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Abstract Infinite divisibility of a class of two-dimensional vectors with components in the
second Wiener chaos is studied. Necessary and sufficient conditions for infinite divisibility are
presented as well as more easily verifiable sufficient conditions. The case where both compo-
nents consist of a sum of two Gaussian squares is treated in more depth, and it is conjectured
that such vectors are infinitely divisible.
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1 Introduction

Paul Lévy raised the question of infinite divisibility of Gaussian squares, that is, for a
centered Gaussian vector (X1, . . . , Xn) when can (X2

1, . . . , X
2
n) be written as a sum

of m independent identically distributed random vectors for any m ∈ N? (See [11].)
Several authors have studied this problem. We refer to [4–8, 13, 14] and references
therein. These works include several novel approaches and give a great understanding
of when Gaussian squares are infinitely divisible. In this paper we will provide a
characterization of infinite divisibility of sums of Gaussian squares which to the best

∗Corresponding author.

© 2020 The Author(s). Published by VTeX. Open access article under the CC BY license.

www.vmsta.org

https://doi.org/10.15559/20-VMSTA160
mailto:basse@math.au.dk
mailto:jan@math.au.dk
mailto:ulrich_rohde@hotmail.com
http://www.ams.org/msc/msc2010.html?s=60E07
http://www.ams.org/msc/msc2010.html?s=60G15
http://www.ams.org/msc/msc2010.html?s=62H05
http://www.ams.org/msc/msc2010.html?s=62H10
http://creativecommons.org/licenses/by/4.0/
http://www.vmsta.org
http://www.vtex.lt/en/


268 A. Basse-O’Connor et al.

of our knowledge has not been studied in the literature except in special cases. This
problem is highly motivated by the fact that sums of Gaussian squares are usual limits
in many limit theorems in the presence of either long range dependence, see [2] or
[17], or degenerate U-statistics, see [9]. In the following we will go in more details.

Let Y be a random variable in the second (Gaussian) Wiener chaos, that is, the
closed linear span in L2 of {W(h)2 −1 : h ∈ H, ‖h‖ = 1} for a real separable Hilbert
space H and an isonormal Gaussian process W . For convenience, we assume H is
infinite-dimensional. Then there exists a sequence of independent standard Gaussian
variables (ξi) and a sequence of real numbers (αi) such that

Y
d=

∞∑
i=1

αi(ξ
2
i − 1),

where the sum converges in L2 (see for example [9, Theorem 6.1]). Since the ξi’s are
independent, (ξ2

1 , . . . , ξ2
d ) is infinitely divisible for any d ≥ 1 and therefore, Y is in-

finitely divisible. Such a sum of Gaussian squares appears as the limit of U-statistics
in the degenerate case (see [9, Corollary 11.5]). In this case the αi are certain bino-
mial coefficients times the eigenvalues of operators associated to the U-statistics. But
even though any random variable in the second Wiener chaos is infinitely divisible,
it is well known (cf. Theorem 1 below) that a vector with dimension greater than
two and components in the second Wiener chaos needs not be infinite divisibility. In
between the case of a random variable in the second Wiener chaos and the vector
case with dimension greater than two, there is the open question of infinite divisi-
bility of a two-dimensional vector with components in the second Wiener chaos. Let
(X1, . . . , Xn1+n2) be a zero mean Gaussian vector for n1, n2 ∈ N. The fact that any
two-dimensional vector in the second Wiener chaos is infinitely divisible is equivalent
to

(d1X
2
1 + · · · + dn1X

2
n1

, dn1X
2
n1+1 + · · · + dn1+n2X

2
n1+n2

) (1)

being infinitely divisible for any d1, . . . , dn1+n2 = ±1, any covariance structure of
(X1, . . . , Xn1+n2), and any n1, n2 ∈ N (something what follows by the definition of
the second Wiener chaos).

The following theorem, which is due to Griffiths [8] and Bapat [1], is an important
first result related to infinite divisibility in the second Wiener chaos. We refer to [12,
Theorem 13.2.1 and Lemma 14.9.4] for a proof.

Theorem 1 (Griffiths and Bapat). Let (X1, . . . , Xn) be a zero mean Gaussian vector
with a positive definite covariance matrix �. Then (X2

1, . . . , X
2
n) is infinitely divisible

if and only if there exists an n × n matrix U of the form diag(±1, . . . ,±1) such that
Ut�−1U has nonpositive off-diagonal elements.

This theorem resolved the question of infinite divisibility of Gaussian squares. For
n ≥ 3 there is an n × n positive definite matrix � for which there does not exist an
n×n matrix U of the form diag(±1, . . . ,±1) such that Ut�−1U has nonpositive off-
diagonal elements. Consequently, there are zero mean Gaussian vectors (X1, . . . , Xn)

such that (X2
1, . . . , X

2
n) is not infinite divisible whenever n ≥ 3.
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Eisenbaum [3] and Eisenbaum and Kaspi [5] found a connection between the
condition of Griffiths and Bapat and the Green function of a Markov process. In par-
ticular, a Gaussian process has infinite divisible squares if and only if its covariance
function (up to a constant function) can be associated with the Green function of a
strongly symmetric transient Borel right Markov process.

When discussing the infinite divisibility of the Wishart distribution, [16] showed
the following result.

Theorem 2 (Shanbhag). For any n ∈ N and any zero mean Gaussian vector (X1, . . . ,

Xn), the two-dimensional random vector (X2
1, X

2
2 + · · · + X2

n) is infinitely divisible.

Furthermore, it was found that infinite divisibility of any bivariate marginal of a
centered Wishart distribution can be reduced to infinite divisibility of (X1X2, X3X4).
By the polarization identity,

(X1X2, X3X4) = 1
4 ((X1 + X2)

2 − (X1 − X2)
2, (X3 + X4)

2 − (X3 − X4)
2).

Consequently, infinite divisibility of any bivariate marginals of a centered Wishart
distribution is again related to the question of infinite divisibility of a two-dimensional
vector from the second Wiener chaos.

Key question and contributions. The main question of the paper is: Given a zero
mean Gaussian vector (X1, . . . , Xn1+n2)

when is (X2
1 + · · · + X2

n1
, X2

n1+1 + · · · + X2
n1+n2

) infinitely divisible? (2)

The vector in (2) is (1) in the case d1 = · · · = dn1+n2 = 1. In Theorem 3 we
give a necessary and sufficient condition for infinite divisibility of the random vector
in (2); namely that (7) is satisfied for all k, l ∈ N0. Furthermore, in Theorem 4 we
give sufficient conditions for infinite divisibility of (2) in the case n1 = n2 = 2, We
conjecture that (2) is always infinitely divisible in the case n1 = n2 = 2, and in fact in
Theorem 5 we show that our necessary and sufficient condition (7) is always satisfied
for all k, l ∈ N0 with k + l ≤ 7. The general case of infinite divisibility of (1), where
di = −1 for at least one i, seems to require new ideas going beyond this paper.

