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Abstract Based on a discrete version of the Pollaczeck–Khinchine formula, a general method
to calculate the ultimate ruin probability in the Gerber–Dickson risk model is provided when
claims follow a negative binomial mixture distribution. The result is then extended for claims
with a mixed Poisson distribution. The formula obtained allows for some approximation pro-
cedures. Several examples are provided along with the numerical evidence of the accuracy of
the approximations.
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1 Introduction

Several models have been proposed for a discrete time2 risk process {U(t) : t =
0, 1, . . .}. The following model is known as a compound binomial process and was
first considered in [7],

U(t) = u + t −
N(t)∑
i=1

Xi, (1)

where U(0) = u ≥ 0 is an integer representing the initial capital and the counting
process {N(t) : t = 0, 1, . . .} has a Binomial(t, p) distribution, where p stands for

∗Corresponding author.
2We will reserve the use of letter n for the approximation procedures proposed later on.
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Fig. 1. Discrete time risk process trajectories and some related quantities

the probability of a claim in each period. The discrete random variables X1, X2, . . .

are i.i.d. with probability function fX(x) = P(Xi = x) for x = 1, 2, . . . and mean
μX such that μX ·p < 1. This restriction comes from the net profit condition. Each Xi

represents the total amount of claims in the i-th period where claims existed. In each
period, one unit of currency from premiums is gained. The top-left plot of Figure 1
shows a possible realization of this risk process. The ultimate ruin time is defined as

τ = min {t ≥ 1 : U(t) ≤ 0},
as long as the indicated set is not empty, otherwise τ := ∞. Hence, the probability
of ultimate ruin is

ψ(u) = P(τ < ∞ | U(0) = u).

The reader should be aware that some authors, for example in [15], consider models
where ruin occurs only when the condition U(t) < 0 is satisfied.

One central problem in the theory of ruin is to find ψ(u). For the above model
this probability can be calculated using the following relation known as Gerber’s
formula [7],

ψ(0) = p · μX, (2)

ψ(u) = (1 − p)ψ(u + 1) + p

u∑
x=1

ψ(u + 1 − x) fX(x) + p FX(u), (3)

for u = 1, 2, . . ., where FX(u) = P(Xi > u) = ∑∞
x=u+1 fX(x).

An apparently simpler risk model is defined as follows.
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Definition 1. Let u ≥ 0 be an integer and let Y1, Y2, . . . be i.i.d. random variables
taking values in {0, 1, . . .}. The Gerber–Dickson risk process {U(t) : t = 0, 1, . . .} is
given by

U(t) = u + t −
t∑

i=1

Yi. (4)

In this case, at each unit of time there is always a claim of size Y . If μY denotes
the expectation of this claim, the net profit condition now reads μY < 1. It can be
shown [4, pp. 467] that this condition implies that ψ(u) < 1, where the time of
ruin τ and the ultimate ruin probability ψ(u) are defined as before. One feature that
makes this model simple is that all of its elements are discrete, but some studies [2]
have been carried out where continuous claims are incorporated.

Under a conditioning argument, it is easy to show that the probability of ruin
satisfies the recursive relation

ψ(0) = μY , (5)

ψ(u) =
u∑

y=0

fY (y)ψ(u + 1 − y) + FY (u), u ≥ 1. (6)

Now, given a compound binomial model (1) we can construct a Gerber–Dickson
model (4) as follows. Let R1, R2, . . . be i.i.d. Bernoulli(p) random variables and
define Yi = Ri · Xi where Xi ∈ {1, 2, . . .}, i ≥ 1, as in model (1). The distribution of
these claims is fY (0) = 1 − p and fY (y) = p · fX(y), for y ≥ 1.

Conversely, given model (4) and defining p = 1 − fY (0), we can construct a
model (1) by letting claims Xi have distribution fX(x) = fY (x)/p, for x ≥ 1. It can
be readily checked that μY = p · μX and that the probability generating function of
U(t) in both models coincide. This shows models (1) and (4) are equivalent in the
sense that U(t) has the same distribution in both models. As expected, the recursive
relations (3) and (6) can be easily obtained one from the other. Thus, results obtained
for one model can be translated for the other model. For example, using model (1),
authors in [3] find the ruin severity and the surplus just before the ruin, and a discrete
version of the popular Gerber–Shiu function is used in [10] and [11] to solve problems
on ruin time and ruin severity. A survey of results and models for several discrete time
risk models can be found in [12].

In this work we will use the notation of the Gerber–Dickson risk model (4) and
for simplicity we will write f (y), F(y) and μ instead of fY (y), FY (y) and μY , re-
spectively. Also, as time an other auxiliary variables are considered discrete, we will
write, for example, t ≥ 0 instead of t = 0, 1, . . . Our main objective is to provide
some methods to approximate the ultimate ruin probability for this risk model. The
results obtained are the discrete version of those found in [14].

2 The Pollaczeck–Khinchine formula

The continuous version of Pollaczeck–Khinchine formula plays a major role in the
theory of ruin for the Cramér–Lundberg model. On the contrary, its discrete version is
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seldom mentioned in the literature on discrete time risk models. In this section we de-
velop this formula and apply it later to find a general method to calculate ultimate ruin
probabilities for claims with particular distributions. The construction procedure we
use for the discrete case resembles closely the one already known for the continuous
case.

Assuming τ < ∞, the non-negative random variable W = |U(τ)| is known as
the severity of ruin. It indicates how large the capital drops below zero at the time of
ruin. See the top-right plot of Figure 1. The joint probability of ruin and severity not
greater than w = 0, 1, . . . is denoted by

ϕ(u,w) = P(τ < ∞,W ≤ w | U(0) = u). (7)

In [5] it is shown that, in particular,

ϕ(0, w) =
w∑

x=0

F(x), w ≥ 0. (8)

Hence,

P(τ < ∞,W = w | U(0) = 0) = ϕ(0, w) − ϕ(0, w − 1) = F(w). (9)

This probability will be useful in finding the distribution of the size of the first
drop of the risk process below its initial capital u, see Theorem 1 below, which will
lead us to the Pollaczeck–Khinchine formula. For every claim distribution, there is
an associated distribution which often appears in the calculation of ruin probabilities.
This is defined next.

