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Abstract In this paper, a solution is given to reflected backward doubly stochastic differential
equations when the barrier is not necessarily right-continuous, and the noise is driven by two
independent Brownian motions and an independent Poisson random measure. The existence
and uniqueness of the solution is shown, firstly when the coefficients are stochastic Lipschitz,
and secondly by weakening the conditions on the stochastic growth coefficient.
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1 Introduction

Nonlinear backward stochastic differential equations (BSDEs in short) were first in-
troduced by Pardoux and Peng [27] with the uniform Lipschitz condition under which
they proved the celebrated existence and uniqueness result. Since then, the theory of
BSDEs has been intensively developed in the last years. The great interest in this the-
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ory comes from its connections with many other fields of research, such as mathemat-
ical finance [12, 11], stochastic control and stochastic games [10] and partial differ-
ential equations [28]. After Pardoux and Peng introduced the theory of BSDEs, they
considered [29] a new kind of BSDE:s, that is a class of backward doubly stochastic
differential equations (BDSDEs in short) with two different directions of stochastic
integrals with respect to two independent Brownian motions. They proved the exis-
tence and uniqueness of solutions to BDSDEs under uniform Lipschitz conditions on
the coefficients.

In the setting of reflected BSDEs (resp. BDSDEs), an additional nondecreasing
process is added in order to keep the solution above a certain lower-boundary process,
called barrier (or obstacle), and to do this in a minimal fashion. The reflected BSDEs
(RBSDE:s in short) were introduced by El Karoui et al. [13], again under the uniform
Lipschitz condition on the coefficients. The authors of [13] proved the existence and
uniqueness results in the case of a Brownian filtration and a continuous barrier. The
reflected BDSDEs (RBDSDEs in short) were introduced by Bahlali et al. [6] where
the authors studied the case of RBDSDEs with continuous coefficients, and proved
the existence and uniqueness of the solution.

To the best of our knowledge, the paper by Grigorova et al. [14] is the first
one which studied RBSDE:s in the case where the barrier is not necessarily right-
continuous (just right upper semi-continuous). The authors of [14] studied the exis-
tence and uniqueness result under the Lipschitz assumption on the coefficients in a fil-
tration that supports a Brownian motion and an independent Poisson random measure.
Later, several authors have studied the RBSDEs following Grigorova et al. [14] (see
e.g. [1-3, 17, 20, 23]). Recently, Berrhazi et al. [7] discussed the case of RBDSDE
with a right upper semi-continuous barrier under Lipschitz coefficients.

Our aim in this paper is to extend the work on RBDSDEs with jumps (RBDS-
DEIJs in short) to the case of an irregular barrier (which is assumed to be not nec-
essarily right-continuous). The specificity of such equations lies in the fact that the
two independent Brownian motions are coupled with an independent Poisson random
measure. We’ll prove the existence and uniqueness of the solution to such equations
under the so-called stochastic Lipschitz coefficients. The interest in this last condi-
tion is based on the fact that, unfortunately, in many applications, the usual Lipschitz
conditions cannot be satisfied. For example, the pricing of the American claim is
equivalent to solving the linear RBDSE

{ —dV, = (rVs + 6, Z)dt — Z,dW, + dK,, V5 =Eér; 0
Vi>&, (Vi—&)dK;, =0 as.

where &, is the amount received from the seller at time 7, r; is the interest rate pro-
cess and 6, is the risk premium process. The additional process K is needed for this
problem because there exists no replicating strategy for the option. We have to use a
super-replicating strategy with a consumption process K. The minimality condition
on K just states that we only invest money in the portfolio when V; > §&;. Here both
r; and 6, are not bounded in general. So, it is not possible to solve the RBSDE (1)
by the result of El Karoui et al. [13]. Thus, in order to study more general RBSDEs
(resp. RBDSDEs), one needs to relax the uniform Lipschitz conditions on the coeffi-
cients. To this direction, several attempts have been done. Among others, we refer to
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[4, 5,9, 15, 21-24] for the case of BSDEs, and [16, 25, 26, 30] for BDSDEs.

In our paper, we use a generalization of the Doob—Meyer decomposition called
the Mertens decomposition. This decomposition is used for strong optional super-
martingales which are not necessarily right-continuous. We also use some tools from
the optimal stopping theory, as well as a generalization of the Itd formula to the case
of a strong optional supermartingale called the Gal’chouk—Lenglart formula due to
Lenglart [19].

The paper is organized as follows. In Section 2, we give some notations, assump-
tions and main contributions needed in this paper. In Section 3, we prove the existence
and uniqueness of the solution to RBDSDEJs with a stochastic Lipschitz coefficients
(f, g) and an irregular barrier £, and we also give a comparison theorem for solutions.
Section 4 is devoted to prove the existence of a minimal solution to RBDSDEJs under
a stochastic growth coefficient f.

2 Definitions and preliminary results

Let 0 < T < +o0 be a non-random horizon time, 2 be a non-empty set, % be
a o-algebra of sets of 2 and P be a probability measure defined on .#. The triple
(2, #, P) defines a probability space which is assumed to be complete. We assume
there are three mutually independent processes:

* a d-dimensional Brownian motion (W;);<r,
* a {-dimensional Brownian motion (B;);<r,

e a random Poisson measure u© on E x Ry with compensator v(dt,de) =
A(de)dt, where the space E = R® — {0} is equipped with its Borel field £
such that {fZ([0, t] x B) = (u — v)[0, t] x B} is a martingale for any B € £
satisfying L(B) < oo. A is a o-finite measure on £ and satisfies

/aAmmua<w
E

We consider the family (.%;),<r given by
F=FV v Il v Il 0<t=<T,

where for any process () <7, 9}”, =o{n —ns, s<r <t}Vv»N, a%n = ﬁ&,.
Here NV denotes the class of P-null sets of .%. Note that the family (.%#);<7 does not
constitute a classical filtration.

For an integer k > 1, | . | and (., .) stand for the Euclidian norm and the inner
product in R, Tir, 71 denotes the set of stopping times t such that t € [¢, T] and &
denotes the o-algebra of .%;-predictable sets of 2 x [0, T].

For every .%;-measurable process (a:);<r, we define an increasing process
(Ap)i<r by setting A, = [, a2ds.

For every B > 0, we consider the following sets (where E denotes the mathemat-
ical expectation with respect to the probability measure P):
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« Z?(R") and Yﬁ? (R) are the spaces of .%;-adapted optional processes W : Q x
[0, T] — R¥ which satisfy, respectively,

||\IJ||2yz(Rk) =E [esssup |¥,|* | < +o0
‘[67—[0171

and

||\I/||iﬂ(Rk) =E esssupeﬁ‘L"|\IJT|2 < +00.
B T€7T0,T]

o M*RF*9, //[lgz(RkXd) and ///é’“(Rk) are the spaces of .Z;-progressively
measurable processes W :  x [0, T] —> R¥*? (resp. R¥) which satisfy,

respectively,
2 r 2
NI 2 ixar =E</O [, | dt> < 400,
2 ! A 2
IIWII%E(RkXd) =E(/ ePA | dt) < 400
i 0
and
2 r BA: 21y 12
v =E tar |V | dt .
112 e (/0 P W, ><+oo

%, is the space of & ® £-measurable mappings U : E —> R¥ such that

||U||§=/E|U(e)|2,\(de) < 400.

. fﬁz(Rk) is the space of & ® £-measurable processes U : @ x [0, T] x E —>
R* such that

T
||U||;§(Rk) =E (/0 AU, ||§dt) < +o00.