Note that if (X2
1, . . . , X

2
n1+n2

) is infinitely divisible then so is the vector in (2).
Thus, under the conditions in Theorem 1, (2) is answered in the affirmative. However,
we shall see that there are cases where the vector in (2) is infinitely divisible even
though (X2

1, . . . , X
2
n1+n2

) is not, see the comment after Theorem 4. Besides, based
on our results we can give a short new proof of Shanbhag’s Theorem 2, see just
below Theorem 3.

The paper is structured as follows. In Section 2 we introduce the required nota-
tion to state our results. The main results without proofs are presented in Section 3.
Section 4 contains two examples and a small numerical discussion. We end with Sec-
tion 5 where the proofs are given.

2 Notation

In the following two subsections we will introduce the notation used for our main re-
sults on infinite divisibility of two-dimensional vectors in the second Wiener chaos (2).
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2.1 The general case n1, n2 ∈ N

Let n1, n2 ∈ N and consider a zero mean Gaussian vector (X1, . . . , Xn1+n2) with a
positive definite covariance matrix �. For a > 0, let Q = I − (I + a�)−1 and write

Q =
(

Q11 Q12
Q21 Q22

)
(3)

where Q11 is an n1 × n1 matrix, Q22 is an n2 × n2 matrix, and Q12 = Qt
21 (where

Qt
21 is the transpose of Q21) is an n1 × n2 matrix. Note that if λ is an eigenvalue of

�, aλ
1+aλ

is an eigenvalue of Q. Since Q is symmetric and has positive eigenvalues, it
is positive definite.

The following definition is a natural extension to the present setup of the termi-
nology used by [1].

Definition 1. Let n1, n2 ∈ N. An (n1 + n2) × (n1 + n2) orthogonal matrix U is said
to be an (n1, n2)-signature matrix if

U =
(

U1 0
0 U2

)

where U1 is an n1 × n1 matrix and U2 is an n2 × n2 matrix, both orthogonal, and for
0’s of suitable dimensions.

2.2 The special case n1 = n2 = 2

The following notation is only used in the special case where n1 = n2 = 2 in (2).
Consider a 2 × 2 symmetric matrix A. Let v1 and v2 be the eigenvectors of A, and
λ1 and λ2 be the corresponding eigenvalues. We say that vi is associated with the
largest eigenvalue if λi ≥ λj for j = 1, 2. Furthermore, whenever A is a multiple
of the identity matrix, we fix (1, 0) to be the eigenvector associated with the largest
eigenvalue.

Let W be a (2, 2)-signature matrix such that

WtQW =
(

Wt
1Q11W1 Wt

1Q12W2
Wt

2Q21W1 Wt
2Q22W2

)
=

⎛
⎜⎜⎝

q11 0 q13 q14
0 q22 q23 q24

q13 q23 q33 0
q14 q24 0 q44

⎞
⎟⎟⎠ , (4)

where q11 ≥ q22 > 0 and q33 ≥ q44 > 0 which exist by Lemma 2. Note that
qij is the (i, j)-th entry not of Q but of WtQW . Let (γ1, γ2) be the eigenvector of
Wt

1Q12Q21W1 associated with the largest eigenvalue. If q11 = q22 or q33 = q44, any
orthogonal W1 or W2 gives the desired form. In this case, we may always choose W1
or W2 such that γ1q13(γ1q13 + γ2q23) ≥ 0 (see the proof of Lemma 3, (ii) ⇒ (iii)),
and we fix this choice.

Write

�−1 =
(

�11 �12

�21 �22

)
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where �ij is a 2 × 2 matrix for i, j = 1, 2. Let W be a (2, 2)-signature matrix such
that

Wt�−1W =
(

Wt
1�

11W1 Wt
1�

12W2

Wt
2�

21W1 Wt
2�

22W2

)
=

⎛
⎜⎜⎝

σ11 0 σ13 σ14
0 σ22 σ23 σ24

σ13 σ23 σ33 0
σ14 σ24 0 σ44

⎞
⎟⎟⎠ (5)

where σ11 ≥ σ22 > 0 and σ33 ≥ σ44 > 0 which exist by Lemma 2. Note that σij

is the (i, j)-th entry not of �−1 but of Wt�−1W . Let (ν1, ν2) be the eigenvector of
Wt

1�
12�21W1 associated with the largest eigenvalue. If σ11 = σ22 or σ33 = σ44, any

orthogonal W1 or W2 gives the desired form. In this case, we may choose W1 or W2
such that ν2σ24(ν2σ24 + ν1σ14) ≥ 0, and we fix this choice.

3 Main results

In this section we will first consider the general case n1, n2 ∈ N in Subsection 3.1,
and thereafter, in Subsection 3.2, provide more specialized conditions for the case
n1 = n2 = 2.

3.1 The general case

The following result gives a necessary and sufficient condition for infinite divisibility
as stated in the Key question (2).

Theorem 3. Let n1, n2 ∈ N and (X1, . . . , Xn1+n2) denote a zero mean Gaussian
vector with a positive definite covariance matrix �, and let Q be defined in (3). Then

(X2
1 + · · · + X2

n1
, X2

n1+1 + · · · + X2
n1+n2

) (6)

is infinitely divisible if and only if for all k,m ∈ N0 and for all a > 0 sufficiently
large,∑

trace Q
k1
11Q12Q

m1
22 Q21Q

k2
11 · · ·Qkd

11Q12Q
md

22 Q21Q
kd+1
11

+
∑

trace Q
m1
22 Q21Q

k1
11Q12Q

m2
22 · · · Qmd−1

22 Q21Q
kd

11Q12Q
md+1
22 ≥ 0, (7)

where the first sum is over all k1, . . . , kd+1 and m1, . . . , md such that

k1 + · · · + kd+1 + d = k and m1 + · · · + md + d = m,

and the second sum is over all m1, . . . , md+1 and k1, . . . , kd such that

m1 + · · · + md+1 + d = m and k1 + · · · + kd + d = k.

Our proof of Theorem 3 relies on similar techniques used in the proof of Theo-
rem 1, namely the series expansion of the Laplace transform together with an appli-
cation of a result by Feller. By applying Theorem 3 we can give a new and simple
proof of Shanbhag’s result, Theorem 2, which states that (X2

1, X
2
2 + · · · + X2

1+n2
) is

infinitely divisible.
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Proof of Theorem 2. Consider Theorem 3 in the case n1 = 1 and n2 ∈ N. Then Q11
is a positive number and Q12Q

m
22Q21 is a nonnegative number for any m ∈ N. In

particular, we have

traceQk1
11Q12Q

m1
22 Q21 · · · Q12Q

md

22 Q21Q
kd+1
11

= Q
k1
11 · · ·Qkd+1

11 Q12Q
m1
22 Q21 · · ·Q12Q

md

22 Q21 ≥ 0

for any k1, . . . , kd+1,m1, . . . , md ∈ N0. Consequently, the first sum in (7) is a sum of
nonnegative numbers. A similar argument gives that the other sum is nonnegative, too.
We thus conclude that (X2

1, X
2
2 +· · ·+X2

1+n2
) is infinite divisible by Theorem 3.