Definition 2. Let F(y) be the distribution function of a discrete random variable
with values 0, 1, . . . and with finite mean μ �= 0. Its equilibrium probability function
is defined by

fe(y) = F(y)/μ, y ≥ 0. (10)

The probability function defined by (10) is also known as the integrated-tail distri-
bution, although this name is best suited to continuous distributions. For example, the
equilibrium distribution associated to a Geometric(p) claim distribution with mean
μ = 1/(1 − p) is the same geometric since

fe(y) = F(y)/μ = (1 − p)y+1 p/(1 − p) = p (1 − p)y, y ≥ 0. (11)

As in the continuous time risk models, let us define the surplus process {Z(t) :
t ≥ 0} by

Z(t) = u − U(t) =
t∑

i=1

(Yi − 1). (12)

This is a random walk that starts at zero, it has stationary and independent increments
and Z(t) → −∞ a.s. as t → ∞ under the net profit condition μ < 1. See the
bottom-right plot of Figure 1. In terms of this surplus process, ruin occurs when Z(t)

reaches level u or above. Thus, the ruin probability can be written as

ψ(u) = P(Z(t) ≥ u for some t ≥ 1) = P

(
max
t≥1

{Z(t)} ≥ u

)
, u ≥ 1. (13)
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As u ≥ 1 and Z(0) = 0, we can also write

ψ(u) = P

(
max
t≥0

{Z(t)} ≥ u

)
. (14)

We next define the times of records and the severities for the surplus process.

Definition 3. Let τ ∗
0 := 0. For i ≥ 1, the i-th record time of the surplus process is

defined as
τ ∗
i = min {t > τ ∗

i−1 : Z(t) ≥ Z(τ ∗
i−1)}, (15)

when the indicated set is not empty, otherwise τ ∗
i := ∞. The non-negative variable

Y ∗
i = Z(τ ∗

i ) − Z(τ ∗
i−1) is called the severity or size of the i-th record time, assuming

τ ∗
i < ∞.

The random variables τ ∗
0 < τ ∗

1 < · · · represent the stopping times when the
surplus process {Z(t) : t ≥ 0} arrives at a new or the previous maximum, and the
severity Y ∗

i is the difference between the maxima at τ ∗
i and τ ∗

i−1. A graphical example
of these record times are shown in the bottom-right plot of Figure 1. In particular,
observe that τ ∗

1 is the first positive time the risk process is less than or equal to its
initial capital u, that is,

τ ∗
1 = min {t > 0 : u − U(t) ≥ 0}, (16)

and the severity is Y ∗
1 = Z(τ ∗

1 ) = u − U(τ ∗
1 ) and this is the size of this first drop

below level u. Also, since the surplus process has stationary increments, all severities
share the same distribution, that is,

Y ∗
i = Z(τ ∗

i ) − Z(τ ∗
i−1) ∼ Z(τ ∗

1 ) − Z(0) = Y ∗
1 , i ≥ 1, (17)

assuming τ ∗
i < ∞. We will next find out that distribution.

Theorem 1. Let k ≥ 1. Conditioned on the event (τ ∗
k < ∞), the severities Y ∗

1 , . . . , Y ∗
k

are independent and identically distributed according to the equilibrium distribution

P(Y ∗ = x | τ ∗
k < ∞) = F(x)/μ, x ≥ 0. (18)

Proof. By (17), it is enough to find the distribution of Y ∗
1 . Observe that τ ∗

1 = τ when
U(0) = 0. By (9) and (5), for x ≥ 0,

P(Y ∗
1 = x | τ ∗

1 < ∞) = P(u − U(τ ∗
1 ) = x | τ ∗

1 < ∞)

= P(|U(τ)| = x | τ < ∞, U(0) = 0)

= P(τ < ∞, Y = x | U(0) = 0)/P(τ < ∞ | U(0) = 0)

= F(x)/μ.

The independence property follows from the independence of the claims. Indeed, the
severity of the i-th record time is

Y ∗
i = Z(τ ∗

i ) − Z(τ ∗
i−1) =

τ∗
i∑

j=τ∗
i−1+1

(Yj − 1), i ≥ 1.
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Therefore,

P

(
k⋂

i=1

(
Y ∗

i = yi

)) = P

⎛
⎝ k⋂

i=1

⎛
⎝ τ∗

i∑
j=τ∗

i−1+1

(Yj − 1) = yi

⎞
⎠

⎞
⎠ =

k∏
i=1

P
(
Y ∗

i = yi

)
.

Since the surplus process is a Markov process, the following properties hold: For
i ≥ 2 and assuming τ ∗

i < ∞, for 0 < s < x,

P(τ ∗
i = x | τ ∗

i−1 = s) = P(τ ∗
i − τ ∗

i−1 = x − s | τ ∗
i−1 = s) = P(τ ∗

1 = x − s). (19)

Also, for k ≥ 1,

P(τ ∗
k < ∞ | τ ∗

k−1 < ∞) = P(τ ∗
1 < ∞), (20)

P(τ ∗
k = ∞ | τ ∗

k−1 < ∞) = P(τ ∗
1 = ∞). (21)

The total number of records of the surplus process {Z(t) : t ≥ 0} is defined by
the non-negative random variable

K = max {k ≥ 1 : τ ∗
k < ∞}, (22)

when the indicated set is not empty, otherwise K := 0. Note that 0 ≤ K < ∞ a.s.
since Z(t) → −∞ a.s. under the net profit condition. The distribution of this random
variable is established next.

Theorem 2. Let μ < 1 be the mean of claims in the Gerber–Dickson risk process (4).
The number of records K has a Geometric(1 − μ) distribution, that is,

fK(k) = (1 − μ)μk, k ≥ 0. (23)

Proof. The case k = 0 can be related to the ruin probability with u = 0 as follows,

fK(0) = P(τ ∗
1 = ∞) = P(τ = ∞ | U(0) = 0) = 1 − ψ(0) = 1 − μ.