Notice that the space
AZRY) = .5 RY) x a3 R x £ (R
endowed with the norm

Iy, z, U)|
A

(Rk) (kad)

_ 2 2
= Iy +11ZI2,, &

U 2
‘%é’a(Rk) + ” ”gﬁ

is a Banach space as is the space
By R = (A3 RY) N S RY) x a5 R < ZFRY
with the norm

1. Z, U g iy = 1Y 12 ey + 11 +zI? +1U]

2
L3R M5 (RE) MG REXD) LFRY
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For a ladlag (limited from right and left) process (Y;);<7, we denote by:
o Y,_ = li}n Y, the left-hand limit of Y at r € [0, T], (Yo = Yp), Y_ =
s/t
(Yi—)i<r and AY; :=Y; — Y;_ the size of the left jump of Y at ¢.
e Y4 = 11{‘11 Y, the right-hand limit of Y at¢ € [0,T], Y74+ = Yr), Y4+ =
SN\
(Yr4)i<r and AL Y; := Y;4 — Y; the size of the right jump of ¥ at ¢.
Let f:Qx[0,7T] x RF x R&*4 x RF — RK g : Q x [0, T] x RF x R¥*4 x
Rf — R** and (£,),<7 be an optional process which is assumed to be right upper
semi-continuous and limited from left. The process (& );<7 will be called irregular

barrier. We are interested in the following RBDSDEJs associated with parameters

(f.8,8):

T T T
Y, = & + / F (5. ©,)ds + / ¢(s, ©,)dB, — / Z,dW,
T T T

T
—/ / Uy(e)fi(ds, de) + K7 — Kr + Cr— — Coe 7 € Tz,
T E

Y: > & VteTor,

K = K¢+ K4 (continuous + purely discontinuous part) is a

nondecreasing right-continuous predictable process with 2
Ko = 0 such that

T
f Lyy,-¢)dK{ =0as.and (Y;_ — & )AKS =0as. VT eT) .
A :

C is a nondecreasing right-continuous predictable purely
discontinuous process with Co— = 0 such that
(Y —&)ACr =0as. VYt e T

Here ©; stands for the triple (Y;, Zs, Us).

Let us consider the filtration (G, ); <7 given by G; = 9twv9f vZl, 0<t<T
which is assumed to be right-continuous and quasi-left-continuous, and make precise
the notion of solution to RBDSDEIJ (2).

Definition 1. Let £ be an irregular barrier. A process (Y, Z, U, K, C) is called a
solution to RBDSDE]J associated with parameters ( f, g, &), if it satisfies the system
(2) and

« (Y, Z,U) € B5RY,
e (K,C) € S2RF x SR,

Remark 2.1. We note that a process (Y, Z, U, K, C) € %’% (RF) x .72 (RF) x .72(RK)
satisfies the equation (2) if and only if

T T T
Y, = &r +/ f(s, ®p)ds +/ g(s, O5)d By _/ Z;dW;
t t t

T
—f / Uy (e)ii(ds, de) + K1 — Ky + Cr— — Cr_.
t E
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Remark 2.2. If (Y, Z, U, K, C) is a solution to RBDSDEJ (2), then AC; = Y; — Y;+
for all + < T outside an evanescent set. It follows that Y; > Y;, forall t+ < T, which
implies that Y is necessarily right upper semi-continuous. Moreover, the process

(Y, + fot fGs, ®s)ds> , is a strong supermartingale. Actually, by using Holder’s
1=

inequality and the stochastic Lipschitz condition on f (below), we obtain, for each

T € To.1]s

2
E|Y.

/rf(s ®)ds

IA

<E|Y |2+ E

2
ds)

4 2 4 2
(||Y||</2(Rk) ”Y“///2a(Rk) B”Z”/%E(kad) + E”U””gﬁz(Rk)

H AG < 4+00.
B MR

Moreover, for all 7, v € Tjo, 7] with v < T we have

0 ds

IA

E |:Yt —Y, — / £, @s)ds|gv} =E[K, — K¢+ Cy- — C-1G,] as.

Since K and C are nondecreasing processes, and (Yt + fot f(s, ®S)ds> , is a G;-
[
adapted process then the observation follows.

Remark 2.3. In our framework the filtration is quasi-left-continuous, martingales
have only totally inaccessible jumps and Y has two type of left-jumps: totally inac-
cessible jumps which stem from stochastic integral with respect to i, and predictable
jumps which come from the predictable jumps of the irregular barrier £. The latter are
the source of the predictability of K. Moreover, the processes K and p do not have
jumps in common.

Remark 2.4 (The particular case of a right-continuous barrier). If the barrier £ is
right-continuous, we have Y; > Y, > &, = &. Hence, if ¢ is such that ¥; = &,
then Y; = Y, = &. If t is such that ¥, > &, then by the minimality condition on C,
Y; — Y, = C; — C,— = 0. Thus, in both cases, Y; = Y;4, so Y is right-continuous.
Moreover, the right-continuity of ¥ combined with the fact that AC; = Y; — Y; 4 give
C; = Ci_forallt < T. As C is right-continuous, purely discontinuous and such that
Co— = 0, we deduce C = 0. Thus, we recover the usual formulation of RBDSDEIJs
with a right-continuous barrier.

Proposition 2.5. Let (Y,Z,U) € ﬂé (RX) with Y being a ladlag process, and let a
coefficient g(.) € ///é(RkXZ). Then

t
( / s <<Ys_,zxdws>+<Ys_,g<s>st>+ / m_,Us<e)ﬁ(ds,de)>>>
0 E t<T

is a martingale.
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Proof. Using the left-continuity of trajectories of the process Y;_, we have

Y@ < sup [V (@)]* V(s,0)€[0,T]x Q.
1€[0,T1NQ
On the other hand, we have |Y;_ | < ess sup | Y 12
TG'F()_T]

which implies

sup |Yt_|2 < esssup|Y,|2.
1€[0,71NQ e€T0,1)

Then forallt < T

T T
/ PN PIZPds < / P sup 1Y, Zds
o 0 1€[0,T1NQ
T
< /ezﬂASesssupIlezlzslzdS-
0 €Ti0,1]

Further, we have

T T

e*PAs esssu Y 2 Zg 2ds < esssu ePA Y: 2 ePAs Zx|2ds.

p p
0 ‘L'E'Tl()vﬂ TE,T[O,TJ 0

Hence

A

T T
E\// e2BAs|Y,_|2|1Zs)2ds < E |ess supeﬂAf|Y,|2/ ePAs|Zo|2ds
0 eT0,1] 0

1 2 2

Since (Y, Z) € ,Vﬂz(Rk )X M /32 (R¥*4) we get the finite expectation. Since the process
(fot ePAs (Ys, stWs)) ; is adapted, it is a martingale.

1<
By the same arguments,

t t
( / / e*“Ast_,Us<e>ﬁ<ds,de)>> and ( / eﬁAsm_,g(s)dBa)
0o JE t<T 0 t<T

are martingales since

T
E\//. / e2BAs|Y,_|12|U, () |21 (de)ds
0o JE

T
E esssupeﬁAT|YT|2/ ePAs |\ Ugll3ds
e€T0,1] 0

IA

1 2 2
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and

T T
E\// e2B451Y,_|2|g(s)|*ds <E esssupeﬁAf|Yr|2/ ePAs|g(s)|2ds
0 teTo,1 0

1 2 2

Let us recall some results from the general theory of optional processes, which
will be useful in the sequel.

Theorem 2.6 (Mertens decomposition). Ler Y be a strong optional supermartin-
gale of class (D). There exists a unique uniformly integrable martingale (cadlag) N,
a unique nondecreasing right-continuous predictable process K with Ky = 0 and
E|K7|* < +oo, and a unique nondecreasing right-continuous adapted purely dis-
continuous process C with Co— = 0 and E|Cy|> < 400, such that

Y, =N, —K,—Ci— Vit <Ta.s.

Theorem 2.7 (Dellacherie-Meyer). Let K be a nondecreasing predictable process.
Let U be the potential of the process K, i.e. U := E[K7|G/] — K, forallt < T.
We assume that there exists a positive Gr-measurable random variable X such that
|Uy| < E[X|Gy] a.s. for all v € Tjo, ). Then E|K7|*> < cE|X|?, where c is a positive
constant.

The proof is established in chapter VI, Theorem 99, [8] for the case of a nonde-
creasing process which is not necessarily right-continuous nor left-continuous.

Corollary 2.8. Let Y be a strong optional supermartingale of class (D) such that,
Sforallv € T 11, |Yy| < E[X|G,] a.s., where X is a nonnegative Gr-measurable
random variable. Let K be the Mertens process associated with Y. Then there exists
a positive constant ¢ such that E|Kt|* < cE|X|2.
The proof is established in [23].

Theorem 2.9 (Gal’chouk-Lenglart formula). Let n € N. Let Y be an n-dimensional
optional semimartingale with the decomposition Y* = Yé‘ + M* + R + OF, for
allk =1, ..., n, where M* is a (cadlag) local martingale, R* is a right-continuous
process of finite variation such that Ré = 0 and O is a left-continuous process of

finite variation which is purely discontinuous and such that O(])‘ = 0. Let F be a twice
continuously differentiable function on R". Then, almost surely, for all t > 0,

n t n t
F(Y,) = F(Yo)+2/ DkF(Ys_)d(Mk—i—Rk)s—l—Z/ D¥F(Y5)d 0%,
k=170 k=179

1 & [
+5 E /DleF(YS_)d[Mk'C,MZ'C]S
0
k,l=1

+ > [F(Ys) — F(Y) - ZD"F(YS_)AYS"]

O<s<t k=1
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+ ) [F(YH) — F(Yy) — ZD"F(YS)MY!‘],

O<s<t k=1
where DF denotes the differentiation operator with respect to the k-th coordinate, and
M¥*-¢ denotes the continuous part of M.