Despite the fact that Theorem 3 implies Shanbhag’s result, in general it can be
difficult to check condition (7). The following proposition yields a sufficient condition
for infinite divisibility which might be more easy to check in some cases.

Proposition 1. Let (X1, . . . , Xn1+n2) be a zero mean Gaussian vector with a positive
definite covariance matrix �. Then

(X2
1 + · · · + X2

n1
, X2

n1+1 + · · · + X2
n1+n2

) (8)

is infinitely divisible if there exists an (n1, n2)-signature matrix U (cf. Definition 1)
such that Ut�−1U has nonpositive off-diagonal elements.

Proof. Write X = (X1, . . . , Xn1) and Y = (Xn1+1, . . . , Xn1+n2), and note that

(X2
1 + · · · + X2

n1
, X2

n1+1 + · · · + X2
n1+n2

) = (‖X‖2, ‖Y‖2)

= (‖U1X‖2, ‖U2Y‖2) (9)

for any n1×n1 orthogonal matrix U1 and n2×n2 orthogonal matrix U2. Consequently,
any property of the distribution of (8) is invariant under transformations of the form(

Ut
1 0

0 Ut
2

)
�

(
U1 0
0 U2

)

of the covariance matrix �. Therefore, when there exists an (n1, n2)-signature ma-
trix U such that Ut�−1U has nonpositive off-diagonal elements, Theorem 1 ensures
infinite divisibility of (9).

In the following subsection we will specialize our setting to obtain conditions
which are easier to apply.

3.2 The n1 = n2 = 2 case
The following theorem provides easy to check conditions for infinite divisibility of
vectors of the form (X2

1 + X2
2, X

2
3 + X2

4). By “easy to check” we mean that the con-
ditions (i) and (ii) of Theorem 4 can be explicitly calculated through a finite number
of standard matrix operations, what is opposite to the general condition (7).

Theorem 4. Let (X1, X2, X3, X4) denote a zero mean Gaussian vector with a posi-
tive definite covariance matrix �, and let qij , γi , σij and νi be defined as in Subsec-
tion 2.2. Then the vector (X2

1 + X2
2, X

2
3 + X2

4) is infinitely divisible if at least one of
the following two conditions is satisfied:
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(i) The inequality γ1q13(γ1q13 + γ2q23) ≥ 0 holds.

(ii) The inequality ν2σ24(ν2σ24 + ν1σ14) ≥ 0 holds.

Example 2, from the next section, shows that (4) of Theorem 4 holds in some
cases where (X2

1, X
2
2, X

2
3, X

2
4) is not infinitely divisible, and hence it cannot be de-

duced from a direct application of Griffiths and Bapat’s result (Theorem 1). The fol-
lowing result gives some insight to the question whether infinite divisibility of the
vector (X2

1 + X2
2, X

2
3 + X2

4) holds in general, which still remains an open problem.
The result, in particular, says that the necessary and sufficient condition (7) for in-
finitely divisibility is always satisfied whenever k and m are not too large.

Theorem 5. Consider a zero mean Gaussian vector (X1, X2, X3, X4) with a positive
definite covariance matrix �. Recall that (X2

1 +X2
2, X

2
3 +X2

4) is infinitely divisible if
and only if condition (7) is satisfied for all k,m ∈ N0. We have that (7) is satisfied for
any k,m ∈ N0 for which at least one of the following inequalities holds (i): k ≤ 2,
(ii): m ≤ 2, or (iii): k + m ≤ 7.

Remark 1. In the proof of Theorem 4 we show that the inequality γ1q13(γ1q13 +
γ2q23) ≥ 0 holds if and only if for all integers d ∈ N0, k1, . . . , kd+1 ∈ N0 and
m1, . . . , md ∈ N0 we have

trace Q
k1
11Q12Q

m1
22 Q21Q

k1
11 · · · Qkd

11Q12Q
md

22 Q21Q
kd+1
11 ≥ 0.

Hence, when γ1q13(γ1q13 + γ2q23) < 0, we know that there are k,m ∈ N0 such
that (7) with n1 = n2 = 2 contains negative terms. It is still an open problem to
decide if the positive terms will always compensate for the negative terms such that
(X2

1 +X2
2, X

2
3 +X2

4) is always infinitely divisible, or this is only the case when k and
m is small, e.g. k + m ≤ 7, cf. Theorem 5.

4 Examples and numerics

We begin this section by presenting two examples treating the inequalities in Theo-
rem 3.2 in special cases. Then we calculate the sums in (7) numerically with n1 =
n2 = 2 for a specific value of Q for k and m less than 60.

Example 1. Fix a > 0 and assume that the matrix Q = I − (I + a�)−1 is of the
form

Q =
(

Q11 Q12
Q21 Q22

)
=

⎛
⎜⎜⎝

q1 0 ε ε

0 q2 ε −δ

ε ε q3 0
ε −δ 0 q4

⎞
⎟⎟⎠

where δ, ε > 0, q1 > q2 > 0, and q3 > q4 > 0. Let γ = (γ1, γ2) be the eigenvector
of

Q12Q21 =
(

2ε2 ε(ε − δ)

ε(ε − δ) ε2 + δ2

)
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associated with the largest eigenvalue λ1. We will argue that the inequality in Theo-
rem 3.2(i), which reads

γ1(γ1 + γ2) ≥ 0 (10)

in this case, holds if and only if δ ≤ ε, and hence (X2
1 + X2

2, X
2
3 + X2

4) is infinitely
divisible whenever δ ≤ ε, cf. Theorem 3.2(i).

Since −γ also is an eigenvector of Q12Q21 associated with the largest eigenvalue,
we assume γ1 ≥ 0 without loss of generality. Assume δ ≤ ε. If δ = ε, v = (1, 0) and
the inequality in (10) holds. Assume δ < ε. Since λ1 is the largest eigenvalue,

λ1 = sup
|γ |=1

γ tQ12Q21γ ≥ 2ε2

which implies that

2ε2 − λ1 ≤ 0 ≤ ε(ε − δ).

Since γ is an eigenvector, (Q − λ1)γ = 0 and we therefore have that

0 = (2ε2 − λ1)γ1 + ε(ε − δ)γ2 ≤ ε(ε − δ)(γ1 + γ2).

We conclude that (10) holds.
On the other hand, assume δ > ε and γ1 ≥ 0. Since λ1 is the largest eigenvalue,

λ1 ≥ δ2 + ε2 > δε + ε2 and therefore

(λ1 − 2ε2) > ε(δ − ε).

Note that γ1 cannot be zero since the off-diagonal element in Q12Q21 is nonzero. We
conclude that

0 = (λ1 − 2ε2)γ1 + ε(δ − ε)γ2 > ε(δ − ε)(γ1 + γ2).

This implies that (10) does not hold.