Hence, P(K > 0) = ψ(0) = μ. Let us see the case k = 1,

fK(1) = P(τ ∗
1 < ∞, τ ∗

2 = ∞) = P(τ ∗
2 = ∞ | τ ∗

1 < ∞)P(τ ∗
1 < ∞).

By (21),

fK(1) = P(τ ∗
1 = ∞)P(τ ∗

1 < ∞) = P(K > 0)fK(0) = μ(1 − μ).

Now consider the case k ≥ 2 and let Ak = (τ ∗
k < ∞). Conditioning on Ak−1 and its

complement,

P(Ak) = P(τ ∗
k < ∞ | Ak−1)P(Ak−1)

= P(τ ∗
k < ∞ | τ ∗

k−1 < ∞)P(Ak−1)

= P(τ ∗
1 < ∞)P(Ak−1)

= ψ(0)P(Ak−1).

An iterative argument shows that P(Ak) = (ψ(0))k , k ≥ 2. Therefore,

fK(k) = P(τ ∗
k+1 = ∞, Ak) = P(τ ∗

k+1 = ∞ | Ak)P(Ak)

= P(τ ∗
1 = ∞)(ψ(0))k = (1 − μ)μk.
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In the following proposition it is established that the ultimate maximum of the
surplus process has a compound geometric distribution. This will allow us to write
the ruin probability as the tail of this distribution.

Theorem 3. For a surplus process {Z(t) : t ≥ 0} with total number of records K ≥ 0
and record severities Y ∗

1 , Y ∗
2 , . . . , Y ∗

K ,

max
t≥0

{Z(t)} d=
K∑

i=1

Y ∗
i . (24)

Hence,

ψ(u) = P

(
K∑

i=1

Y ∗
i ≥ u

)
, u ≥ 1. (25)

Proof. By definition,

K∑
i=1

Y ∗
i =

K∑
i=1

(
Z(τ ∗

i ) − Z(τ ∗
i−1)

) = Z(τ ∗
K) = max

t≥0
{Z(t)} a.s. (26)

Thus, for u ≥ 1,

ψ(u) = P

(
max
t≥0

{Z(t)} ≥ u

)
= P

(
K∑

i=1

Y ∗
i ≥ u

)
.

Theorem 4 (Pollaczeck–Khinchine formula, discrete version). The probability of
ruin for a Gerber–Dickson risk process (4) can be written as

ψ(u) = (1 − μ)

∞∑
k=1

P(S∗
k ≥ u)μk, u ≥ 0, (27)

where S∗
k = ∑k

i=1 Y ∗
i .

Proof. For u = 0, the sum in (27) reduces to μ which we know is ψ(0). For u ≥ 1,
by (23) and (25),

ψ(u) = P

(
K∑

i=1

Y ∗
i ≥ u

)
=

∞∑
k=0

P

(
K∑

i=1

Y ∗
i ≥ u | K = k

)
fK(k)

= (1 − μ)

∞∑
k=1

P(S∗
k ≥ u)μk.

For example, suppose claims have a Geometric(p) distribution with mean μ =
(1 − p)/p. The net profit condition μ < 1 implies p > 1/2. We have seen in
equation (11) that the associated equilibrium distribution is again Geometric(p), and
hence the k-th convolution is Negative Binomial with parameters k ∈ N and p ∈
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(1/2, 1). Straightforward calculations show that the Pollaczeck–Khinchine formula
gives the known solution for the probability of ruin,

ψ(u) =
(

1 − p

p

)u+1

, u ≥ 0. (28)

This includes the case u = 0 in the same formula. In the following section we
will consider claims that have a mixture of some distributions.

3 Negative binomial mixture distributions

Negative binomial mixture (NBM) distributions will be used to approximate the ruin
probability when claims have a mixed Poisson (MP) distribution. Although NBM
distributions are the analogue of Erlang mixture distributions [18, 19], they cannot be
used to approximate any discrete distribution with non-negative support. However, it
turns out that they can approximate mixed Poisson distributions. This is stated in [16,
Theorem 1], where the authors define NBM distributions by the probability generat-
ing function

G(z) = lim
m→∞

m∑
k=1

qk,m

(
1 − pk,m

1 − pk,m z

)rk,m

, z < 1,

where qk,m are positive numbers and their sum over index k equals to 1. This is
a rather general definition for a NBM distribution. In this work we will consider a
particular case of it.

We will denote by NB(k, p) the negative binomial distribution with parameters
k ∈ N and p ∈ (0, 1). Its probability function will be written as nb(k, p)(x) and the
distribution function by NB(k, p)(x). More precisely, for integers x ≥ 0,

nb(k, p)(x) =
(

k + x − 1

x

)
pk(1−p)x, NB(k, p)(x) = 1−

k−1∑
i=0

nb(x+1, 1−p)(i).

The case k = 1 reduces to the Geometric(p) distribution. It will be also useful to
recall that the NB(k, p) distribution can be obtained as the distribution of the sum of
k independent random variables Geometric(p)-distributed.

Definition 4. Let q1, q2, . . . be a sequence of numbers such that qk ≥ 0 and∑∞
k=1 qk = 1. A negative binomial mixture distribution with parameters π =

(q1, q2, . . .) and p ∈ (0, 1), denoted by NBM(π , p), is a discrete distribution with
the probability function

f (x) =
∞∑

k=1

qk · nb(k, p)(x), x ≥ 0.

It is useful to observe that any NBM distribution can be written as a compound
sum of geometric random variables. Indeed, let N be a discrete random variable with
the probability function qk = fN(k), k ≥ 1, and define SN = ∑N

i=1 Xi , where
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X1, X2, . . . are i.i.d. r.v.s Geometric(p)-distributed and independent of N . Then, con-
ditioning on the values of N ,

P(SN = x) =
∞∑

k=1

qk · P
(

k∑
i=1

Xi = x

)
=

∞∑
k=1

qk · nb(k, p)(x), x ≥ 0.