Corollary 2.10. Let Y be an optional semimartingale with the decomposition Y =
Yo+ M + R+ O where M, R and O are as in Theorem 2.9. Then, almost surely, for
allt > 0,

T
PP+ B / ePAsa|yy|Pds
t

T T
= PATIyrP 42 / PAY_d(M + R)s + / PN Y,d Oy

1 t

T
O RN D S I AL Dt O
t

t<s<T t<s<T

Proof. To prove the corollary, it suffices to apply the change of variables formula
from Theorem 2.9 with F(X, Y) = XY? for X, = P4, O

Lemma 2.11. Let Y € S7(RY), 9 € MERY), ¢ € MFR>Y), n e azFR>)
and ¢ € fé (RX) be such that

t t t t
Yi=Y _/ Vsds — / {sd By +/ wsd Wy +f f ps(e)i(ds, de) — K; — Cy—,
0 0 0 0 JE

where E|K7|> + E|Cr|> < 400. Then Y is an optional semimartingale with the
decomposition Y = Yo+ M + R + O where M, = —fé Lsd By + fot a7, dW, +

fé Jg &s(e)ii(ds, de), R; = —fé Osds — K; and O; = —C,_, and we have, for any
B>0andt <T,

T T
PP+ B f Phal|Y,Pds + / P |y Pds
t

t

T T
- eﬂAT|YT|2+2/ eﬂA“(Ys—,ﬁs)ds-i-z/ P (Y, ¢od By)

t 1

T T
= / Y, 7 d W) —2 / / PR (Y, gy () (de, ds))
t t E

T T T
+/ eﬁAS|§S|2ds+2/ ePAs(Y,_, dKy) +2/ ePAs (s, dCy)
t t t

DDA S ORI (.S AL
t<s<T t<s<T
3 Reflected BDSDEJs with stochastic Lipschitz coefficients

3.1 Assumptions
We assume that the parameters (f, g, &) satisfy the following assumptions (A1), for
some B > 0 (where we define forallt < T, h(t,0) = h(¢,0,0,0), for h € {f, g}
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to ease the reading).

(Al.1): f and g are jointly measurable, and there exists a constant « € ]0, 1[ and
four non-negative, ﬁtw—measurable processes (V;)i<t, (Ki)i<T, (07)i<T and
(01)r<r such that for all (y,y") € RY?, (z,7) € R**9)? and (u,u’) €
(42,

lfy.zow)— f@.y 2 ) < yly =y +xile =21+ o |lu—u'|,

2
8.y, 2.0 =gt 2 )P < orly =P+ (l2= 2P+ fu—u]}).

(A12): Forall0 <t <T, a* =y, +k*+02+ 0 > 0.

(A1.3): Forany (t,y,z,u) € [0, TIXxRN xR % %, f(t,y,z,u)and g(1, y, z, u)
are .%;-measurable with @ € ///lgz(Rk) and g(.,0) € //ZE(R’”‘Z).

(A1.4): The irregular barrier (§;);<7 is in 5@2/3 (Rk).

3.2 Existence and uniqueness of solution

Before proving the existence and uniqueness, let us establish the corresponding result
in the case where the coefficients f and g do not depend on the variables Y, Z and
U. So we consider the RBDSDEIJ, VT € Tjo.717,

T T T T
Y, =& + / Fls)ds + / ¢(s)dB, — / ZodW, — / / Uy ()7i(ds, de)
T T T T E
+KT - K‘( + CTf - Crfa

YrTZ &r,
/ Ly,-e)dKS =0, (Yoo —& )AKI =0 and (Y; —&)AC; =0as.
0
3)

where K = K¢ + K (continuous + purely discontinuous part) is a nondecreasing
right-continuous predictable process with Ko = 0 and C is a nondecreasing right-
continuous predictable purely discontinuous process with Co— = 0. Moreover, the
irregular barrier £ satisfies (A1.4) and the coefficients (f, g) satisfy the following
condition:

(A1.5): Foranyt < T, f(¢z) and g(¢) are .%;-measurable with % € ,///[%(Rk) and
g() e //zg(kaf).
Let us prove an a priori estimate of the solution in the following lemma.
Lemma3.1. Let (YL, ZL, UL, KL, CY) and (Yz, VAR IEN €3 C2) be two solutions to
RBDSDEJs with parameters (f1(.), g1 (), €V and (f2(), g%(.), £2), respectively. We

denote R = Rl — §R2f0r NelY,Z,UK,C,f, g, &} Then there exists a constant
k(B) depending on B such that for all B > 1

7712
”Y”JHR’() + ”Z”///Z(kad) + ”U”f/ﬁz(kl‘)
2

=< K(ﬁ) ”E” 5/2 (Rk) + ”g” %Z(kal)

///g (RK)




Irregular barrier RBDSDEJs under stochastic Lipschitz and linear growth conditions 167

Proof. Let T € Tjp,r). It is obvious that the process Y is an optional semimartingale
with the decomposition Y; = Yo + M; + R; + O, where M; = — for 2(s)dBs +
Jo ZsdWs + [y [p Us(e)i(ds, de), Ry = — [y f(s)ds — K; and O = —C,_.
Then, from Lemma 2.11, we have

T T
eﬂAf|Y,|2+ﬂ/ eﬂAxa§|Ys|2ds+/ P4 | Zg 2 ds
t

t

T T
- eﬂAT|5T|2+2/ eﬂAst_,f(s))de/ (Y, dK)
t t
T _ T - —
L / (T, Z,dWy) —2 / / PV, T (o)fi(ds, de))
t t E

T T T
+2 / P (Y,_,g(s)dBy) + / P 1g(s)%ds +2 / P4 (Y, dCy)
t t t

R IV S L S VNS S e “)

t<s<T t<s<T

From Remark 2.3, the processes K and u do not have jumps in common, but K jumps
at predictable stopping times and p jumps only at totally inaccessible stopping times.
Then we can note that

T
> eﬂAs(A?y:/ /eﬂA“Ivs(eNzu(ds,de)—i- > (AR
t E

t<s<T t<s<T
Hence
r As 177 112 A Vv \2
/ PUNTIRds — > P (AY)
! t<s<T
r As 177 112 r As\TT 2 A T \2
= [ T - [ [ TP e - Y ARy
! 4 E t<s<T
=

T
- / / P4 U (o)L (ds, de).
t E

On the other hand, by using the Skorokhod and minimality conditions on K and C
we can show that (Y, dK;) < 0and (Y,dCs) < 0. Indeed, foralls < T
(Vi dK,) = (Y} —& . dK}“+ AKPY) — (Y] — &, dK}+ AK])

Yl — & dKFC 4+ AKPY) 4 (Y2 — & dKZC + AKPT)

_( s
= (Y2 —& ,dKM 4+ AKMY — (YL — & dK>C + AKET)

§—

< 0, sinceYiszorizl,Z.

Furthermore we have (YY, da;) = (75, AE;), and by the same arguments, we have,
foralls < T,

(Y5, ACs) = (Y] —&, AC)) — (Y2 — &, AC}) — (¥ — &, AC)
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—(& — Y7, AC)
= 0— (Y] =&, AC)) = (¥ —&,AC]) =0

< 0, sinceYiz“.;‘forizl,Z.