Example 2. Assume �−1 is of the form

�−1 =
(

�11 �12

�21 �22

)
=

⎛
⎜⎜⎝

σ1 0 −δ ε

0 σ2 ε ε

−δ ε σ3 0
ε ε 0 σ4

⎞
⎟⎟⎠ (11)

where σ1 > σ2 > 0, σ3 > σ4 > 0, and δ, ε > 0. Let ν = (ν1, ν2) be the eigenvector
of �12�21 associated with the largest eigenvalue. We will argue that the inequality
in Theorem 4(ii) holds if and only if δ ≤ ε. Then the same theorem implies that
(X2

1 + X2
2, X

2
3 + X2

4) is infinitely divisible whenever δ ≤ ε. On the other hand,
Theorem 1 implies that (X2

1, X
2
2, X

2
3, X

2
4) is never infinite divisible under (11) since

there does not exist a matrix D of the form diag(±1,±1,±1,±1) such that D�−1D

has nonpositive off-diagonal elements. Indeed, for any two matrices D1 and D2 of
the form diag(±1,±1), D1�

12D2 has either three negative and one positive or one
negative and three positive entries.
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In the following we will see that the inequality in Theorem 4(ii), which reads
ν2(ν1 + ν2) ≥ 0 in this setting, holds if and only if δ ≤ ε. Let

P =
(

0 1
1 0

)

and Q12 be given as in Example 1. Then P�12P = Q12, implying that (ν2, ν1) is
the eigenvector associated with the largest eigenvalue of Q12Q21. We have argued
in Example 1 that ν2(ν1 + ν2) ≥ 0 holds if and only if δ ≤ ε, what is the desired
conclusion.

Now we investigate infinite divisibility of (X2
1 +X2

2, X
2
3 +X2

4) numerically. More
specifically, we consider the sums in (7) with n1 = n2 = 2 for a specific choice of a
positive definite matrix and different values of k and m. We will scale Q to have its
largest eigenvalue equal to one to avoid getting too close to zero. Due to Theorem 4(i)
the case where γ1q13(γ1q13 + γ2q23) < 0 (in the notation of Theorem 4) is the only
case where the question on the infinite divisibility of (X2

1 + X2
2, X

2
3 + X2

4) is open.
Let

Q = 1

λ

⎛
⎜⎜⎝

0.8 0 0.01 0.01
0 0.3 0.01 −0.2

0.01 0.01 0.8 0
0.01 −0.2 0 0.3

⎞
⎟⎟⎠

where λ > 0 is chosen such that Q has its largest eigenvalue equal to 1. Note that by
Example 1, γ1q13(γ1q13+γ2q23) < 0. In the below Figure 1 the logarithm of the sums
in (7) for k and m between 0 and 60 is plotted. It is seen that the logarithm seems stable
and hence the sums in (7) seem to remain positive in this case. A similar analysis
have been done for other positive definite matrices, and we have not encountered any
k,m ∈ N0 such that (7) is negative. This, together with Theorem 4(i), leads us to the
conjecture that (X2

1 +X2
2, X

2
3 +X2

4) is infinitely divisible for any zero mean Gaussian
vector (X1, X2, X3, X4).

5 Proofs

In this section we will prove Theorems 3, 4, and 5.

5.1 Proof of Theorem 3

The following lemma will be useful in the proof of Theorem 3. A proof can be found
in [12, Lemma 13.2.2].

Lemma 1. Let ψ : Rn+ → (0,∞) be a continuous function. Suppose that, for all
a > 0 sufficiently large, log ψ(a(1−s1), . . . , a(1−sn)) has a power series expansion
for s = (s1, . . . , sn) ∈ [0, 1]n around s = 0 with all its coefficients nonnegative,
except for the constant term. Then ψ is the Laplace transform of an infinitely divisible
random variable in R

n+.

We now give the proof of Theorem 3.
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Fig. 1. The logarithm of the sums in (7) for k and m between 0 and 60

Proof of Theorem 3. By [12, Lemma 5.2.1],

P(s1, s2)

= E exp{− 1
2a((1 − s1)(X

2
1 + · · · + X2

n1
) + (1 − s2)(X

2
n1+1 + · · · + X2

n2
))}

= 1

|I + �a(I − S)|1/2 ,

where S is the (n1 + n2) × (n1 + n2) diagonal matrix with s1 on the first n1 diagonal
entries and s2 on the remaining n2 diagonal entries. Recall that Q = I − (I +a�)−1.
Then

P(s1, s2)
2 = |I + a� − a�S|−1

= |(I − Q)−1 − ((I − Q)−1 − I )S|−1

= |I − Q||I − QS|−1,

from which it follows that

2 log P(s1, s2) = log |I − Q| − log |I − QS|

= log |I − Q| +
∞∑

n=1

trace{(QS)n}
n

, (12)

where the last equality follows from [12, p. 562]. Now assume that the vector (X2
1 +

· · · + X2
n1

, X2
n1+1 + · · · + X2

n1+n2
) is infinitely divisible, and write

(X2
1 + · · · + X2

n1
, X2

n1+1 + · · · + X2
n1+n2

)
d= Yn

1 + · · · + Yn
n
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where Yn
1 , . . . Y n

n are 2-dimensional independent identically distributed stochastic
vectors. Let Yn

ij be the j -th component of Yn
i and note that Yn

ij ≥ 0 a.s. for all i,
j , n. Then

P(s1, s2)
1/n = E exp{− 1

2a((1 − s1)Y
n
11 + (1 − s2)Y

n
12)}.

From the expression

exp{− 1
2a((1 − sj )Y

n
1j )} = exp{− 1

2aYn
1j }

∞∑
k=0

(sj aY n
1j )

k

2kk! ,

it follows that P 1/n(s1, s2) has a power series expansion with all coefficient nonneg-
ative. We have that

log P(s1, s2) = lim
n→∞(n(P 1/n(s1, s2) − 1)). (13)

Note that (s1, s2) 
→ n(P 1/n(s1, s2) − 1) and all its derivatives converge uniformly
on [0, 1) × [0, 1) by a Weierstrass M-test (see for example [15, Theorem 7.10]).
Consequently, we may use [15, Theorem 7.17] to conclude that

∂α+β

∂sα
1 ∂s

β
2

lim
n→∞(n(P 1/n(s1, s2) − 1)) = lim

n→∞
∂α+β

∂sα
1 ∂s

β
2

(n(P 1/n(s1, s2) − 1))

for any α, β ∈ N0. Thus, the fact that all the terms in the power series expansion of
P 1/n(s1, s2) are nonnegative implies that all the terms in the power series represen-
tation of log P(s1, s2) except the constant term are nonnegative by (13). By (12) we
conclude that any coefficient in front of sk

1sm
2 in trace{(QS)k+m} has to be nonnega-

tive for all k,m ∈ N and a > 0. Expanding the trace then gives that this is equivalent
to nonnegativity of the sum in (7) for all k,m ∈ N0.