Thus, given any NBM(π , p) distribution with π = (fN(1), fN(2), . . .), we have the
representation

SN =
N∑

i=1

Xi ∼ NBM(π , p). (29)

In particular,

E(SN) = E(N)

(
1 − p

p

)
, (30)

FSN
(x) =

∞∑
k=1

fN(k) · NB(k, p)(x), x ≥ 0, (31)

and the p.g.f. has the form GSN
(r) = GN(GX(r)). The following is a particular way

to write the distribution function of a NBM distribution.

Theorem 5. Let SN ∼ NBM(π , p), where π = (fN(1), fN(2), . . .) for some discrete
r.v. N . For each x ≥ 0, let Z ∼ NB(x + 1, 1 − p). Then

FSN
(x) = E(FN(Z)), x ≥ 0. (32)

Proof. For x ≥ 0,

FSN
(x) =

∞∑
k=1

fN(k) · NB(k, p)(x)

=
∞∑

k=1

fN(k)

[
1 −

k−1∑
i=0

nb(x + 1, 1 − p)(i)

]

=
∞∑
i=0

[
i∑

k=1

fN(k)

]
nb(x + 1, 1 − p)(i)

= E(FN(Z)).

We will show next that the equilibrium distribution associated to a NBM distribu-
tion is again a NBM one. For a distribution function F(x), F(x) denotes 1 − F(x).

Theorem 6. Let SN ∼ NBM(π , p), with π = (fN(1), fN(2), . . .) and E(N) < ∞.
The equilibrium distribution of SN is NBM(πe, p), where

πe = (fNe(1), fNe(2), . . .),

and
fNe(j) = FN(j − 1)/E(N), j ≥ 0. (33)
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Proof. For x ≥ 0,

fe(x) = FSN
(x)

E(SN)
= p

∑∞
i=0 FN(i)

(
x+i

i

)
pi(1 − p)x+1

(1 − p)E(N)

=
∞∑
i=0

FN(i)

E(N)

(
x + i

i

)
pi+1(1 − p)x.

Naming j = i + 1,

fe(x) =
∞∑

j=1

FN(j − 1)

E(N)

(
j + x − 1

x

)
pj (1 − p)x =

∞∑
j=1

fNe(j) · nb(j, p)(x).

It can be checked that (33) is a probability function. It is the equilibrium distribu-
tion associated to N .

The following proposition states that a compound geometric NBM distribution
is again a NBM one. This result is essential to calculate the ruin probability when
claims have a NBM distribution.

Theorem 7. Let M ∼ Geometric(ρ) and let N1, N2, . . . be a sequence of inde-
pendent random variables with identical distribution π = (fN(1), fN(2), . . .). Let
SN1, SN2, . . . be random variables with a NBM(π , p) distribution. Then

S :=
M+1∑
j=1

SNj
∼ NBM(π∗, p), (34)

where π∗ = (fN∗(1), fN∗(2), . . .) is the distribution of N∗ = ∑M+1
j=1 Nj and is given

by

fN∗(1) = ρ fN(1), (35)

fN∗(k) = (1 − ρ)

k−1∑
i=1

fN(i) fN∗(k − i) + ρ fN(k), k ≥ 2. (36)

Proof. For x ≥ 1 and m ≥ 1,

P(S = x | M + 1 = m) = P

⎛
⎝ m∑

j=1

SNj
= x

⎞
⎠ = P

⎛
⎝ m∑

j=1

Nj∑
i=1

Xi j = x

⎞
⎠

= P

(
Nm∑
�=1

X� = x

)
,

where Nm = ∑m
i=1 Ni and X� ∼ Geometric(p), for � ≥ 1. Therefore,

P(S = x) =
∞∑

m=1

P(S = x | M + 1 = m)fM+1(m)
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=
∞∑

m=1

P

(
Nm∑
�=1

Xl = x

)
fM+1(m)

= P

⎛
⎝ N∗∑

�=1

X� = x

⎞
⎠ ,

where N∗ = ∑M+1
j=1 Nj . Using Panjer’s formula it can be shown that N∗ has distribu-

tion π∗ given by (35) and (36). Since X� ∼ Geometric(p),
∑N∗

�=1 X� ∼ NBM(π∗, p).
Lastly, the probability of the event (S = 0) can be calculated as follows:

P(S = 0) =
∞∑

k=1

fN∗(k) nb(k, p)(0) =
∞∑

k=1

fN∗(k) pk = fN∗(1) p +
∞∑

k=2

fN∗(k) pk.

Substituting fN∗(k) from (35) and (36), one obtains

P(S = 0) = ρ GN(p) + (1 − ρ)GN(p)P(S = 0).

Therefore,

P(S = 0) = ρ GN(p)

1 − (1 − ρ)GN(p)
= GM+1(GN(p)) = GM+1(GN(GXi j

(0))).

(37)
The last term is the p.g.f. of a NBM(π∗, p) distribution evaluated at zero.

From (35) and (36), it is not difficult to derive a recursive formula for FN∗(k),
namely,

FN∗(k) = (1 − ρ)

k∑
j=1

fN(j) FN∗(k − j) + FN(k), k ≥ 1. (38)

The following result establishes a formula to calculate the ruin probability when
claims have a NBM distribution.