Moreover, by using the fact that

2
2(T5. F5) < (B — DT, +ﬁ'ffl?' VB> 1,

the inequality (4) becomes

T T T
eﬂAf|Y,|2+/ eBASaS2|YS|2ds+/ eﬂAS|ZS|2ds+/ PN U |3 ds
t t t

— 2
pas [ L)

dg

IA

1 T
esssupezﬂA’|§ | +ﬁ 1/

eT0,1]

T T
= / f AT, T ()fi(ds, de)) +2 / P (T, 5(5)dBy)
t E t

T
ds — 2/ PAY _ ZdWy)
t

T
+ / ePA51g(s) % ds. )
t

Taking the expectation on the both sides of the inequality (5) and using Proposition
2.5, we get, forall 8 > 1,

”Y”//{Za Rk) + ”Z”///Z kad) + ||U||f2 Rk)
= f
< BEgmn T 57| + 1212 2 ey ©)
/ M (RF)

On the other hand, by taking the essential supremum over T € 7jo 7] and then the
expectation on both sides of inequality (5) we obtain

Eesssup e?47|Y |2

TEIT[O,T]
LT [Tl
s
< EesssupezﬁAWs |2+ —E/ ePA |22 ds
€T0,1] ﬂ - 0 s

+2Eesssup/ ’SA( Yo, ZdWy)

€T0,1]

T
+2E ess sup / f P (Y,_, Us(e)li(ds, de))
E

‘567—[0,7]

T
+2E ess sup / ePA (Y, g(s)dBs)| + / P15 (s) 2 ds.
0 0

‘L’E'T[(),T]




Irregular barrier RBDSDEJs under stochastic Lipschitz and linear growth conditions 169

From the Burkholder—Davis—Gundy inequality, there exists a universal constant ¢

such that
T . - T . o
2Eesssup/ P (Y_, ZydWs)| < 2¢E / e2BAS|Y s_ 2| Zg|2ds
167’[01” 0 0
l = 2 2077112
= Z”Y||§”§(Rk)+4c ||Z||//,§(kad)f
T p— —
2Eesssup/ /eﬂAS(YS_,Us(e)ﬁ(ds,de))‘
TEWO’T] 0 E

T 1
2BAT. 121TT. 112 —I7 I 21012
< 2cE\/ /O Y5 PIUsIds < 21V g iy + 471U g g

and
T o T o
2E ess sup / P (Y,_,3()dBs)| < 2¢E / e2BAS|Y o |2(3(s)|2ds
TGWO.T] 0 0

| — 2 21=n2

Consequently,

1712 < 4| 1E)? +— s + @+ D zl?
FIRY = SR T g Sl wixe
(//lg(R“)
20712 2077112

The desired result is obtained by combining the estimates (6) and (7) for 8 > 1. [

In the following, we state the existence and uniqueness result for the solution to
RBDSDEJ (3).

Proposition 3.2. Under the assumptions (A1.4) and (A1.5), the RBDSDEJ (3) admits
a unique solution (Y, Z,U, K, C) € BzRY) x S*RY) x S*RY) forall g > 1,
and for each v € T, 1] we have

Y, =esssupE |:$T + /’ f@®dt + /T g(;)dB,|gui| a.s.

'L’E'El,j] v

Proof. Let v € 7o, 7. We define the value function ?(U) by

Y(v) = esssupE [-‘Er +/ f@)dt +/ g(t)delgv} )

‘L'E'T[V,T] v
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and ?(v) by

Yo) = ?(u)+/ f(t)dt+/ ¢(t)dB;
0 0

= esssupE|:§T —l—/ f(t)dt—i—/ g(t)dB;IQu]-
0 0

TG'T[U_T]

The process (f;‘, + fol f(s)ds + fol g(s)d Bs> , is progressively measurable. There-

1<
fore, the family (Y (v))ye7y, 7, 18 @ supermartingale family. This observation with
the Remark b. page 435 in [8] ensures the existence of a strong optional super-

martingale Y such that Yv = ?(v) for all v € Tp,r7. Thus, we have Y(v) =
Y, — fov f)dt — fov g(t)d B;. On the other hand, almost all trajectories of the strong

optional supermartingale are ladlag, then the ladlag optional process (Y;);<7 :=
(Y, — o fs)ds — [, g(s)st)t<T aggregates the family (Y (v)),e7p, -

Now, it remains to show that the candidate Y € 5’52 (RY). Using the Jensen’s,
Young’s and Holder’s inequalities respectively, we obtain

E =
ey,

T T
esssupE[egA”Ef—l—egA”/ f(z)dr+e§Av/ g(z)dB,|gv]
v v

reTl,)ﬂ

gl

IA

T
B 23
esssupe2 e, 4+ 14 / f)dt
€T, 1] v

1

Vel

ﬁ T
+ ess sup e7A”/ g(t)dB;
TE’T[U,T] %

T
/ f(@®)dt

T
+ ess sup ePAv f g(t)dB;
teTh.1 v

T
ﬁE“ess supeZﬂAT |$T|2 + ePA (/ e_ﬂA’afdt) X
v

€T, 1)
T 2 T i
(/ ePA: dt)+c / eﬁAf|g<r>|2dr} |gu]
v 0

T
x/§E|:{ess.supezﬂAf|f§,|2 +%/ opa| LD
0

fe7—[0,T] az

2

IA

\/§E|:{ess sup ePAs |&; |2 + ePA
TE'T[‘,,T]

1

2}2|Qu]

IA

10

ag

2
dt

IA

1

T 2
te / ef“f|g<t>|2dr} |gv].
0
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Taking the essential supremum over v € 7o 7] on the above sides and using the
Doob’s martingale inequality, we conclude that

Eesssup ePAv Y, |2
veTlo.r]

T
= K/(ﬁ)E (esssupezﬂA’|§t|2+/ eBA &
0

ag

TG'T[UVTJ

2 T
dt + / ePA |g(t)|2dt>
0

where «’(B) is a positive constant depending on B. It follows that Y e yﬁz(Rk).

Note that the strong optional supermartingale Y is of class (D) (i.e. the set of all
random variables Y,,, for each finite stopping time v, is uniformly integrable). Then
by the Mertens decomposition (see Theorem 2.6), there exists a uniformly integrable
martingale (cadlag) N, a nondecreasing right-continuous predictable process K (with
Ko = 0) such that E|K7|> < +o0o and a nondecreasing right-continuous adapted
purely discontinuous process C (with Co_ = 0) such that E|C7|*> < 400, with the
following equality:

?r =N, —K;—C,— VTt eTpor.

By an extension of It6’s martingale representation Theorem, there exists a unique pair
of predictable processes (Z, U) € .#*(R**?) x £%(R¥) such that

NTZN()—}-/
0

Hence for each 7 € 7o, 7]

T

T
zdes+/ /Us(e)ﬁ(ds,de).
0 E

T

Y. = —/Tf(s)ds—/rg(s)st—i-No—i-f ZsdW,
0 0 0
- f f Uy () (ds. de) — Ky — Cr_ ®)
0 E

with ?T = ?(T) = &r and ?, = ?(r) > & as for all T € 7Tjp 7. Next, let us

focus on the Skorokhod and minimality conditions. Since A, Y, = 1 = AyY,

_ {Yr:&}
a.s.(see Remark A.4 in [14]), from (8) we have AC; = —A+?t a.s., then AC; =
1 Tt }ACT a.s. It follows that the minimality condition on C is satisfied. Further,

due to a result from the optimal stopping theory (see Proposition B.11 in [18]), for
each predictable stopping time 7, we have fOT 11{7 o }thC = 0 a.s. and AKTd =
t 1

1 7.t }AK f a.s. Then the process K satisfies the Skorokhod condition. Thus, we

found a process (?, Z,U, K, C) which satisfies the RBDSDE] (3).
Now, it remains to show that (Y, Z, U, K, C) € @g (R*) x .Z2(RF) x .72(R¥).

Indeed,Nlet K ¢ '= K; + C,_ be the Mertens process associated with Y. By the defini-
tion of Y,,, we see that

1l =

esssupE[éT—i-/ f(t)dt—i—f g(t)dB,|gv:|
0 0

TE'T[U,T]
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/ g(t)dB, |gv:|
0

From Corollary 2.8, there exists a positive constant ¢ such that
2
T
f g(t)d B,
0

+ ligl %Z(kae))

T
< E|esssup|&| +/ | f(2)|dt + esssup
€T 0 €T,

E|K7|?