On the other hand, if the sum in (7) is nonnegative for all k,m ∈ N0 and a > 0
sufficiently large, (12) and Lemma 1 imply that

(X2
1 + · · · + X2

n1
, X2

n1+1 + · · · + X2
n1+n2

)

is infinitely divisible.

5.2 Proof of Theorem 4

We start this section with two lemmas on linear algebra. Lemma 3 will be very useful
in the proofs that make up the rest of this section.

Lemma 2. Let A be an n × n positive definite matrix. Let n1, n2 ∈ N be such that
n1 + n2 = n and write

A =
(

A11 A12
A21 A22

)
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where A11 is an n1 × n1 matrix, A22 is an n2 × n2 matrix, and A12 = At
21 is an

n1 × n2 matrix. Then there exists an (n1, n2)-signature matrix W such that WtAW

has the form (
Ã11 Ã12

Ã21 Ã22

)

where Ã11 = diag(a1, . . . , an1) and Ã22 = diag(an1+1, . . . , an1+n2) with ai > 0 for
i = 1, . . . , n1 +n2, and where Ã12 = Ãt

21. Furthermore, we may choose W such that
a1 ≥ a2 ≥ · · · ≥ an1 and an1+1 ≥ an1+2 ≥ · · · ≥ an1+n2 .

Proof. Since A is positive definite, A11 and A22 are positive definite. Consequently,
by the spectral theorem (see for example [10, Corollary 6.4.7]), there exist an n1 ×n1
matrix W1 and an n2 × n2 matrix W2, both orthogonal, such that Wt

1A11W1 and
Wt

2A22W2 are diagonal with positive diagonal entries. Since permutation matrices
are orthogonal matrices, we may assume the diagonal is ordered by size in both
Wt

1A11W1 and Wt
2A22W2. Consequently, letting

W =
(

W1 0
0 W2

)
,

implies that WtAW has the right form.

For a fixed eigenvector vi we will say that the system Avi = λivi is the system of
eigenequations. The k-th equation in this system will be called the k-th eigenequation
associated with vi . Let A be a 4 × 4 positive definite matrix, and let W be a (2, 2)-
signature such that

WtAW =
(

Wt
1A11W1 Wt

1A12W2
Wt

2A21W1 Wt
2A22W2

)
=

⎛
⎜⎜⎝

a11 0 a13 a14
0 a22 a23 a24

a13 a23 a33 0
a14 a24 0 a44

⎞
⎟⎟⎠ ,

where a11 ≥ a22 > 0 and a33 ≥ a44 > 0 which exist by Lemma 2. Note that aij

is the (i, j)-th entry not of A but of WtAW . Let v1 = (v11, v21) be the eigenvector
associated with the largest eigenvalue of Wt

1A12A21W1. If a11 = a22 or a33 = a44,
any orthogonal W1 or W2 give the desired form. In this case, we may choose W1 or
W2 such that v11a13(v11a13 + v21a23) ≥ 0, and we fix this choice. Then the lemma
below will play a central role in the proofs of the previously stated results.

Lemma 3. In the notation above, the following are equivalent.

(i) There exists a (2, 2)-signature matrix U such that UtAU has all entries non-
negative.

(ii) For any d ∈ N and k1, . . . , kd+1,m1, . . . md ∈ N0,

trace A
k1
11A12A

m1
22 A21A

k2
11 · · · Akd

11A12A
md

22 A21A
kd+1
11 ≥ 0.

(iii) The inequality v11a13(v11a13 + v21a23) ≥ 0 holds.
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Proof. (i) ⇒ (ii). Let

U =
(

U1 0
0 U2

)

be such that Bij = Ut
i AijUj has nonnegative entries for i, j = 1, 2. Then

traceAk0
11A12A

m1
22 A21A

k1
11 · · ·Akd−1

11 A12A
md

22 A21A
kd

11

= trace B
k0
11B12B

m1
22 B21B

k1
11 · · ·Bkd−1

11 B12B
md

22 B21B
kd

11 .

This trace is nonnegative since all matrices in the product only contain nonnegative
entries.

(ii) ⇒ (iii). By the spectral theorem, we may write Wt
1A12A21W1 = V �V t where

V is a 2×2 orthogonal matrix and � = diag(λ1, λ2) with λ1 ≥ λ2 ≥ 0. Note that v1,
the eigenvector associated with the largest eigenvalue of Wt

1A12A21W1, is the first
column of V . If λ1 = λ2, v1 = (1, 0) and the inequality holds. If a11 = a22 or
a33 = a44, Wt

1A11W1 = A11 or Wt
2A22W2 = A22, and choosing W1 or W2 such that

a23 = 0 then ensures that the inequality in (iii) holds.
Assume now that λ1 > λ2, a11 > a22, and a33 > a44. It follows by assumption

that

0 ≤ 1

ak
11

1

ak
33

1

λk
1

trace Ak
11A12A

k
22A21(A12A21)

k

= trace

(
1 0
0 ( a22

a11
)k

)
Wt

1A12W2

(
1 0
0 ( a44

a33
)k

)
Wt

2A21W1V

(
1 0
0 ( λ1

λ2
)k

)
V t

→ trace

(
1 0
0 0

)
Wt

1A12W2

(
1 0
0 0

)
Wt

2A21W1V

(
1 0
0 0

)
V t

as k → ∞. This gives the inequality in (iii) since

trace

(
1 0
0 0

)
Wt

1A12W2

(
1 0
0 0

)
Wt

2A21W1V

(
1 0
0 0

)
V t

= v11a13(v11a13 + v21a23).

(iii) ⇒ (i). To ease the notation and without loss of generality assume that W = I .
We are then pursuing two 2 × 2 orthogonal matrices U1 and U2 such that Ut

1A11U1,
Ut

1A12U2, and Ut
2A22U2 all have nonnegative entries. Initially consider D1 and D2 of

the form diag(±1,±1). Then clearly, D1A11D1 = A11 and D2A22D2 = A22 since
A11 and A22 are diagonal matrices. Next, note that it is possible to find D1 and D2
such that either D1A12D2 has all entries nonnegative or

D1A12D2 =
(

a13 a14
a23 −a24

)
(14)

where a13, a23, a14, a24 > 0. Consequently, we will assume A12 is of the form in (14)
since otherwise choosing U1 = D1 and U2 = D2 would be sufficient.
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As one of two cases, assume a13a23 − a14a24 ≥ 0, and define

U2 =
(

α a14a24
a23

βa23

αa14 −βa24

)

where α, β > 0 are chosen such that each column in U2 has norm one. Then U2 is
orthogonal,

A12U2 =
(

α(a2
14 + a13a14a24

a23
) β(a13a23 − a14a24)

0 β(a2
23 + a2

24)

)
,

and

Ut
2A22U2 =

⎛
⎝α2

(
a33

(
a14a24

a23

)2 + a44a
2
14

)
αβa14a24(a33 − a44)

αβa14a24(a33 − a44) β2a2
23 + β2a2

24

⎞
⎠ .