Theorem 8. Consider the Gerber–Dickson model (4) with claims having a NBM(π , p)

distribution, where π = (fN(1), fN(2), . . .) and E(N) < ∞. For u ≥ 1 define
Zu ∼ NegBin(u, 1 − p). Then the ruin probability can be written as

ψ(u) =
∞∑

k=0

Ck · P(Zu = k) = E(CZu), u ≥ 1, (39)

where the sequence
{
Ck

}∞
k=0 is given by

C0 = E(N)(1 − p)/p, (40)

Ck = C0

[
k∑

i=1

fNe(i) Ck−i + FNe(k)

]
, k ≥ 1, (41)

fNe(i) = FN(i − 1)

E(N)
, i ≥ 1. (42)



232 D.J. Santana, L. Rincón

Proof. Let R0 = ∑M0
j=1 Ye,j , where M0 ∼ Geometric(ρ) with ρ = 1 − ψ(0), and

let Ye,1, Ye,2, . . . be r.v.s distributed according to the equilibrium distribution associ-
ated to NBM(π , p) claims. By Theorem 6, we know this equilibrium distribution is
NBM(πe, p), where πe is given by fNe(j) = FN(j − 1)/E(N), j ≥ 1. By (25), for
u ≥ 1,

ψ(u) = P(R0 ≥ u)

= P(R0 ≥ u | M0 > 0)P(M0 > 0) + P(R0 ≥ u | M0 = 0)P(M0 = 0)

= (1 − ρ)P(R ≥ u),

where R ∼ ∑M+1
j=1 Ye,j with M +1 ∼ Geometric(ρ). By Theorem 7, R ∼ NBM(π∗,

p), where π∗ is given by equations (35) and (36). Now define

Ck = (1 − ρ)FN∗(k), k ≥ 0. (43)

Therefore, using (32),

ψ(u) = (1 − ρ)P(R > u) = (1 − ρ)E
(
FN∗(Zu)

) =
∞∑

k=0

Ck P(Zu = k).

Finally, we calculate the coefficients Ck where ρ = 1−ψ(0) = 1−E(N)(1−p)/p.
First,

C0 = (1 − ρ)FN∗(0) = 1 − ρ = E(N)(1 − p)/p,

and by (38),

Ck = (1 − ρ)FN∗(k) = C0

[
k∑

i=1

fNe(i)Ck−i + FNe(k)

]
, k ≥ 1.

As an example consider claims with a geometric distribution. This is a NBM
distribution with π = (1, 0, 0, . . .). Equations (40–42) yield

Ck = ((1 − p)/p)k+1 , k ≥ 0.

Substituting in (39) together with ψ(0) = (1 − p)/p, we recover the known solution
ψ(u) = [(1 − p)/p]u+1, for u ≥ 0, mentioned earlier in (28).

4 Mixed Poisson distribution

This section contains the definition of a mixed Poisson distribution and some of its
relations with NBM distributions.

Definition 5. Let X and � be two non-negative random variables. If X | (� =
λ) ∼ Poisson(λ), then we say that X has a mixed Poisson distribution with mixing
distribution F�. In this case, we write X ∼ MP(F�).
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Observe the distribution of X | (� = λ) is required to be Poisson, but the un-
conditional distribution of X, although discrete, is not necessarily Poisson. In [13],
necessary and sufficient conditions are given to determine whether a given distribu-
tion belongs to the MP family. This is done via its probability generating function.
A large number of examples of these distributions can be found in [9] and a study
of their general properties is given in [8]. In particular, it is not difficult to see that
E(X) = E(�). Indeed, conditioning on the values of �,

E(X) =
∫ ∞

0
E(X |� = λ) dF�(λ) =

∫ ∞

0
λ dF�(λ) = E(�).

Also, the p.g.f. of X can be written as

GX(r) =
∫ ∞

0
e−λ(1−r)dF�(λ), r < 1. (44)

In [17], a recursive formula to evaluate MP probabilities is given. The following
proposition establishes a relationship between the Erlang mixture distribution (used
as a mixing distribution) and the negative binomial distribution. The former will be
denoted by ErlangM(π , β), with similar meaning for the parameters as in the nota-
tion NBM(π , p) used before. In the ensuing calculations the probability function of
a Poisson(λ) distribution is denoted by poisson(λ)(x). The Erlang distribution of pa-
rameters k ∈ N and β > 0 is denoted by Erlang(k, β). The distribution function is
written as Erlang(k, β)(x) and the density function as erlang(k, β)(x), that is,

erlang(k, β)(x) = (βx)k−1

(k − 1)! βe−βx, x > 0.

When k = 1 one obtains the exponential distribution with parameter β, which is
denoted by Exp(β).

Theorem 9. Let � be a random variable with the distribution ErlangM(π , β). The
distributions MP(F�) and NBM(π , β/(β + 1)) are the same.

Proof. Let X ∼ MP(F�). For x ≥ 0,

P(X = x) =
∫ ∞

0
poisson(λ)(x) ·

∞∑
k=1

qk · erlang(k, β)(λ) dλ

=
∞∑

k=1

qk ·
(

β

β + 1

)k (
1

β + 1

)x
(k + x − 1)!
(k − 1)! x!

=
∞∑

k=1

qk · nb(k, β/(β + 1))(x).

As an example consider the case when � ∼ Exp(β) and π = (1, 0, 0, . . .). By
Theorem 9, P(X = x) = nb(1, β/(β + 1))(x) for x ≥ 0. That is, X ∼ Geometric(p)

with p = β/(β + 1).
Next proposition will be useful to show that a MP distribution can be approxi-

mated by NBM distributions. Its proof can be found in [8].
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Theorem 10. Let �1,�2, . . . be positive random variables with distribution func-
tions F1, F2, . . . and let X1, X2, . . . be random variables such that Xi ∼ MP(Fi),

i ≥ 1. Then Xn
D−→ X, if and only if, �n

D−→ �, where X ∼ MP(F�).

Finally we establish how to approximate a MP distribution.

Theorem 11. Let X ∼ MP(F�), and let Xn be a random variable with the distribu-
tion NBM(πn, pn), for n ≥ 1, where pn = n/(n + 1), πn = (q(1, n), q(2, n), . . .)

and q(k, n) = F�(k/n) − F�((k − 1)/n). Then Xn
D−→ X.

Proof. First, suppose that F� is continuous. Let �1,�2, . . . be random variables,
where �n has the distribution given by the following Erlang mixture (see [14]),

Fn(x) =
∞∑

k=1

q(k, n) · Erlang(k, n)(x), x > 0, (45)

with q(k, n) = F�(k/n) − F�((k − 1)/n). It is known [14] that

lim
n→∞ Fn(x) = F�(x), x > 0.

