp

{
n∑

k=1

∫ τ

t

∫
Dk

ηk (s, z, y) dNk (s, z)

}]

since It is Ft -adapted and θ (τ, y) is deterministic. In the derivation of the latter
equation, we used the independent increment property under Q of the involved pure-
jump integrals. We next apply the Lévy–Khinchin formula for additive processes (see,
e.g., [9, 30, 36]) and derive

EQ

[
exp

{
n∑

k=1

∫ τ

t

∫
Dk

ηk (s, z, y) dNk (s, z)

}]
= exp

{
n∑

k=1

ψk (t, τ, y)

}
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where the characteristic exponents ψk (t, τ, y) are such as defined in (4.4). Putting
the latter equations together, we eventually end up with (4.3). The expression for the
Fourier transform q̂ (y) is obtained by straightforward calculations using the defini-
tion of the function q (u).

Corollary 4.2. In the special case t = 0, the call option price formula (4.3) simplifies
to

C0 =
∫
R

q̂ (y) exp

{
θ (τ, y) +

n∑
k=1

ψk (0, τ, y)

}
dy

which is deterministic.

5 Practical applications

In this section, we show how the short rate model introduced in Section 2 can be
implemented in practical applications. For this purpose, we now present more detailed
expressions in order to prepare our model for a possible calibration of the involved
parameters. First of all, let us recall that the increasing compound Poisson processes
Lk

t defined in (2.3) for every k ∈ {1, . . . , n} and t ∈ [0, T ] can be expressed as

Lk
t =

Nk
t∑

j=1

Y k
j (5.1)

(cf. Section 5.3.2 in [37]) where Nk
t constitutes a standard Poisson process under Q

with deterministic jump intensity αk > 0. That is, Nk
t ∼ Poi (αkt) such that for all

m ∈ N0 it holds

Q
(
Nk

t = m
) = (αkt)

m

m! e−αkt .

The strictly positive jump amplitudes of the Lévy process Lk
t are modeled by the

i.i.d. random variables Y k
1 , Y k

2 , . . . which take values in the set Dk ⊆ ]0,∞[. We
recall that the random variables Y k

1 , Y k
2 , . . . are independent of the Poisson processes

Nk
t for all combinations of indices k, k ∈ {1, . . . , n}. We further put ck := EQ[Y k

1 ] ∈
Dk and recall that the compensated compound Poisson process

(
Lk

t − ckαkt
)
t∈[0,T ]

constitutes an (Ft ,Q)-martingale for each k which implies

ckαk =
∫

Dk

zdνk (z)

due to (2.3) and (2.4). We stress that the Poisson processes Nk
t shall not be mixed up

with the Poisson random measures dNk (t, z).
In the following, we propose a number of probability distributions living on the

positive half-line (recall Section B.1.2 in [37]) which constitute suitable candidates
for the modeling of the jump size distribution in our new short rate model. As a first
example, we propose to work with the gamma distribution and thus, assume that each
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random variable Y k
j is exponentially distributed under Q with parameter εk > 0 for

all j and k. In this case, the related Lévy measure possesses the Lebesgue density

dνk (z) = αkεke
−εkzdz (5.2)

where z ∈ Dk = ]0,∞[ and k ∈ {1, . . . , n}. We find ck = 1/εk and Y k
j ∼ � (1, εk).

Hence, following the notation used in Section 5.5.1 in [37], we state that we presently
are in a � (αk, εk)-Ornstein–Uhlenbeck process setup (also see Section 8.2 in [31] and
Example 15.1 in [9] in this context).

Proposition 5.1. Suppose that the random variables Y k
j in (5.1) are exponentially

distributed (i.e. � (1, εk)-distributed) under Q with parameters εk > 0 for all j and
k. Then, for u ∈ R and t ∈ [0, T ] the characteristic function of Lk

t is given by

�Lk
t
(u) = exp

{
iuαkt

εk − iu

}

where αk denotes the jump intensity of the standard Poisson process Nk
t appearing in

(5.1).

