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Abstract The aim of this paper is to study the laws of exponential functionals of the processes
X = (Xs)s≥0 with independent increments, namely

It =
∫ t

0
exp(−Xs)ds, t ≥ 0,

and also

I∞ =
∫ ∞

0
exp(−Xs)ds.

Under suitable conditions, the integro-differential equations for the density of It and I∞ are
derived. Sufficient conditions are derived for the existence of a smooth density of the laws of
these functionals with respect to the Lebesgue measure. In the particular case of Lévy processes
these equations can be simplified and, in a number of cases, solved explicitly.

Keywords Process with independent increments, exponential functional, Kolmogorov-type
equation, smoothness of the density
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1 Introduction

This study was inspired by the questions arising in mathematical finance, namely by
the questions related to perpetuities containing the liabilities, perpetuities subjected
to the influence of economical factors (see, for example, Kardaras, Robertson [23]),
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and also with the price of Asian options and similar questions (see, for instance, Jean-
blanc, Yor, Chesnay [21], Vecer [38] and references there). The study of exponential
functionals is also important in the insurance, since the distributions of these func-
tionals appear very naturally in the ruin problem (see, for example, Asmussen [2],
Paulsen [29], Kabanov, Pergamentshchikov [22], Spielmann, Vostrikova [37] and the
references there).

In mathematical finance exponential functionals of the processes with indepen-
dent increments (PII in short; in what follows, this abbreviation will also denote the
property of being a process with independent increments) arise very often1. This fact
is related to the observation that log price is usually not a homogeneous process on a
relatively long time interval. For this reason several authors used for the modeling of
log price the process X = (Xt )t≥0 such that

Xt =
∫ t

0
gs−dLs

where L is a Lévy process and g is a càdlàg random process independent of L for
which the integral is well defined. In this case, the conditioned process given σ -
algebra generated by g, is a PII. Another important example of X is a Lévy process L

with time changed by an independent increasing process (τt )t≥0 (cf. Carr, Wu [16]),
i.e.

Xt = Lτt .

Again, conditionally to the process τ , the process X = (Xt )t≥0 is PII.
In Salminen, Vostrikova [31, 32] we proved the recurrent formulas for the Mellin

transform and we used these formulas to calculate the moments of exponential func-
tionals of the processes with independent increments. In this paper we obtain the
equations for the densities, when they exist, of the laws of exponential functionals

It =
∫ t

0
exp(−Xs)ds, t ≥ 0, (1)

and also

I∞ =
∫ ∞

0
exp(−Xs)ds,

where the process X = (Xt )t≥0 is PII. It is not difficult to see that under the condition

lim
s→+∞

Xs

s
= μ > 0 (P-a.s.)

we have I∞ < +∞ (P-a.s.). As it was shown in Bertoin, Yor [10], this condition is
necessary and sufficient in the case of Lévy processes.

Exponential functionals of Lévy processes were studied in a large number of ar-
ticles, most of them were related to the study of I∞. In the celebrated paper by Car-
mona, Petit, Yor [15] the asymptotic behaviour of exponential functionals I∞ was
studied, in particular for α-stable Lévy processes. The authors also gave an integro-

1See for example the book of E. Eberlein and J. Kallsen Mathematical finance , Springer 2019, and
references there.
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differential equation for the density of the law of exponential functionals, when this
density exists w.r.t. the Lebesgue measure. The questions related to the characteriza-
tion of the law of exponential functionals by the moments were studied by Bertoin,
Yor in [10].

In a more general setting, related to the Lévy case, the functional

I∞(η) =
∫ ∞

0
exp(−Xs−)dηs, (2)

where X = (Xt )t≥0 and η = (ηt )t≥0 are independent Lévy processes, was inten-
sively studied. The conditions for finiteness of the integral (2) were obtained in Er-
ickson, Maller [18]. The continuity properties of the law of this integral were studied
in Bertoin, Lindner, Maller [9], where the authors gave the conditions for absence of
atoms and also the conditions for absolute continuity of laws of integral functionals
w.r.t. the Lebesgue measure. The question of smoothness of the density of the law of
I∞ in the Schwarz sense was considered in Carmona, Petit, Yor [15] and Bertoin, Yor
[10]. Under the assumptions on the existence of smooth density of these functionals,
the equations for the density are given in Carmona, Petit, Yor [15], Bertoin, Yor [10],
Behme [4], Behme, Lindner [5], Kuznetsov, Pardo, Savov [24].

In the papers by Patie, Savov [28], Pardo, Rivero, Van Shaik [27], again for a
Lévy process, the properties of exponential functionals Iτq (η) killed at an indepen-
dent exponential time τq of the parameter q > 0, were investigated. In the article
[27] the authors studied the existence of the density of the law of Iτq (η), they gave an
integral equation for the density and the asymptotics of the law of I∞(η) at zero and
at infinity, when X is a positive subordinator. The results given in [28] involve the an-
alytic Wiener–Hopf factorisation, Bernstein functions and contain the conditions for
regularity, semi-explicite expression and asymptotics for the distribution function of
Iτq (η). In Behme, Lindner, Reker, Rivero [6], Behme, Lindner, Reker [7] the authors
give sufficient conditions for absolute continuity of the laws of Iτq (η) as well as the
sufficient conditions for the absolute continuity of the laws of It (η) and I∞(η).

Despite numerous studies, the distributions of It (η) and I∞(η) are known only in
a limited number of cases. When X is a Brownian motion with drift, the distributions
of It and I∞ were studied in Dufresne [17] and for a large number of specific pro-
cesses X and η, like a Brownian motion with drift and a compound Poisson process,
the distributions of I∞(η) were given in Gjessing, Paulsen [19].