Since a33 ≥ a44, all entries in A12U2 and Ut
2A22U2 are nonnegative. Choosing U1 =

I then gives a pair of orthogonal matrices with the desired property.
Now assume a13a23 − a14a24 < 0. Note that A12 of the form (14) cannot be

singular and consequently, there exist λ1 ≥ λ2 > 0 and an orthogonal matrix V such
that A12A21 = V �V t , where � = diag(λ1, λ2). Furthermore, since V contains the
eigenvectors of A12A21 we may assume v11 and v12 have the same sign where vij is
the (i, j)-th component of V . Define

W = A21V (�1/2)−1, (15)

and note that this is an orthogonal matrix which, together with V , decomposes A12
into its singular value decomposition, that is, V tA12W = �1/2. Then

V tA11V =
(

a11v
2
11 + a22v

2
21 v11v12(a11 − a22)

v11v12(a11 − a22) a11v
2
12 + a22v

2
22

)
.

All entries in V tA11V are nonnegative since we chose v11 and v12 to have the same
sign, and since a11 ≥ a22 > 0.

To see that WtA22W also have all entries nonnegative, consider the first line in the
eigenequations for A12A21 associated with the eigenvector (v12, v22), the eigenvector
associated with the smallest eigenvalue λ2,

(a2
13 + a2

14 − λ2)v12 + (a13a23 − a14a24)v22 = 0. (16)

Since λ2 is the smallest eigenvalue of A12A21,

λ2 = inf|v|=1
vtA12A21v,

and since the off-diagonal elements in A12A21 are nonzero, (1, 0) and (0, 1) cannot
be eigenvectors. Consequently, λ2 is strictly smaller than any diagonal element of
A12A21, and in particular a2

13+a2
14−λ2 > 0. Since we also have a13a23−a14a24 < 0,
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(16) gives that v12 and v22 need to have the same sign for the sum to equal zero. Let
wij be the (i, j)-th component of W and note that by (15),

w11w12 = v11a13 + v21a23

λ
1/2
1

v12a13 + v22a23

λ
1/2
2

.

The assumption v11a13(v11a13 + v21a23) ≥ 0 implies that v11a13 + v21a23 and v11
have the same sign. Since v11 and v12 were chosen to have the same sign, and v12
and v22 have the same sign, we conclude that (v11a13 + v21a23)(v12a13 + v22a23) is
nonnegative and, therefore, w11w12 is nonnegative, too. Then writing

WtA22W =
(

a33w
2
11 + a44w

2
21 w11w12(a33 − a44)

w11w12(a33 − a44) a33w
2
12 + a44w

2
22

)

makes it clear that WtA22W has nonnegative elements. Thus, letting U1 = V and
U2 = W completes the proof.

Corollary 1. Let A and v1 be given as in Lemma 3. Then there exists a (2, 2)-
signature matrix U such that UtAU has nonpositive off-diagonal elements if and
only if

v21a24(v21a24 + v11a14) ≥ 0. (17)

Proof. Let W be defined as in Lemma 3. Define

P1 =
(

0 1
1 0

)
and P =

(
P1 0
0 P1

)
.

Then P1v1 = (v21, v11) is the eigenvector of P1W
t
1A12A21W1P1 associated with the

largest eigenvalue. Let

Ã =
(

Wt
1A11W1 P1W

t
1A12W2P1

P1W
t
2A21W1P1 Wt

2A22W2

)
=

⎛
⎜⎜⎝

a11 0 a24 a23
0 a22 a14 a13

a24 a14 a33 0
a23 a13 0 a44

⎞
⎟⎟⎠ .

By Lemma 3, there exists a (2, 2)-signature matrix

Ũ =
(

Ũ1 0
0 Ũ2

)

such that Ũ t ÃŨ has nonnegative entries if and only if v21a24(v21a24 + v11a14) ≥ 0.
Define now the (2, 2)-signature matrix U as

U =
(

U1 0
0 U2

)
=

(−W1P1Ũ1 0
0 W2P1Ũ2

)
.

Let ũij be the (i, j)-th component of Ũ1. Since Ũ1 is orthogonal, ũ12ũ22 = −ũ11ũ21
implying that

Ut
1A11U1 =

(
ũ2

11a22 + ũ2
21a11 ũ11ũ12(a22 − a11)

ũ11ũ12(a22 − a11) ũ2
12a22 + ũ2

22a11

)
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and

Ũ t
1W

t
1A11W1Ũ1 =

(
ũ2

11a11 + ũ2
21a22 ũ11ũ12(a11 − a22)

ũ11ũ12(a11 − a22) ũ2
12a11 + ũ2

22a22

)
.

Consequently Ũ t
1W

t
1A11W1Ũ1 has nonnegative elements if and only if Ut

1A11U1 has
nonpositive off-diagonal elements. Similarly, Ũ t

2W
t
2A22W2Ũ2 has nonnegative ele-

ments if and only if Ut
2A22U2 has nonpositive off-diagonal elements by a similar

argument. Finally we note that

Ut
1A12U2 = −Ũ t

1P1W
t
1A12W2P1Ũ2,

and it follows that UtAU has nonpositive off-diagonal elements if and only if

Ũ t
1P1W

t
1A12W2P1Ũ2, Ũ t

1W
t
1A11W1Ũ1 and, Ũ t

2W2A22W2Ũ2

have all entries nonnegative. We conclude that we can find a (2, 2)-signature matrix
U such that UtAU has nonpositive off-diagonal element if and only if (17) holds.

Proof of Theorem 4. To prove (i) set Q = I − (I − a�)−1 for sufficiently large
a > 0. The implication (iii)⇒ (ii) of Lemma 3 used on A = Q, together with
Theorem 3, show that (i) implies infinite divisibility of (X2

1 + X2
2, X

2
3 + X2

4). To
prove (ii) we use Corollary 1 on A = �−1, which together with Proposition 1, show
that (ii) implies infinite divisibility of (X2

1 + X2
2, X

2
3 + X2

4).

5.3 Proof of Theorem 5

Now we set out to show that the sum in Theorem 3 is nonnegative for k,m ∈ N0 such
that k ≤ 2, m ≤ 2, or k + m ≤ 7 in the case n1 = n2 = 2. To this end, consider a
4 × 4 positive definite matrix Q and write

Q =
(

Q11 Q12
Q21 Q22

)

where Qij is a 2 × 2 matrix for i, j = 1, 2. Let W1 and W2 be two 2 × 2 orthogonal
matrices and define Pij = WiQijWj . Then

trace Q
k1
11Q12Q

m1
22 Q21 · · · Q12Q

md

22 Q21Q
kd+1
11

= trace P
k1
11 P12P

m1
22 P21 · · ·P12P

md

22 P21P
kd+1
11 . (18)

Consequently (see Lemma 2), we may assume, without loss of generality, that Q11
and Q22 are diagonal with the first diagonal element greater than or equal to the other
and all entries nonnegative.