Proof. Successively applying the definition of the characteristic function, (2.3), the
Lévy–Khinchin formula and (5.2), for u ∈ R and t ∈ [0, T ] we obtain

�Lk
t
(u) = EQ

[
eiuLk

t
] = exp

{
αkεkt

∫ ∞

0

[
eiuz − 1

]
e−εkzdz

}
.

We eventually perform the integration and end up with the asserted equality.

An immediate consequence of Proposition 5.1 is the following representation for
the moment generating function of Lk

t being valid for all v ∈ R \ {εk}

κLk
t
(v) = �Lk

t
(−iv) = exp

{
vαkt

εk − v

}
.

Proposition 5.2. Assume that the random variables Y k
j in (5.1) are exponentially

distributed (i.e. � (1, εk)-distributed) under Q with parameters εk > 0 for all j and
k. Then, for all t ∈ [0, T ], k ∈ {1, . . . , n} and x ∈ R the probability density function
of Lk

t under Q takes the form

fLk
t
(x) = 1

2π

∫ ∞

0
exp

{
iu

(
x − αkt

εk + iu

)}
du.

Proof. First, note that it holds

�Lk
t
(−u) =

∫ ∞

0
e−iuxfLk

t
(x) dx = 2πf̂Lk

t
(u)

due to the definitions of the characteristic function and the Fourier transform claimed
in the sequel of (4.2). We next apply the inverse Fourier transform which yields the
density function

fLk
t
(x) = 1

2π

∫ ∞

0
�Lk

t
(−u) eiuxdu.

We finally plug the result of Proposition 5.1 into the latter equation which completes
the proof.
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We stress that Eq. (5.2) can be substituted into the corresponding formulas ap-
pearing in the previous Propositions 2.2, 2.3, 3.1, 3.3, 3.7–3.10 and 4.1 yielding more
explicit expressions for the involved entities, yet associated with gamma-distributed
jump amplitudes in the underlying short rate model. We illustrate this statement by
an application of Eq. (5.2) on Proposition 2.3. The precise result reads as follows.

Proposition 5.3. Suppose that the random variables Y k
j in (5.1) are exponentially

distributed (i.e. � (1, εk)-distributed) under Q with parameters εk > 0 for all j and
k. Let σk > 0 be the constant volatility coefficients introduced in (2.2). Then, for all
t ∈ [0, T ] and v ∈ R with v < mink {εk/σk}, k ∈ {1, . . . , n}, the moment generating
function under Q of the short rate process rt reads as

κrt (v) = �rt (−iv) = exp

{
vμ (t) +

n∑
k=1

ρk (t,−iv) +
n∑

k=1

ψk (t,−iv) xk

}

with deterministic functions

ψk (t,−iv) = ve−λkt , ρk (t,−iv) = αk

λk

log

∣∣∣∣εk − vσke
−λkt

εk − vσk

∣∣∣∣ .
Proof. For each k ∈ {1, . . . , n} we define the deterministic functions bk (s, v) :=
v σk e−λk(t−s) − εk which satisfy bk (s, v) < 0 whenever s ∈ [0, t] and v <

mink {εk/σk}. In this setting, we combine Eq. (5.2) with the definitions of ρk and
	k given in Proposition 2.3 and obtain

ρk (t,−iv) = −αk

∫ t

0

εk + bk (s, v)

bk (s, v)
ds.

We perform the integration and obtain the formula for ρk claimed in the proposition.
The representation for the moment generating function κrt (v) finally follows from
Proposition 2.3.

Other distributional choices for the random variables Y k
j modeling the jump am-

plitudes would be, for example, the inverse Gaussian distribution (see Section 5.5.2
in [37]), the generalized inverse Gaussian distribution (see Section 5.3.5 in [37]) or
the tempered stable distribution (see Section 5.3.6 in [37]). The related formulas for
the Lebesgue density of the Lévy measure dνk (z) corresponding to Eq. (5.2) can be
found in [37].