Then, by Theorem 10, Xn
D−→ X, where Xn ∼ MP(Fn). This is a NBM(π , pn) by

Theorem 9 where π = (q(1, n), q(2, n), . . .) and pn = n/(n + 1).
Now suppose F� is discrete. Let Yn ∼ NB(λn, n/(n + 1)), where λ and n are

positive integers and let Z ∼ Poisson(λ). The probability generating functions of
these random variables satisfy

lim
n→∞ GYn(r) = lim

n→∞

(
1 + 1 − r

n

)−λn

= exp{−λ(1 − r)} = GZ(r).

Thus,

Yn
D−→ Z. (46)

On the other hand, suppose that X is a mixed Poisson random variable with the prob-
ability function fX(x), for x ≥ 0, and mixing distribution F�(λ), for λ ≥ 1. Let
{Xn}∞n=1 be a sequence of random variables with the distribution

fn(x) =
∞∑

k=1

q(k, n) · nb

(
k,

n

n + 1

)
(x), n ≥ 1, x ≥ 0, (47)

where q(k, n) = F�(k/n) − F�((k − 1)/n). Note that for any natural number n, if
k is not a multiple of n, then q(k, n) = 0. Let k = λ n with λ ≥ 1. Then q(k, n) =
F�(λ) − F�(λ − 1/n) = f�(λ). Therefore, for x ≥ 0,

fXn(x) =
∞∑

λ=1

q(λ n, n) · nb(λ n, n/(n + 1))(x) =
∞∑

λ=1

f�(λ) · nb(λ n, n/(n + 1))(x).

Therefore,

lim
n→∞ fXn(x) =

∞∑
λ=1

f�(λ) · lim
n→∞ nb(λ n, n/(n+ 1))(x) =

∞∑
λ=1

f�(λ) · poisson(λ)(x).
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For Xn ∼ NBM(πn, pn), as in the previous statement, it is easy to see that

E(Xn) < 1. (48)

As a consequence of Theorem 11, for X ∼ MP(F�), its probability function can be
approximated by NBM distributions with suitable parameters. That is, for sufficiently
large values of n,

P(X = x) ≈
∞∑

k=1

q(k, n) · nb(k, pn)(x), (49)

where q(k, n) = F� (k/n) − F� ((k − 1)/n) and pn = n/(n + 1).

5 Ruin probability approximations

We here consider the case when claims in the Gerber–Dickson risk model (4) have
distribution function F ∼ MP(F�). Let ψn(u) denote the ruin probability when
claims have the distribution Fn(x) as defined in Theorem 11. If n is large enough,
Fn(x) is close to F(x), and it is expected that ψn(u) will be close to ψ(u), the un-
known ruin probability. This procedure is formalized in the following theorem.

Theorem 12. If claims in the Gerber–Dickson model (4) have a MP(F�) distribution,
then

ψ(u) = lim
n→∞ ψn(u), u ≥ 0,

where

ψn(u) =
∞∑

k=0

Ck,n P(Z = k) = E
(
CZ,n

)
, (50)

with Z ∼ NB(u, 1/(1 + n)). The sequence
{
Ck,n

}∞
k=0 is determined by

C0,n =
∞∑

j=0

F�(j/n)/n, (51)

Ck,n = C0,n

[
k∑

i=1

fNe(i)Ck−i,n + FNe(k)

]
, k ≥ 1, (52)

fNe(i) = F�((i − 1)/n)∑∞
j=0 F�(j/n)

, i ≥ 1. (53)

Proof. Suppose X ∼ MP(F�) with E(X) < 1 and the equilibrium probability func-
tion fe(x). Let X1, X2, . . . be a sequence of NBM(πn, pn) r.v.s approximating X,
where πn = (q(1, n), q(2, n), . . .), with q(k, n) = F�(k/n) − F�((k − 1)/n) and
pn = n/(n + 1). That is,

fXn(x) =
∞∑

k=1

q(k, n) · nb(k, n/(n + 1))(x), x ≥ 0. (54)
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By (30),

E(Xn) =
∞∑

k=1

k q(k, n) · 1/(n + 1)

n/(n + 1)
=

∞∑
k=1

(k/n) · [F�(k/n) − F�((k − 1)/n) ].

Taking the limit,

lim
n→∞E(Xn) =

∫ ∞

0
x dF�(x) = E(�) = E(X). (55)

Now, by Theorem 11, since Xn
D−→ X, we have

lim
n→∞ FXn(x) = FX(x), x ≥ 0.

Combining the above with (55),

lim
n→∞

FXn(x)

E(Xn)
= FX(x)

E(X)
.

This means the equilibrium probability function fe,n(x) associated to fXn(x) satisfies

lim
n→∞ fe,n(x) = fe(x), x ≥ 0. (56)

Using probability generating functions and (56), it is also easy to show that for any
k ≥ 1,

lim
n→∞ F ∗k

e,n(x) = F ∗k
e (x), x ≥ 0. (57)

Now, let Xn1, Xn2, . . . be i.i.d. random variables with the probability function fe,n(x)

and set Sk,n := ∑k
i=1 Xni . By the Pollaczeck–Khinchine formula, for u ≥ 0,

ψn(u) =
∞∑

k=1

P(Sk,n ≥ u) (1 − E(Xn))E
k(Xn)

=
∞∑

k=1

(1 − F ∗k
e,n(u − 1)) (1 − E(Xn))E

k(Xn).

Taking the limit as n → ∞, and using (55) and (57),

lim
n→∞ ψn(u) =

∞∑
k=1

(1 − F ∗k
e (u − 1)) (1 − E(X))Ek(X) = ψ(u), u ≥ 1.