There exist D1 and D2 of the form diag(±1,±1) such that either D1Q12D2 has
all entries nonnegative or such that

D1Q12D2 =
(

q13 q23
q14 −q24

)
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where q13, q23, q14, q24 > 0. If D1Q12D2 has all entries nonnegative, writing as
in (18) with Wi replaced by Di implies nonnegativity of each individual trace. We
conclude that we may assume

Q =

⎛
⎜⎜⎝

λ1 0 q13 q14
0 λ2 q23 −q24

q13 q23 λ3 0
q14 −q24 0 λ4

⎞
⎟⎟⎠ ,

where λ1 ≥ λ2 ≥ 0 and λ3 ≥ λ4 ≥ 0 and q13, q23, q14, q24 > 0, without loss of
generality.

We now write out the traces in (7) for specific values of k and m and show non-
negativity in each case.

k = 0 or m = 0
Assume k = 0 and fix some m ∈ N. Then the terms in the sum in Theorem 3 reduce
to trace Qm

22. Since Q22 is positive definite, Qm
22 is positive definite. Consequently,

trace Qm
22 > 0. Similarly, when m = 0 and k ∈ N, the terms in the sum in Theorem 3

reduce to trace Qk
11, which again is positive since Q11 is positive definite.

k = 1 or m = 1
Assume k = 1 and fix some m ∈ N. Then (7) reduces to

trace Q12Q
m
22Q21 +

m−1∑
m1=0

trace Q
m1
22 Q21Q12Q

m−1−m1
22 ,

which equals

(m + 1) trace Q12Q
m
22Q21.

Since Q12 = Qt
21 and Q22 is positive definite, Q12Q

m
22Q21 is positive semidefinite.

We conclude that trace Q12Q
m
22Q21 ≥ 0.

Assume m = 1 and fix some k ∈ N. Similar to above, (7) reduces to

trace Q21Q
k
11Q12 +

k−1∑
k1=0

trace Q
k1
11Q12Q21Q

k−1−k1
11 .

Nonnegativity of this trace follows by arguments similar to those above.

k = 2 or m = 2
Assume that k = 2 and let m ∈ N. The case m = 1 is discussed above. Assume
m ≥ 2. Then (7) reduces to

trace Q11Q12Q
m−1
22 Q21

+
∑

m1+m2+1=m

trace Q
m1
22 Q21Q11Q12Q

m2
22
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+
∑

m1+m2+2=m

trace Q12Q
m1
22 Q21Q12Q

m2
22 Q21

+
∑

m1+m2+m3+2=m

trace Q
m1
22 Q21Q12Q

m2
22 Q21Q12Q

m3
22 .

All the traces above are nonnegative. To see this, consider for example

trace Q
m1
22 Q21Q12Q

m2
22 Q21Q12Q

m3
22

for some m1,m2,m3 ∈ N0. Since Q22 is positive definite it has a unique positive
definite square root Q

1/2
22 . We conclude that

trace Q
m1
22 Q21Q12Q

m2
22 Q21Q12Q

m3
22

= trace Q
(m1+m3)/2
22 Q21Q12Q

m2
22 Q21Q12Q

(m1+m3)/2
22 . (19)

Note that

Q
(m1+m3)/2
22 Q21Q12 = (Q21Q12Q

(m1+m3)/2
22 )t ,

which implies that (19) is the trace of a positive semidefinite matrix and therefore
nonnegative.

Nonnegativity of the traces when m = 2 and k ∈ N follows by symmetry.

k = 3 and m = 3
In the following we will need to expand traces, and we therefore note that

trace Qk
11Q12Q

m
22Q21 = λk

1λ
m
3 q2

13 + λk
1λ

m
4 q2

14 + λk
2λ

m
3 q2

23 + λk
2λ

m
4 q2

24 (20)

for any k,m ∈ N, and

trace Q
k1
11Q12Q

m1
22 Q21Q

k2
11Q12Q

m2
22 Q21

= λ
k1+k2
1 λ

m1+m2
3 q4

13 + λ
k1+k2
1 λ

m1+m2
4 q4

14

+ λ
k1+k2
2 λ

m1+m2
3 q4

23 + λ
k1+k2
2 λ

m1+m2
4 q4

24

+ λ
k1+k2
1 (λ

m1
3 λ

m2
4 + λ

m1
4 λ

m2
3 )q2

13q
2
14

+ λ
k1+k2
2 (λ

m1
3 λ

m2
4 + λ

m2
3 λ

m1
4 )q2

23q
2
24

+ λ
m1+m2
3 (λ

k1
1 λ

k2
2 + λ

k2
1 λ

k1
2 )q2

13q
2
23

+ λ
m1+m2
4 (λ

k1
1 λ

k2
2 + λ

k2
1 λ

k1
2 )q2

14q
2
24

− (λ
k1
1 λ

k2
2 + λ

k2
1 λ

k1
2 )(λ

m1
3 λ

m2
4 + λ

m2
3 λ

m1
4 )q13q23q14q24 (21)

for any k1, k2,m1,m2 ∈ N.
Assume now k = 3 and m = 3 and consider the sum in Theorem 3. The sum

contains all terms of the form

trace Q
k1
11Q12Q

2
22Q21Q

k2
11
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where k1 + k2 = 2 and

trace Q
m1
22 Q21Q

2
11Q12Q

m2
22

where m1 + m2 = 2. All these traces equal

trace Q2
11Q12Q

2
22Q21,

and there are alltogether 6 of these terms. Next, the sum in Theorem 3 also contains
all terms of the form

trace Q
k1
11Q12Q

m1
22 Q21Q

k2
11Q12Q

m2
22 Q21Q

k3
11

where k1 + k2 + k3 = 1 and m1 + m2 = 1, and

trace Q
m1
22 Q21Q

k1
11Q12Q

m2
22 Q21Q

k2
11Q12Q

m3
22

where m1 + m2 + m3 = 1 and k1 + k2 = 1. Using both that trace AB = trace BA

and trace At = trace A for any two square matrices A and B of the same dimensions
we get that all these traces share the common trace

trace Q11Q12Q21Q12Q22Q21.

Alltogether there are 12 of these terms. Finally, the sum in Theorem 3 contains the
two terms

trace(Q12Q21)
3 and trace(Q21Q12)

3,

which share a common trace. We conclude that the sum in Theorem 3 reads

trace {6Q2
11Q12Q

2
22Q21 + 12Q11Q12Q21Q12Q22Q21 + 2(Q12Q21)

3}. (22)

Since Q12 = Qt
21, the matrix Q12Q21 is positive semidefinite and consequently,

trace(Q12Q21)
3 ≥ 0. Furthermore, we have

trace Q2
11Q12Q

2
22Q21 = trace Q11Q12Q

2
22Q21Q11 ≥ 0.

Contrarily, there exists a positive definite matrix Q such that

trace Q11Q12Q21Q12Q22Q21 < 0.