IA

cE

T
esssup |&;| +f | f(t)|dt + esssup
Telnv,ﬂ 0 TE,EIATJ

c(B) (nsn;zzﬁ(m) ‘

IA

///2(Rk)

where c(f) is a positive constant depending on f. Kis nondecreasing, and it implies
that
E ess sup |I?,|2 < Ellf(vT|2 < +0o0.
veTo,r]

It follows that K € .72(R¥), then (K, C) € .2(R*) x .2(R*). On the other hand,
from Lemma 2.11 we have

_ T _ T
eﬁA’|Yt|2+,3f eﬁASa3|YS|2ds+/ ePAs|Z,12ds
t

t

T T
_ eﬁAT|sT|2+2/ (T, f(S)>ds+2/ P (T,_, dK,)

t

—2/ PAY_, ZdWy) / / PAS (Y, Us(e)i(ds, de))
t

T
+2/ P4 (T, g(s)dBy) + / “v|g<s>|2ds+2/ P45 (T, dCy)
t

t t

D A CS D L SN

t<s<T t<s<T

From Remark 2.3, the processes K and p do not have jumps in common, but K jumps
at predictable stopping times and p jumps only at totally inaccessible stopping times,
then we can write

_ T
3 FA(AT,) = / / PN () Puds, de)+ Y P (MK,
t<s<T t JE t<s<T
Hence

T _
/ PN IGds — D P (AY)?

! t<s<T

= / P U | 2ds — f / P \Ug(e)Pds, de) — Y ePM(AK;)?

t<s<T
//ﬂA|Us(e)| W(ds, de).
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Consequently,

T _ T T
| eraivpas s [ ehizias+ [ et guias
t t t

O]

ds

2 T
ds — 2/ PA (Y _, ZodWy)
t

BA 2 1 T/SA
< e TIET|+—/ el
B—1J;
T
t

T _ _
o f f P4 (T, Uy (@) (ds. de)) +2 / P4 (T, g(s)dBy)
t E

T
+/ ePAsg(s)2ds + 2esssup P62 + K2 + C3.
t TE'T[()_T]

Here we have used also the Skorokhod and minimality conditions on K and C. Next,
by taking the expectation on both sides of above inequality, we get

712 + ||Z||3/,§

. Ul
e + VI

(kad)
f 2

a

(RK)

1
< 3 2 ) _—
< 382wt g

+ 1812 2 e, + EIKTI + EICT .
j/g(Rk) B

Then (Y, Z, U) € 43" (RY) x .MFRY) x L3 RY).
Finally, it is remarkabe that the uniqueness of the solution comes from the unique-
ness of the Mertens decomposition and the Itd’s martingale representation Theorem,

and if Y and Z are two first-components of the solution, then by Lemma 3.1 we have
immediately Y = Y. O

Proposition 3.3. Assume that the assumptions (A1.1)~(A1.4) are true. Then, if (y, z,
u) € %’E(Rk)for B > 1, there exists a unique process (Y, Z,U, K, C) € @%(Rk) X
2R x S2(R¥) being a solution to the following RBDSDEIJ, for all T € T, 71,

T T T
Y. =é7r + / f(s, ys, 25, ug)ds + f 8(s, ys, 25, Us)dBg — / Zsd Wy
T T T

T
- / f Us(e)fids. de) + K1 — Ky + Cr — Cy_.
T E
YTTE sl"
/ Lyy,~6)dKE =0, (Yr— — & )AK? =0 and (Y; —&)AC, =0a.s.
0

Proof. Given (y,z,u) € %5(RY), we define () = f(t, vz, u;) and 2(t) =

g(t, v, 2¢, uy). Let us show that fand ¢ satisfy (A1.5). From the assumptions (A1.1)
and (A1.2), we have

TR =4 (a1 + a2z, + alus]? +17. 0F)

and
P =2 (@l + oz + 1) + 1365, 0.



174 M. Marzougue, Y. Sagna

Thus gathering these inequalities, we deduce that
T oy 12 T
E( / eP4s @‘ ds + / eﬁA’|§(s)|2ds)
0 as 0
T T
< E(é | eradiypas + o+ 20 [ e“s(|zs|2+||us||§>ds)
0 0

T ’0 2 T
+E<4 / P M‘ ds +2 / M 1g(s, 0)Pds ).
0 s 0

This implies that fand ¢ satisfy (A1.5) since (y, z,u) € 93% (R¥) and in view of the
assumption (A1.3). Hence the result follows from Proposition 3.2. O

We are now in position to study the solvability of our RBDSDEJ (2) associated
with parameters (f (., ®), g(., ©), &).

Theorem 3.4. Under the assumptions (A1.1)—(A1.4), there exists By > O such that
forall B > By the RBDSDEJ (2) admits a unique solution (Y, Z, U, K, C) € B5(R*)x
S2RK x 72 RE.

Proof. (i) Existence. Our strategy in the proof of existence is to use the Picard ap-
proximate sequence. To this end, we consider the sequence (®"),>¢ = (Y, Z",
UMnso € %’é(Rk) defined recursively by Y = 7z = U° = 0 and for any n > 1,
T € To, 11,

T T

g (s,©")dB, — / zMtaw,

T
yrtl =5T+/ f(s,®§?)ds+f
T T T T
—/ / Url(e)ii(ds, de) + K — ki 4 cntt -t
T E

Yl > £ as,,
T

®

Loyt }dKf’"‘H =0as. and (Y"T' —g )AKI" = 0as.,
0 ! !
Y —gHACH! =0 as.

Since for n > 0, (Y",Z",U") € ,%% (R¥), by virtue of Proposition 3.3,
RBDSDEIJ (9) has a unique solution (Y"1, zn+1 yr+l gn+l cntly ¢ 55; (RF) x
2(RF) x . S2(RY.

In the sequel, we shall show that (Y", Z", U"),>¢ is a Cauchy sequence in the
Banach space %}%(Rk). We define ﬁnﬂ =Wt R for f e {Y,Z,U, K, C}, and

Vhe{f.g}. ho®t)=ht0))—ht 0", t=<T.

. —n+1 —=n+l —n+l —n+l —n+l .
We derive that for any n > 1 the process (Yn+ , ZnJr , U"+ , KnJr , C"Jr ) satisfies

the following equation

—n+1 T—n T_ T—n+l
Y, = fo(s)ds + t 8o (s)dBy — Z, dW;
t t
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—n+1 —n+1 —n+1 —n+1
/ / (e)u(ds de)+ Ky —K, +Cr_ —C,_.
Applying the Lemma 2.11, we have

T T
eﬂA’|7:l+1|2+ﬁ/ eﬁASa§|?;’“|2ds+/ PAZ0 Pas
t t
r n+1 —n r —n+1 —n+1
= 2/ PAYTT To() ds+2/ AT AR
t

T T
—2/ BT 7 awy) —2/ /eﬂAs(?ffl,Uf“(e)ﬁ(ds,de»
t t E

T T T
—n+1 _ _ —n+1 —=n+l1
+2 / PV gl (5)dBy) + / P (g (5) Pds + 2 / A AR Tl
t t t

D DIV (ol S N NS Gal (10)

t<s<T t<s<T

—n+1 . .
From Remark 2.3, the processes K " and @ do not have jumps in common, but

K jumps at predictable stopping times and p jumps only at totally inaccessible
stopping times, then

T
+1 +1.2 1
/ PUNT Gds — Y PAAYTT) f f BT (o) P (ds, de).
t

t<s<T

On the other hand, by using the Skorokhod and minimality conditions on X' and
6"“ we can show that (Y ;';H,dK"H) < O and (Y| ! anH) < 0. Moreover,

from the assumptions (A1.1)-(A1.2), we deduce that for any ¢ > 0,

20 Town = 20 (WITS 1+ I Z 4+ 0T )
< (ys + é[xf+a§]) VP4l VP +e (1IZ02 4+ 17713
< (1+§) AV @V e (1 + 10,13

and

Bo6)F = @Yy P +a (IZ0P +1T01).

Plugging these inequalities in (10), and taking the expectation in both side, we deduce
that, forany 8 > Oand ¢ > O,

1 r -
<,3 —1- —)E/ eﬂA-VaS2|YZ+1|2ds+E/ B 70 Pas
& t t

1
-I-E/ AT 2ds
t
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T
< 2E/ eﬂA“aS2|?Z|2ds
t

T T
+(e + ) (E/ eﬂAs|7f|2ds+E/ eﬂAanfnids).
t t
Fix ¢ > 0 and define ¢ = 2/(¢ + «) and Bp = 1 + ¢ + 1/¢. Choosing 8 > By, we
obtain
As 2 2 T Ay n+l 2 r As n+l
E[c/ﬁ S B A A ||x}
t t t

T T T
< (s+a)E[E/ eﬁAsa§|?;’|2ds+/ eﬂAs|2Z|2ds+/ eﬂ*‘-fnUZnids}

1 t t

and by iterations we deduce that

7! —n+12 —n+1|2

H H M (RE) H HJ/Z(R") H Hzg(kk)
= e+ ( 7] e 12 L+ 17 L)
- ///“(R") M} (RK) L3 (RK)

Hence, choosing ¢ > 0 such that ¢ + « < 1, we deduce that (Y", Z", U"),>1 is
a Cauchy sequence in the Banach space .A% (R¥). It remains to show that (Y MY n=1

is a Cauchy sequence in Yﬂz(Rk). To this end, we define for any integers n,m > 1
R =" —RN"forN e {Y,Z, U, K, C}, and

Vhelf g}, h§"@)=h,0)—ht06), t<T.