On the other hand, since claims Xn have a NBM(πn, pn) distribution, with πn =
(q(1, n), q(2, n), . . .), q(k, n) = F�(k/n) − F�((k − 1)/n) and pn = n/(n + 1),
by Theorem 8,

ψn(u) =
∞∑

k=0

Ck,n · P(Z = k) = E(CZ,n), u ≥ 1,
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where Z ∼ NB(u, 1/(n + 1)) and the sequence
{
Ck,n

}∞
k=0 is given by

C0,n = E(Nn)/n,

Ck,n = C0,n

[
k∑

i=1

fNe(i) Ck−i,n + FNe(k)

]
, k ≥ 1,

fNe(i) = FNn(i − 1)

E(Nn)
, i ≥ 1,

where Nn is the r.v. related to probabilities q(k, n). Thus, it only remains to calculate
the form of E(Nn) and FNn(i − 1).

E(Nn) =
∞∑

j=1

P(Nn > j − 1) =
∞∑

j=1

∞∑
i=j

q(i, n)

=
∞∑

j=1

∞∑
i=j

(F�(i/n) − F�((i − 1)/n)) =
∞∑

j=0

F�(j/n).

Thus,

C0,n =
∞∑

j=0

F�(j/n)/n.

Also,

FNn(i − 1) = P(Nn > i − 1) =
∞∑
k=i

q(k, n)

=
∞∑
k=i

(F�(k/n) − F�((k − 1)/n)) = F�((i − 1)/n).

Then,

fNe(i) = F�((i − 1)/n)∑∞
j=0 F�(j/n)

, i ≥ 1.

5.1 First approximation method

Our first proposal of approximation to ψ(u) is presented as a corollary of Theorem 12.
Note that C0,n = ∑∞

j=0 F�(j/n)/n is an upper sum for the integral of F�. Thus,

C0,n → E(�) as n → ∞. For the approximation methods we propose, we will take
C0,n = E(�), for any value of n.

Corollary 1. Suppose a Gerber–Dickson model (4) with MP(F�) claims is given.
For large n,

ψ(u) ≈
∞∑

k=0

Ck,n · nb(u, 1/(1 + n))(k), (58)
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where

C0,n = E(�), (59)

Ck,n = E(�)

[
k∑

i=1

fNe(i) Ck−i,n + FNe(k)

]
, k ≥ 1, (60)

fNe(i) = F�((i − 1)/n)∑∞
j=0 F�(j/n)

, i ≥ 1. (61)

For example, suppose claims have a MP(F�) distribution, where � ∼ Exp(β). In
this case, claims have a Geo(β/(1 + β)) distribution with mean value 1/β. By (28),

ψ(u) =
(

1/(1 + β)

β/(1 + β)

)u+1

= 1

βu+1 , u ≥ 0.

Observe the net profit condition implies the restriction 1/β < 1. We will check that
our approximation (58) converges to this solution as n → ∞. First, the following
is easily calculated: fNe(i) = e−iβ/n(eβ/n − 1) and FNe(k) = e−βk/n. After some
more calculations, one can obtain

Ck,n = 1

β

[
1

β
(1 − e−β/n) + e−β/n

]k

. (62)

Substituting (62) into (58) and simplifying,

ψn(u) = 1

β

(
1 − n (1 − e−β/n)/β + n (1 − e−β/n)

)−u → 1/βu+1 as n → ∞.

In the examples shown in the next section, we have numerically found that the
infinite sum (58) converges fast enough, so that a partial sum can be used without
much loss of accuracy.

5.2 Second approximation method

Our second method to approximate the ruin probability is a direct application of the
Law of Large Numbers [6].

Corollary 2. Suppose a Gerber–Dickson model (4) with MP(F�) claims is given.
Let z1, . . . , zm be a random sample of a NB(u, 1/(1 + n)) distribution. For large n

and m,

ψ(u) ≈ 1

m

m∑
i=1

Czi,n, (63)

where {Ck,n}∞k=0 is given by (59), (60) and (61).

The expression ψ(u) = P
(∑K

i=1 Y ∗
i ≥ u

)
, given in (25), produces another ap-

proximation method due to the Law of Large Numbers. This approximation method
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is well known in the classical model of Cramér–Lundberg [1, page 465], and it is
easily applied in our discrete model. Indeed, for large values of m,

ψ(u) ≈ 1

m

m∑
i=1

wi, (64)

where w1, w2, . . . , wm is a random sample generated from a random variable W such
as ψ(u) = E(W). The random variable W is defined by

W =
{

1 if
∑K

i=1 Y ∗
i ≥ u,

0 if
∑K

i=1 Y ∗
i < u.

The approximation given by (64) will be called the Pollaczeck–Khinchine method in
this work. It will be used to contrast the new methods used in the numerical examples
in section 6.

6 Numerical examples

In this section we apply the proposed approximation methods in the case when the
mixing distribution is Erlang, Pareto and Lognormal. The results obtained show that
the approximated ruin probabilities are extremely close to the exact probabilities.
The latter were calculated recursively using formulas (5) and (6). In all cases the new
approximations were calculated for u = 0, 1, 2, . . . , 10 and using the software R. For
the first proposed approximation method, n = 500 was used; for the second method,
m = 1000, i.e. 1000 values were generated from a NB(u, 1/(n+1)) distribution, and
again n = 500. The sum (58) was truncated up to the integer k∗ defined below as the
largest integer where the probability function nb(u, 1/(1 + n))(x) is still above the
arbitrary chosen small value 0.00001,

k∗ = max{x : nb(u, 1/(1 + n))(x) > 0.00001}. (65)

Hence, for x ≥ k∗ + 1 the probability function is less than or equal to 0.00001 and
we neglect those terms in the sum (58).

In order to evaluate the accuracy of the simulation approach (63), it was com-
pared with the Pollaczeck–Khinchine method (64). The latter was implemented using
10,000 simulations in each ruin probability approximation.

Erlang distribution

In this example we assume claims have a MP(F�) distribution with � ∼ Erlang(2, 3).
In this case, E(�) = 2/3. Table 1 below shows the results of the approximations.
Columns E, N1, N2 and PK show, for each value of u, the exact value of ψ(u), the
approximation with the first method, the approximation with the second method, and
the approximation with the Pollaczeck–Khinchine method, respectively. Relative er-
rors (ψ̂ − ψ)/ψ are also shown. The left-hand side plot of Figure 2 shows the values
of u against E, N1, N2 and PK. The right-hand side plot shows the values of u against
the relative errors.