(To see this, consider Q of the form in Example 1 with ε small and δ large relative
to ε.) We will now argue that despite this, (22) remains nonnegative. Initially we note
that

Q
ki

11Q12Q
mi

22 Q21 =
(

λ
ki

1 (λ
mi

3 q2
13 + λ

mi

4 q2
14) λ

ki

1 (λ
mi

3 q13q23 − λ
mi

4 q14q24)

λ
ki

2 (λ
mi

3 q13q23 − λ
mi

4 q14q24) λ
ki

2 (λ
mi

3 q2
23 + λ

mi

4 q2
24)

)

and
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Q
mi

22 Q21Q
ki

11Q12 =
(

λ
mi

3 (λ
ki

1 q2
13 + λ

ki

2 q2
23) λ

mi

3 (λ
ki

1 q13q14 − λ
ki

2 q23q24)

λ
mi

4 (λ
ki

1 q13q14 − λ
ki

2 q23q24) λ
mi

4 (λ
ki

1 q2
14 + λ

ki

2 q2
24)

)
.

Since λ1 ≥ λ2 and λ3 ≥ λ4, we see that if q13q14 ≥ q23q24 or q13q23 ≥ q14q24,
then one of two matrices above have only nonnegative entrances for any ki,mi ∈ N0.
Consequently,

trace Q
k1
11Q12Q

m1
22 Q21Q

k2
11Q12Q

m2
22 Q21 = trace Q

m1
22 Q21Q

k1
11Q12Q

m2
22 Q21Q

k2
11Q12

would be nonnegative if this was the case. Especially, we would have

trace Q11Q12Q21Q12Q22Q21 ≥ 0.

Assume now that q13q14 ≤ q23q24 and q13q23 ≤ q14q24. By (20) and (21),

trace { 1
2Q2

11Q12Q
2
22Q21 + Q11Q12Q22Q21Q12Q21}

= 1
2λ2

1λ
2
3q

2
13 + 1

2λ2
1λ

2
4q

2
14 + 1

2λ2
2λ

2
3q

2
23 + 1

2λ2
2λ

2
4q

2
24

+ λ1λ3q
4
13 + λ1λ4q

4
14 + λ2λ3q

4
23 + λ2λ4q

4
24

+ λ1(λ3 + λ4)q
2
13q

2
14 + λ2(λ3 + λ4)q

2
23q

2
24

+ λ3(λ1 + λ2)q
2
13q

2
23 + λ4(λ1 + λ2)q

2
14q

2
24

− (λ1 + λ2)(λ3 + λ4)q13q23q14q24. (23)

We are going to bound the term (λ1 +λ2)(λ3 +λ4)q13q23q14q24 by the positive terms
to show nonnegativity of this trace. We recall that λ1 ≥ λ2 > 0 and λ3 ≥ λ4 > 0.
Initially, note that

λ2λ3q13q23q14q24 ≤ λ2λ3q
2
13q

2
23

λ2λ4q13q23q14q24 ≤ λ1λ4q
2
13q

2
14

λ1λ4q13q23q14q24 ≤ λ1λ3q
2
13q

2
14.

This leaves only λ1λ3q13q23q14q24 to be bounded. If λ1λ3q13q23q14q24 ≤ 1
2λ2

1λ
2
3q

2
13,

we have a bounding term in (23). Therefore, assume 2q23q14q24 ≥ λ1λ3q13. Since Q

was assumed positive definite, λ2λ4 ≥ q2
24. Consequently,

λ1λ3q13q23q14q24 ≤ 2q2
23q

2
14q

2
24

≤ 2λ2λ4q
2
23q

2
13

≤ λ2λ4(q
4
23 + q4

13)

≤ λ2λ3q
4
23 + λ1λ3q

4
13.

We conclude that (23) and hence (22) is nonnegative.

k + m = 7
Now consider k,m ∈ N such that k + m = 7. Whenever k,m = 1, 2, we already
know that the sum in Theorem 3 is nonnegative. Let k = 3 and m = 4. Then the sum
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in Theorem 3 reads

trace {14Q11Q12Q21Q12Q
2
22Q21 + 7Q2

11Q12Q
3
22Q21

7Q11(Q12Q22Q21)
2 + 7Q12Q22Q21(Q12Q21)

2}. (24)

Initially we note that

trace Q11(Q12Q22Q21)
2 ≥ 0 and trace Q12Q22Q21(Q12Q21)

2 ≥ 0

since they both can be written as the trace of positive semidefinite matrices (see above
for more details). Next, by (20) and (21),

trace { 1
2Q2

11Q12Q
3
22Q21 + Q11Q12Q

2
22Q21Q12Q21}

= 1
2λ2

1λ
3
3q

2
13 + 1

2λ2
1λ

3
4q

2
14 + 1

2λ2
2λ

3
3q

2
23 + 1

2λ2
2λ

3
4q

2
24

+ λ1(λ
2
3 + λ2

4)q
2
13q

2
14 + λ2(λ

2
3 + λ2

4)q
2
23q

2
24

+ λ2
3(λ1 + λ2)q

2
13q

2
23 + λ2

4(λ1 + λ2)q
2
14q

2
24

+ λ1λ
2
3q

4
13 + λ1λ

2
4q

4
14 + λ2λ

2
3q

4
23 + λ2λ

2
4q

4
24

− (λ1 + λ2)(λ
2
3 + λ2

4)q13q23q14q24. (25)

Again we bound the negative term by positive terms. Recall that λ1 ≥ λ2 and λ3 ≥ λ4,
and that we may assume q23q24 ≥ q13q14 and q14q24 ≥ q13q23 without loss of
generality. Consequently,

λ1λ
2
4q13q23q14q24 ≤ λ1λ

2
4q

2
14q

2
24

λ2λ
2
3q13q23q14q24 ≤ λ2λ

2
3q

2
23q

2
24

λ2λ
2
4q13q23q14q24 ≤ λ2λ

2
4q

2
14q

2
24,

leaving λ1λ
2
3q13q23q14q24 to be bounded. First note that

1
2λ2

1λ
3
3q

2
13 − λ1λ

2
3q13q23q14q24 = λ1λ

2
3q13(

1
2λ1λ3q13 − q23q14q24),

so that nonnegativity holds if 1
2λ1λ3q13 ≥ q23q14q24. Assume λ1λ3q13 ≤ 2q23q14q24

and recall that λ2λ4 ≥ q2
24 since Q is positive definite. Then

λ1λ
2
3q13q23q14q24 ≤ 2λ3q

2
23q

2
14q

2
24

≤ 2λ2λ3λ4q
2
23q

2
14

≤ λ2λ
2
3q

4
23 + λ2λ

2
4q

4
14

≤ λ2λ
2
3q

4
23 + λ1λ

2
4q

4
14

so we have found bounding terms for the last expression. We conclude that (25)
is nonnegative and therefore, (24) is nonnegative, too. The case k = 4 and m =
3 follows by symmetry. It follows that the sum in Theorem 3 is nonnegative for
k + m = 7.
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