Then it is readily seen that
T T T
Ytn+1,m+l — / fé”m(s)ds +/ g'é)’m(S)st _/ Z;l+1,m+1dWs
t t t

T
- / /E Urtmt o)i(ds, de) + K — g

1 1 1 1
+cprimrt — eprhmE, (11)

Applying Lemma 2.11 to (11), and taking the essential supremum over t € 7o, 7]
and then the expectation on both sides we get

T
E (ess sup eﬁAf|Y,"+1*m+1|2> + ,BE/ eBAs g2y L+ 2
t

UE'T[(),TJ

T T
+E/ g'BAS|Z;l+1’m+1|2dS +E/ eﬁAs”USn-i-l,m-Fl”%dS
t t

T T
< ZE/ PAs (Y EL L pm () ds +E/ ePAs| gl (5)Pdss
t

t

+2E ess sup

veﬁo,r]

T
/ eﬂAS(Y:tjl,rn+1’ Z;H—l,m-i-]dWS)‘
0
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+2E ess sup
veﬁo,r]

T
/ eﬂAS (stjl,erl’ ggm (s)d B)
0

+2E ess sup

T
/ / elgAs(Y!’;‘"l”"/l‘i‘l7 U;’l-‘-lym-‘rl(e)l’z(ds’de)>
VE,EO,T] 0 E

But, for any ¢ > 0,

f&" ()

ds

2
1
1, 1 n,m 2 1, 1,2
2(yrHlmAL B (5)) < gasm'” mlh2 g .

Moreover, by the Burkholder—Davis—Gundy inequality, there exists a universal con-
stant ¢ such that

T
2E ess sup / eﬂAf(Yf_H’mH,Z?H’m“dWS)’
‘567—[(),]‘] 0
1 n+1,m+1,2 2 n+1,m+1,2
= Z”Y ”yﬂZ(Rk) +4c|Z ||///§(ka(1)’
T
2Eesssup/ feﬁAs(Y;ljl”"“,U;”l’m“(e)ﬁ(ds,de))
167—[0,1] 0 E
1
< = n+1,m+1,2 2 n+1,m+1,2
= 4||Y ”’yg(Rk) +4C ”U ”gﬁZ(Rk)
and
T
2Eesssup/ eﬂAS(YS"_Jrl’mH,ggm(s)st)
'[67?0,7‘] 0
1
<« = n+1,m+1,2 20 .mp2
= 4”Y ||5ﬁ§(Rk) +4C ”g@) ”(///l?(ka()'

Hence, there exists C > 0 such that

E [ esssup ePAx |Yf+1’erl 2
veTo,1]

T
C E/ ePAs
0

T
C (4E / ePAsa2|ymm2ds
0

T T
+3+a) (E/ eﬂAf|Z§"m|2ds+E/ eﬂASHU;”mH%ds)).
0 0

Since (Y", Z", U"),>1 is a Cauchy sequence in A/zg (R%), we deduce that (Y™")p=1 is
a Cauchy sequence in YISZ(R"). Hence, (Y", Z", U"),>1 is a Cauchy sequence in the
Banach space 93% (RK), so it converges in 35’% (R%) to alimit ©® = (Y, Z, U). Now let
us show that (Y, Z, U), with the additional Mertens process (K, C), is a solution to
RBDSDE] (2).

2

S O)

ds

IA

T
ds +E/ eﬂA"|gZ)’m(s)|2ds>
0

A
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Since (Y", Z", U"),~1 converges in %2 (R¥) to a limit (Y, Z, U), we have
> g B

lim ||(Y"-Y,Z2"-Z U"-U)

n—+00

2
BRE) = 0. 12)
Using the Cauchy—Schwarz inequality and (12), we deduce from (A1.1) and (A1.2)

T 2
E( [ (f(s.0)) — f(s.O))ds )
t
E<1 /Te,mf(s, Yy, 23, UD — fGs, Ys,zs,Ualzds)
t

< F P
3 r BAs 2 yn 2 ! BAg | 7n 2
< EE<./z e’ allYy — Y| ds—}—/t e’ Z¢ — Zs|7ds

T
+ / S oy - Usllfd8> —— 0.
t n——+o0o

Similarly, by the Burkholder—Davis—Gundy inequality and (12), we have

2
E( sup )
0<t<T
T
E(/ lg(s, Y™, Z", UM — g(s, YS,ZS,US)|2ds>
t

T T
E(/ PAa? |y — v |2ds + a/ ePAs\z0 — 7o 2ds
t t

T T
/ g(s, 6?)dBS _/ g(s, O5)d By
t 1

IA

IA

T
+a/ PAs|um — Us||§ds> — 0.
t ; n—-+00

Moreover, since Ag > O forall s < T, we have

T T 2 T
E| sup / Z?dWS—/ ZsdW, SE/ P20 — 7 Pds —— 0
0<t<T |Jt t t n—>+00
and
< sup f fU"(e)u(de ds) — / /Uv(e)u(de ds) >
0<t<T

< E/ P U — Ug|2ds — 0.
t n—-4o00

For each t € Tjo,17, let

T T
Ki=K:—Ci = Yo—Y:— f(5»®s)ds_/ g (s, 0;)dB;
0 0

T T
+/ ZsdWys —i—/ / Us(e)fi(ds, de).
0 0 JE
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Then, we can easily show that ||E" — I?||272 —> 0, asn —> +00. So, letting

n —> 400 in (9), we deduce that (Y, Z, UK, C) is a solution to RBDSDEIJ (2).
(i) Uniqueness. Let (Y!, Zz!, U, k', C') and (Y2, Z%, U?, K?, C?) be two so-

lutions to RBDSDEJ (2). We define R = Rt! — M2 for it € {¥, Z, U, K, C} and

Vhe{f g}, he()=h@0)—ht 6%, 1<T.

Thus the process (Y, Z, U, K, C) satisfies the following equation

T T T T
o= [ Fewds+ [ Gowis - [ Zaw+ [ [ Tuemas.de)
t ' t t JE
+Kr —K;+Cr_—C;_. 13)
Applying Lemma 2.11 to (13) and taking into consideration Remark 2.3, we have

T T
BT, P] 4 6 [ PETRds +E [ P GZE + 1T s

t t

T T
< ZE/ P (Y, Fols))ds +E/ P g (s) 2 ds.
t t

By the same computations as before (by using the assumptions (A1.1)-(A1.2)), we
have, for any ¢ > 0,

v F 2\ 25 2 Z 12 7712
2Ys, fo(9)) = |24 < ) as¥s|™ 4+ e(Zs " + U,

and
8o ()* < a2V 1* + a(1Zs)* + U, ).

Hence, choosing ¢ > 0, B > Osuchthate+«o < 1 and 8 > 3+ 2/¢, we deduce that

_ 2 T _
E [eﬂAf |Y,|2] + (ﬂ -3 g) E/ ePAa?|Y 2 ds

t

T T
+(1—-¢—a)E U ePAS | ZPds + / P4 U, ||§ds] <0.
t t

It follows that (Y, Z, U) = (0, 0, 0), and thus (K, C) = (0, 0). O

3.3 Comparison theorem

In all what follows, we are interested in one-dimensional RBDSDEIJs (i.e. k = 1).
We consider the RBDSDEIJs associated with parameters (fi(., ©), g(., ®), &) for
i = 1,2 where © stands for the process (Yi, i UY). Let us state the following
assumption

gl <gras. Vi<T

(AL6): ", ; .
i, y,z,ou) < f2(t, y,z,u) as. Y, y,z,u) €[0,T] x R x RY x %.



180 M. Marzougue, Y. Sagna

Then we have the following comparison result.

Theorem 3.5. Let (Y!, Z!, Ui, K', C') be a solution to RBDSDEJs associated with
parameters (f(., ®), g(., ©), ) fori = 1, 2. Under the assumptions (A1.1)~(A1.4)
and (A1.6) we have

Vi<T, Y'<Y? Pas.