240 D.J. Santana, L. Rincón

Fig. 2. Approximation when claims are MP(�) and � ∼ Erlang(2, 3)

Table 1. Ruin probability approximation for MP(F�) claims with � ∼ Erlang(2, 3)

u E N1
ψ̂−ψ

ψ N2
ψ̂−ψ

ψ PK
ψ̂−ψ

ψ

0 0.66667 0.66667 0.00000 0.66667 0.00000 0.66667 0.00000
1 0.40741 0.40775 0.00084 0.40326 −0.01019 0.4089 0.00366
2 0.24280 0.24328 0.00196 0.24551 0.01115 0.2397 −0.01276
3 0.14358 0.14401 0.00306 0.14317 −0.00282 0.1456 0.01410
4 0.08469 0.08504 0.00414 0.08647 0.02096 0.084 −0.00818
5 0.04992 0.05018 0.00521 0.05063 0.01419 0.0512 0.02566
6 0.02942 0.02960 0.00628 0.02989 0.01607 0.0311 0.05726
7 0.01733 0.01746 0.00735 0.01732 −0.00079 0.0172 −0.00763
8 0.01021 0.01030 0.00842 0.01009 −0.01208 0.0105 0.02818
9 0.00602 0.00607 0.00949 0.00586 −0.02682 0.0061 0.01379

10 0.00355 0.00358 0.01056 0.00335 −0.05468 0.0031 −0.12559

Pareto distribution

In this example claims have a MP(F�) distribution with � ∼ Pareto(3, 1). For this
distribution, E(�) = 1/2. Table 2 shows the approximations results in the same terms
as in Table 1. Figure 3 shows the results graphically.

Lognormal distribution

In this example we suppose that claims have a MP(F�) distribution with � ∼
Lognormal(−1, 1). For this distribution E(�) = e−1/2. Table 3 shows the approxi-
mations results and Figure 4 shows the related plots.

As can be seen from the tables and graphs shown, the two approximating methods
yield ruin probabilities close to the exact probabilities for the examples considered.
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Fig. 3. Approximation when claims are MP(�) and � ∼ Pareto(3, 1)

Table 2. Ruin probability approximation for MP(F�) claims with � ∼ Pareto(3, 1)

u E N1
ψ̂−ψ

ψ N2
ψ̂−ψ

ψ PK
ψ̂−ψ

ψ

0 0.50000 0.50000 0.00000 0.50000 0.00000 0.50000 0.00000
1 0.28757 0.28751 −0.00023 0.28484 −0.00950 0.29170 0.01435
2 0.18050 0.18046 −0.00022 0.18216 0.00921 0.17690 −0.01995
3 0.12014 0.12010 −0.00034 0.11960 −0.00448 0.12040 0.00215
4 0.08348 0.08344 −0.00053 0.08445 0.01159 0.08170 −0.02135
5 0.06001 0.05996 −0.00076 0.06034 0.00547 0.06080 0.01317
6 0.04437 0.04432 −0.00100 0.04450 0.00301 0.04600 0.03681
7 0.03360 0.03356 −0.00127 0.03343 −0.00528 0.03270 −0.02686
8 0.02599 0.02595 −0.00154 0.02577 −0.00865 0.02280 −0.12288
9 0.02049 0.02045 −0.00181 0.02019 −0.01467 0.02020 −0.01419

10 0.01643 0.01639 −0.00209 0.01612 −0.01858 0.01750 0.06527

7 Conclusions

We have first provided a general formula for the ultimate ruin probability in the
Gerber–Dickson risk model (4) when claims follow a negative binomial mixture
(NBM) distribution. The ruin probability is expressed as the expected value of a de-
terministic sequence {Ck}, where index k is the value of a negative binomial distribu-
tion. The sequence is not given explicitly but can be calculated recursively. We then
extended the formula for claims with a mixed Poisson (MP) distribution. The exten-
sion was possible due to the fact that MP distributions can be approximated by NBM
distributions.

The formulas obtained yielded two immediate approximation methods. These
were tested using particular examples. The numerical results showed high accuracy.
The second approximation method showed more stability than the PK method under
changes of the initial capital u.

The general results obtained in this work lead to some other questions that we
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Fig. 4. Approximation when claims are MP(�) and � ∼ Lognormal(−1, 1)

Table 3. Approximations for MP(F�) claims with � ∼ Lognormal(−1, 1)

u E N1
ψ̂−ψ

ψ
N2

ψ̂−ψ
ψ

PK
ψ̂−ψ

ψ

0 0.60653 0.60653 0.00000 0.60653 0.00000 0.60653 0.00000
1 0.38126 0.38124 −0.00005 0.37816 −0.00813 0.37960 −0.00436
2 0.25231 0.25238 0.00025 0.25426 0.00772 0.25340 0.00431
3 0.17287 0.17294 0.00042 0.17198 −0.00515 0.17520 0.01349
4 0.12128 0.12135 0.00053 0.12282 0.01264 0.12010 −0.00976
5 0.08661 0.08666 0.00060 0.08715 0.00624 0.08960 0.03456
6 0.06272 0.06276 0.00064 0.06297 0.00397 0.06280 0.00124
7 0.04597 0.04600 0.00067 0.04574 −0.00487 0.04390 −0.04498
8 0.03404 0.03406 0.00067 0.03373 −0.00914 0.03420 0.00466
9 0.02545 0.02546 0.00066 0.02502 −0.01686 0.02420 −0.04902

10 0.01919 0.01920 0.00063 0.01874 −0.02346 0.02030 0.05791

have set aside for further work: error bounds for our estimates, detailed study of
some other particular cases for NBM and MP distributions, properties and bounds for
the sequence {Ck}, and the possible extension of the ruin probability formula to more
general claim distributions.
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