Remark 5.4. We recall that the time-homogeneous compound Poisson processes
Lk

t introduced in (2.3) can be simulated according to Algorithms 6.1 and 6.2 in [9].
Further, in our model it is easily possible to calculate the moments of Xk

t and rt
(see the sequel of Proposition 2.2) so that our model can be fitted to any yield curve
observed in the market by using the moment estimation method described in Section
7.2.2 in [9]. This procedure is also called moment matching, as the underlying idea is
to make the empirical moments match with the theoretical moments of the model by
finding a suitable parameter set.
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6 A post-crisis model extension

In this section, we propose a post-crisis extension of the pure-jump lower-bounded
short rate model introduced in Section 2. (To read more on post-crisis interest rate
models, the reader is referred to [11–14, 17, 22–26, 32–34].) Inspired by the modeling
setups presented in [33] and Chapter 2 in [26], for all t ∈ [0, T ] we define the short
rate spread under Q by the stochastic process

st := μ∗ (t) +
l∑

k=n+1

Xk
t

showing a similar structure as (2.1). Herein, μ∗ (t) ≥ 0 constitutes an integrable real-
valued deterministic function and the factors Xk

t satisfy the SDE (2.2), but presently
for indices k ∈ {n + 1, . . . , l} where l ∈ N with l > n. Note that it holds st ≥
μ∗ (t) Q-a.s. for all t ∈ [0, T ] such that the short rate spread is bounded from below
– similar to the short rate itself [recall Remark 2.1 (a)]. We interpret st as an additive
spread and therefore set for all t ∈ [0, T ]

rt := rt + st (6.1)

(cf. [12, 33]) where rt denotes the short rate process and rt is called fictitious short
rate, similarly to [26]. With reference to p. 46 in [26], we recall that the short rate
spread st not only incorporates credit risks, but also various other risks in the inter-
bank sector which affect the evolution of the LIBOR rates. Let us moreover mention
that the short rate rt defined in (2.1) and the short rate spread st can be ‘correlated’
by allowing for (at least) one common factor in their respective definitions. More
precisely, if the sum in the definition of st started running from k = n (instead of
k = n + 1), then the factor Xn

t would appear both in the definition of rt and in
the definition of st such that the two latter stochastic processes would no longer be
independent.

We next substitute (2.1) as well as the definition of st into (6.1) and deduce

rt = μ (t) +
l∑

k=1

Xk
t (6.2)

where we introduced the real-valued deterministic function μ (t) := μ (t) + μ∗ (t).
It obviously holds rt ≥ μ (t) Q-a.s. for all t ∈ [0, T ]. In accordance to Section 3.4.1
in [14], Eq. (2.35) in [26] and Section 1 in [33], we define the fictitious bond price in
our post-crisis short rate model via

P (t, T ) := EQ

(
exp

{
−

∫ T

t

rudu

} ∣∣∣∣Ft

)
(6.3)

where t ∈ [0, T ]. The object P (t, T ) is sometimes called artificial bond price in the
literature, as it is not physically traded in the market. Evidently, P (T , T ) = 1. Com-
paring (6.2) with (2.1) and (6.3) with (3.3), we see that all our single-curve results
presented in the previous sections carry over to the currently considered post-crisis
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case. More precisely, the entities μ (t), rt , P (t, T ) and n emerging in the previous
single-curve equations presently have to be replaced by μ (t), rt , P (t, T ) and l, re-
spectively. Moreover, in the present case, we observe Q-a.s. for all t ∈ [0, T ]

0 < P (t, T ) ≤ exp

{
−

∫ T

t

μ (u) du

}

due to (6.3), the lower boundedness of rt and the monotonicity of conditional expec-
tations.

Proposition 6.1. It holds Q-a.s. for all t ∈ [0, T ]

P (t, T ) ≤ P (t, T ) (6.4)

where P (t, T ) constitutes the bond price defined in (6.3) and P (t, T ) is given in (3.3).