I/’\rogf. Define R = %! — "2 for R {Y,Z,U, K, C, &}. Then the process (?, 2 l7
K, C) satisfies the following equation

T T
V= &+ / LF1(s. O — f2(s, ©2)1ds + / [g(s. ©)) — g(s. ©)1d B,
t t
TA T . . . . .
- / ZodW, — / / 0. (e)ii(ds, de) + Ry — R, + Cr_ — Cr_.
t t E

Applying Lemma 2.11, taking into account Remark 2.3 and taking the expectation,
we obtain, forallt < T,

T
E [eﬁA’le+|2] + ﬁEf L7, -ope’ @i 1Yy Pds
t
T s T P
+E/ ]l{?po}e’3 *1Zs] ds+E/ 1{2>o}eﬁ |\ Uyl 2ds
t t
T
< B[MER] 28 [ g T 00 - £ 02ds
t
! A 1 2y12
+E/ ]1{?&>0}eﬂ s|g(s, ©;) — g(s, ©)|"ds. (14)
t

By assumption (A1.6), we have E[¢#A7[E|] = 0 and Y."[f1(s, ©]) — f2(s, 0})] <
0, and due to the assumptions (A1.1)-(A1.2), we get, for any ¢ > 0,

T
QE/ 17,0 M LS (5. ©)) = (s, ©)ds
t

IA

T
2E f 17,20 eP V112G, ©)) — f2(s, ©D)]ds
t

) T R T -~
(2 + g) E/ 1{?x>0}eﬂA~‘a§|Yj|2ds + 8E/ ]1{/);S>O}eﬂAs |ZX|2dS
t t

IA

T
+5Ef L7,-ope" ™ 1Us113ds
t
and
r A 1 2412
E/ ]l{?s>0}eﬂ Slg(s, ©;) — g(s, ©))|ds
t

T T
< E/ L7, -ope’ a7 1Y Pds +aE/ Lz, -0y’ (1Zs > + 1T 13)ds.
t t
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Plugging these two last inequalities in (14), we deduce that, for any § > 0 and ¢ > O,

T
E[e/7 ] +,6E/ 17,0y a?| 7, ds
t

T T
+E/ L7, -0y ™1 Zs Pds +E/ L7, -op” ¥ 1Us 3ds
4 t

2 r ~
< (3 + —) E/ Lz, -ope’ ¥ a; 1V Pds
& t ;
T . T .
+(e+ o) (E/ 1{2_>0}eﬁA.v|Zsl2ds + E/ ]l{?s>0}eﬂA.s ||Us||ids> .
t 13

Choosing ¢ = (1 — «)/2 and taking 8 > 3 4 2/¢, we derive that

Y ?=0 as. Vi<T, ie, Y'<Y? as. Vi<T. O

4 Reflected BDSDEJs with stochastic growth condition

In this section we are interested in weakening the conditions on the coefficient f. We
are also interested in one-dimensional RBDSDEIJs (i.e. k = 1). Let us state the new
working assumptions.

4.1 Assumptions
We assume that the data (f, g, &) satisfy the following assumptions (A2):
(A2.1): There exist four non-negative ?,W—measurable processes (V:)i<t, (Kt)i<T,

(o1)i<t and (o;);<r such that the condition (A1.2) holds, and there exists
another J;-progressively measurable nonnegative process (¢;);<r such that

e ///ﬂz(R) and for all (¢, y, z,u) € [0, T] x R x RY x %,
a

If (&, ¥, 2w < &+ wilyl + kilz| + orllul.

(A2.2): f(w,t,- -, ) : R xR? x % — Ris continuous.
(A2.3): The coefficient g satisfies (A1.1) for « € 10, 1/2[.

(A2.4): The irregular barrier (§);<7 satisfies (A1.4).

4.2  Existence of a minimal solution

In this section, we will prove the existence of a minimal solution to RBDSDEIJ (2)
under the conditions (A2). First let us define a minimal solution as follows.

Definition 2. A solution (Y, Z, U, K, C) to RBDSDEJ (2) is called a minimal solu-

tion if for any other solution (Y*, Z*, U*, K*, C*) to (2) we have, foreacht < T,
Y, <YF
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For fixed (w, t) in  x [0, T'], we define the sequence f; (¢, y, z, #) associated to
the coefficient f as follows: for all (v, y’) € R?, (z,z') € R? x R? and (u,u’) €
.iﬁ X fx,

falt,y,z,u) = inf [f@, ¥, 2 u') +n(nly = Y| +kilz = 21 +orllu — u 1)1
y.,z,u

From Proposition 4.2 in [30], the sequence f;, is well defined for each n > 1, and it
satisfies:

* Linear growth condition: Vn > 1,
V(y.z,u) e RxRIX L, | fult, v, 2, 0] < G4vilyl+ilzl+oulls. (15)

* Monotonicity: Y(y, z,u) € R x R? x 2, fu(t,y, z, u) increases in n.

« Convergence: If (y,, zn, un) = (v, 2z, u) in R x R? x %, as n — 400, then
fn(ta))mznvun) —)f(tsYaZvu)- (16)
n——+00
* Lipschitz condition: Vn > 1, and for all (v, y") € R?, (z,7)) € R? x R? and
(u,u') € L x %, we have
| fat, . z,u) = fu @, Y, 2 u) < nyily — ¥+ nkg|z = 2| 4 noy lu — u'|);..
We also define the function

E@t,y. z,u) =&+ yilyl + kilz] 4 o [lufls.

Now, from Theorem 3.4, there exist two processes 0 = (Y, Z, ﬁ) and ©" =
(Y™, Z",U™) which are the solutions to RBDSDEIJs associated with parameters

(F(.,0),g(.,0),&) and (f,(., ®"), g(., O"), §), respectively.
From the definitions of f,, and F together with (15), we observe that Vn > 1,
fn < fus+1 < F. Then, due to Theorem 3.5 we have

vi<T, Y'<y'<y'!<y, (17)

The proof of the main result of this section is based on the two next lemmas.

Lemma 4.1. Under the assumption (A2), there exists a positive constant A depend-
ing on B such that

2
v 7 T2 2 ¢ 2
| 7. Z. 0] = A (lléllyjzzﬂ(m + H P +llgC. 0)|%2(RZ)>

and for eachn > 1

2

n n n 2 ¢
WHZﬂ)%®§A0ﬂ%®+k

2
+1gC 012 0 e | -
k ///ﬁz ®) M f; (RY
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Proof. We know that
_ T o T o T_
T, = &+ f Fs. ®,)ds + / 4(s.@,)d By — f Z,dW,
t t t
T —_— — — J— —_—
—/ / U,(e)ii(ds,de) + Ky — K, + Cr— — Cy_, (18)
t E

where (K, C) satisfies the Skorokhod and minimality conditions. Then, applying
Lemma 2.11 together with Remark 2.3, we deduce

T T T
eﬂAr|Y,|2+ﬁ/ eﬂAxa3|Ys|2ds+/ eﬂAS|ZS|2ds+/ PN U |3 ds
t

t t

T T
< eﬂAT|s|2+2/ eﬂASRF(s,@s)derz/ PYY_g(s, ©y)d By

t t

T T
-2 / PYY_ZdWy —2 f / PAY_Us(e)i(ds, de)
t t E

T T r
+/ eﬁ*‘flg(s,@s)lzds+2f PAY_dK, +2/ PNy dC.  (19)
t

t t

But forany 8 > 0 and ¢ > 0,

— — B 2 2% 12 214 ? 7 12 77 112
W F(,00) < (5 +2+ 2 )@V + 5 |2 +e0ZoP + 1T
2 & B |as
and
6.8 = 2(lgts, B - g, 0P + 1565, OF)
=

2 (¥, + alZ P + [T 1) + 18G5, 0))

Plugging these inequalities in (19) and taking expectation, we obtain

B 2 T sas 27 2 T obas
54— )E | FRaflYds +(1—e —20)E | e"Zy] ds
&€ t t

T
+(1—¢— 2a)E/ PN U3 ds

t

2 T
< E eﬂAT|é|2+—/ e
B i

T T
+2 / PAY_dKy+2 / eﬁAdea). (20)
t

t

4

ds

2 T
ds+2/ eP45\g(s, 0)%ds
t

Moreover,

T T
2E / PAY_dK, +2E / ePAYdCy
t t
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IA

T
2EesssupeﬂA’|§r|/ d(K;+Cy)
‘L’E'T[oj] 0

IA

1. —
eEesssup et |, 12 + —E(K1 + Cr)?,
7€T0,1] €

and from (18) we have

E(Kr + Cr)?
5 T 2 T 2 T 2
< 6E<Y0+§%+’/ F(s, ©,)ds +/ g(s, ©5)dB; +’/ Zsd W,
0 0 0
T 2
T / / U, (e)fi(ds, de) )
0 E
1 (T F(s, ©y) ?
< 6E 7§+$%+—/ ePAs |21 ds
ﬁ 0 dag

T T T
+c</0 1965, By Pds + /0 Z.Pds + fo ||Us||ids))

4 (7 oa | &) !
< 6E | 2esssupe?PArig > + = / P 1221 ds + 2cf ePAs1g(s, 0)|%ds

TE'T[(),TJ ﬂ 0 dg 0

4 T -
+ (3 + 2c) fo P2 (Y ds

4 T o T .
+(E +2ozc+c> (/0 eﬂA5|ZS|2ds+/O eﬂA5||Us||ids>>.

Then (20) becomes

T T T
¢1E/ eﬁA“af|Ys|2ds+¢2E/ eﬁAS|ZS|2ds+¢2E/ P\ U |3 ds
t

t t

& | !
2\ ds +/ eﬂAS|g(s,O)|2ds>.
a 0

S

T
< AE esssupezﬂA’|$r|2+/ P4
1’67{0_7“] 0

& & &
is a nonnegative constant depending on 8, ¢ and . Now, choose ¢ < 1 — 2« with

0 <o < 1/2and B > Osuch that e8(8 — 12 — 24c¢) > 48 (these choices are suitable
to obtain a nonnegative ¢; and ¢»). Hence

wherezbl=§—4—2—9(%+2c),¢2=1—8—2a—§(i+2ac+c)andA1

2
v 7 17|12 2 ¢ 2
V. Z. U]y = A1 (nsn%(RﬁHa .ﬂ;(R>+”g("o)”‘”ﬂ”))' 1)
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. =112 . . .
To conclude, we need an estimate of H Y|| ‘o2 For this, using (19) once again and

R)
I3
(21), we have

Eesssup 47|V, |
€70,1]

2
< A 2+

T
/ eﬂASYS_g(s, ©,)d B;
0

+ g, 0%,
R) jlﬁ(RZ)

+2E ess sup
TE’T[O,T]

+ 2E ess sup

TGW()_T]

T
/ PAT . Zoaw,
0

+2E ess sup
€T0,1]

f ' / PNY_Us(e)fi(ds, de)) .
E

By the Burkholder—Davis—Gundy inequality, there exists ¢ > 0 such that

2E ess sup
ve€Tio,1]

T
/ PATY T AW,
0

1 ,—2 —2
=% ”Y”yﬂZ(R) +6¢ ||Z||,//§(Rd) ;

1. _
2E ess sup = 5 | Y] ;g(R) +6c” [ 2(., ©) H.Z//ZE(R“)

e€T0,1]

T
f eﬁASYS,g(s, ©,)d B
0

1 =2 —12 =2
1710+ 126 (17 2o+ 121
— 2
and

2E ess sup
€T0,1]

g — 1
/ /E AT, T s, d0)| = ¢ [z + 66 [T 2w,

Then, we derive that

17| 2

-

2 2
vam = A2 (nsuyzzﬂmﬁ +1gC.0) /,Z(Rg)) (22)

MFR)
where A, is a nonnegative constant depending on S, ¢ and ¢. The desired result
is obtained by combining the estimates (21) and (22) with A = A VvV Aj. As a
consequence, from (17) we deduce that

+ g (. mn%m) :

Using the same computations as before, we can prove that

2

M3 R)

n n n 2 2
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Lemma 4.2. Under the assumption (A2) the sequence of processes (Y", Z", U")>1
converges almost surely in %’é (R) for each B > 2.

Proof. We know that
T T T
Vo= g+ / Fals, ©ds + / ¢(s, ©")dB, - f Zaw,
t t t
T
_/ / UM@)fids.de) + Kl — K" +Cl_—C',  (23)
t E

where (K", C") satisfy the Skorokhod and minimality conditions. We define, for any
integers n,m > 1, W™ =R —R" forN e {Y,Z,U, K, C},

AfP) = fult, OF)— fr(t, ©F") and Ag"™(1) = g(t,07)—g(t,0]"), t<T.

Then, applying Lemma 2.11 together with Remark 2.3, we get

T T T
ﬂEf P2 |ymm 2 ds +E/ ePAs|zmm 2 ds +E/ P umm2ds
t

t t

T T
< E/ ePA|AG ™ (5)Pds + ZE/ ePAsymmA f1M (5)ds.
t t
Using the assumption (A2.3) and the basic inequality 2ab < ea® + bé—z, we get

B =01 oy + 1= (12 P e+ 10" )

T opa [ASO)

T 2
< E/ eﬂA“aSZ|Ys"’m|2ds+E/ ePAs ds.
0 0 dg

Next, from the linear growth condition on f, and f;,, and by Lemma 4.1, we find

B -2y Hi//;"(R) + - (” zm ||i/!§(Rd) + o ”iﬂg(k))

2
¢ 2
< 8ALIEN, o + ”— +llgC, 0l :
( S2(R) all. 2wy 8 MR
Hence for 8 > 2, we deduce that (Y", Z", U™) is a Cauchy sequence in Alz3 (R), so
it converges in A?; (R). On the other hand, from (17) we deduce that there exists a
process Y € yﬂz(R) such that Y — Y a.s. as n — 00. The result follows. U

The main result in this section is what follows.
Theorem 4.3. Under the assumptions (A2), the RBDSDEJ (2) associated with pa-
rameters (f(., ®), g(., ®), &) has a minimal solution (Y,Z,U, K, C) € %é(R) X
Z2(R) x .#2(R).

Proof. From (17), it is readily seen that (Y"),>1 converges to Y a.s. in YE(R).
Otherwise, due to Lemma 4.2 there exist two subsequences still noted as the whole
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sequences (Z"),>1 and (U"),>1 such that ®" = (Y", Z", U") converges to ® =
(Y,Z,U) e Ag(R) as n — +o0. By (16), we have

f;‘l(l3 8?)—) f(t’ ®l)1 tST
n—+00

s, | fuls. O 7

Furthermore, using the linear growth condition of f;,, it follows that
T
g
0 dg
T ¢ 2 T T
< 4E(/ P22 ds + sup/ eﬁASa§|Yf|2ds + supf ePAs |Z?|2ds
0 Ag n Jo n Jo
T
+sup / P Uy ||ids),
n Jo
and by Lemma 4.1 we deduce that
T
g
0

< (Ansn/z w T

BAs Su(s, 6?) 2

ds

ds

2

+ AllgC O 0 o | -
/// ®) ///,g(R)

1 T
S—E/
B Jo

by Lebesgue’s dominated convergence theorem, we deduce that, for almostallt < T,

Since
2

sa, | fuls. O |7

ds

T
E ‘/ Su(s, ®)ds ds,
0

T 2
E f (fa(s, ©F) — f(s,04))ds| ——— 0.
0 n—-+00
‘We have also, for almostallt < T,
T 2
E / (g(s, ©Y) — g(s, ©5))dB;| —— 0.
0 n——+00

Moreover, we have

T T 2
E(sup / z;'dws—/ Zsd W )51@/ P20 — 7 Pds —— 0
0<r<T |Jt t t

n—-+400
and
/ /U (e)i(de, ds) — f /Us(e)u(de ds) >

< sup
0<t<T
< E/ P Ut — Ug|2ds — 0.
t n—-4o00
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Next, for each T € 7o, 77, let

T T
Ki=K—Cr = YO_YI_/O f(s»®s)ds_/0 g (s, 0;)dB;

T T
+/ ZsdWyg +/ / Us(e)ii(ds, de).
0 0 JE

Then, we can easy show that ||I?” — I?Hi,z —> 0, asn —> +o0. So, letting
n —> +o0 in (23), we deduce that (Y, Z, U, K, C) is a solution to RBDSDE] (2).

Now, let (Y*, Z*, U*, K*, C*) € %’é(R) x .Z2(R) x .72(R) be another solution
to RBDSDEIJ (2). By virtue of Theorem 3.5, we deduce that

Yn>1, Y'<Y*

Therefore, by passing to the limit ¥ < Y™ one proves that ¥ is the minimal solution
to RBDSDE] (2). O
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