Proof. Note that taking μ∗ (t) ≥ 0 ∀ t ∈ [0, T ] implies st ≥ 0 Q-a.s. for all t ∈
[0, T ]. In this case, we deduce rt ≥ rt Q-a.s. for all t ∈ [0, T ] due to (6.1). Hence,
we find

exp

{
−

∫ T

t

rudu

}
≤ exp

{
−

∫ T

t

rudu

}
Q-a.s. for all t ∈ [0, T ]. We next take conditional expectations with respect to Ft and
Q in the latter inequality, hereafter apply the monotonicity of conditional expectations
and finally identify (6.3) and (3.3) in the resulting inequality.

The result obtained in Proposition 6.1 possesses the following economical in-
terpretation: The inequality (6.4) shows that nontraded bonds are cheaper than their
nonfictitious counterparts which are physically traded in the market. This feature ap-
pears economically reasonable and stands in accordance with the modeling assump-
tions and statements in [12], Section 2.1.3 in [26] and Section 2.1 in [33]. Moreover,
combining (6.3) and (3.18), we obtain (parallel to [12])

P (t, T ) = exp

{
−

∫ T

t

f (t, u) du

}

where f is sometimes called fictitious/artificial forward rate in the literature. It holds
f (t, t) = rt for all t ∈ [0, T ]. With reference to [11] and [12], for all t ∈ [0, T ] we
introduce the forward rate spread via

g (t, T ) := f (t, T ) − f (t, T )

so that we have not only set up a new pure-jump post-crisis short rate model, but
simultaneously a new pure-jump post-crisis forward rate model of HJM-type in the
current section. Recall that (6.4) is equivalent to f (t, u) ≤ f (t, u) Q-a.s. for all
0 ≤ t ≤ u ≤ T . From this, we conclude that g (t, T ) ≥ 0 Q-a.s. for all t ∈ [0, T ]. It
further holds g (t, t) = st for all t ∈ [0, T ] due to (6.1).

Furthermore, in the present post-crisis setting, for a time partition 0 ≤ t ≤ T1 <

T2 we define the (forward) overnight indexed swap (OIS) rate via

F (t, T1, T2) := 1

δ

(
P (t, T1)

P (t, T2)
− 1

)
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(cf. Eq. (4.1) in [26]) where P denotes the zero-coupon bond price defined in (3.3)
and δ := δ (T1, T2) is the year fraction with expiry date T1 and maturity date T2. With
reference to [12], for 0 ≤ t ≤ T1 < T2 we define the forward LIBOR rate via

L (t, T1, T2) := 1

δ

(
P (t, T1)

P (t, T2)
− 1

)

where δ is the year fraction and P denotes the bond price introduced in (6.3). Note
that the LIBOR rate L (t, T1, T2) shall not be mixed up with the Lévy processes Lk

t

defined in (2.3). In a pre-crisis single-curve approach, it holds P (t, T ) = P (t, T )

which implies F (t, T1, T2) = L (t, T1, T2) Q-a.s. for all t .
We are now prepared to derive the dynamics of the short rate spread st , the ficti-

tious short rate rt , the bond price P (t, T ), the forward rate f (t, T ), the forward rate
spread g (t, T ) and the LIBOR rate L (t, T1, T2). The associated computations can
be accomplished by similar techniques as presented in Sections 2 and 3 and thus, are
not worked out explicitly. We provide as an example two results without proofs in the
sequel. For all t ∈ [0, T ] it holds

dP (t, T )

P (t−, T )
= rtdt +

l∑
k=1

∫
Dk

ζk (t, T , z) dÑ
Q
k (t, z)

where the functions ζk are such as claimed in (3.10). We further obtain in the post-
crisis case

L (t, T1, T2) = 1

δ

(
P (0, T1)

P (0, T2)
×

l∏
k=1

exp

{∫ t

0

∫
Dk

�k (s, z) dνk (z) ds

+
∫ t

0

∫
Dk

�k (s, z) dNk (s, z)

}
− 1

)

with deterministic functions

�k (s, z) := eσkBk(s,T2)z − eσkBk(s,T1)z < 0,

�k (s, z) := σk [Bk (s, T1) − Bk (s, T2)] z > 0.
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