The exponential functionals for diffusions stopped at the first hitting time were
studied in Salminen, Wallin [30], where authors derive the Laplace transform of the
functionals and then, to find their laws, perform numerical inversion of the Laplace
transform. The relations between hitting times and occupation times for the exponen-
tial functionals were considered in Salminen, Yor [33], where the versions of identi-
ties in law such as Dufresne’s identity, Ciesielski–Taylor’s identity, Biane’s identity,
LeGall’s identity were given.

In this article we consider a real-valued process X = (Xt )t≥0 with independent
increments and X0 = 0, which is a semimartingale with respect to its natural fil-
tration. We denote by (B,C, ν) a semimartingale triplet of this process, which can
be chosen to be deterministic (see Jacod, Shiryaev [20], Ch. II, p.106). We suppose
that B = (Bt )t≥0, C = (Ct )t≥0 and ν are absolutely continuous with respect to the
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Lebesgue measure, i.e.

Bt =
∫ t

0
bs ds, Ct =

∫ t

0
cs ds, ν(dt, dx) = dtKt (dx) (3)

with càdlàg functions b = (bs)s≥0, c = (cs)s≥0, K = (Ks(A))s≥0,A∈B(R). We as-
sume that the compensator of the measure of jumps ν verifies the usual relation: for
each t ∈ R

+ ∫ t

0

∫
R

(x2 ∧ 1)Ks(dx) ds < +∞. (4)

For the main result we will assume an additional technical condition:∫ t

0

∫
|x|>1

e|x| Ks(dx) ds < +∞. (5)

The last condition implies that E(|Xt |) < +∞ for t > 0 (cf. Sato [34], Th. 25.3,
p.159) so the truncation of jumps is no more necessary.

We recall that the characteristic function of Xt ,

φt (λ) = E exp(iλXt ),

is expressed as follows: for λ ∈ R

φt (λ) = exp{iλBt − 1

2
λ2Ct +

∫ t

0

∫
R

(eiλx − 1 − iλx)Ks(dx) ds}.

We recall also that X is a semimartingale if and only if for all λ ∈ R the characteristic
function of Xt is of finite variation in t on finite intervals (cf. Jacod, Shiryaev [20],
Ch.2, Th. 4.14, p.106). Moreover, the process X always can be written as a sum
of a semimartingale and a deterministic function which is not necessarily of finite
variation on finite intervals.

The article is organized as follows. Part 2 is devoted to the Kolmogorov type
equation for the law of It . It is known that the exponential functional (It )t>0 is not
a Markov process with respect to the filtration generated by the process X. It is a
continuous increasing process, what prevents the use of stochastic calculus in an ef-
ficient way. For these reasons we fix t and introduce a family of stochastic processes
V (t) = (V

(t)
s )0≤s≤t indexed by t and such that It = V

(t)
t (P -a.s.) (see Lemma 1). The

construction of such processes is made via the time reversion of the process X at a
fixed time t and gives a Generalised Ornstein-Uhlenbeck process process with a PII
noise (GOU process in short). We give the Kolmogorov type equations for V (t) (see
Theorem 1). Assuming the existence of the smooth density of the law of the process
V (t) we derive the integro-differential equation for the density of the laws of V

(t)
s , 0 <

s < t . The density of the law of V
(t)
t can be obtained just by integration of the right-

hand side of the equation for the density of the law of V
(t)
s in s on the interval ]0, t[.

In Part 3 we consider the question of existence of the smooth density of the pro-
cess V (t). The question of existence of the density of the law of V

(t)
s , 0 ≤ s ≤ t , of the

class C1,2(]0, t[×R
+,∗), where R

+,∗ = R \ {0}, is a rather difficult one, which was
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an open question in all cited papers on exponential functionals (see [15, 10, 4, 5, 24]).
Since the processes V

(t)
t and It coincide (P -a.s.), the results on the density of V

(t)
t

give the answer for the density of It . In Proposition 2 we give sufficient conditions for
the existence of the density of the class C∞(]0, t[×R

+,∗) of the law of It when X is
a Lévy process. For a non-homogeneous PII we give a partial answer to this question
in Corollary 1.

Part 4 is devoted to Lévy processes. When X is a Lévy process, the equations
for the density of It can be simplified due to the homogeneity (see Proposition 1).
We present also the equations for the distribution functions of the laws of It and I∞,
since for these equations we have the explicit boundary conditions (cf. Corollary 2).
In Corollary 3 we consider the well-known Brownian case. In Corollary 4 we give the
equations for the case of Lévy processes with integrable jumps, and in Corollary 5,
we consider the case of exponential jumps. In the particular case of I∞ and integrable
jumps the equations coincide with the known ones from [15].

2 Kolmogorov type equation for the density of the law of It

We introduce, for fixed t > 0, a time reversal process Y = (Ys)0≤s≤t with

Ys = Xt − X(t−s)−.

Of course, this process depends on the parameter t , but we will omit this parameter
for the simplicity of notations.

For convenience of the readers we present here Lemma 1 and Lemma 2 proved in
Salminen, Vostrikova [31]. The first result establishes the relation between It defined
by (1) and the process Y = (Ys)0≤s≤t .

Lemma 1 (cf. [31]). For t > 0,

It = e−Yt

∫ t

0
eYs ds (P-a.s.)

Remark 1. In the case of Lévy processes the equality in law between right and left
side was proved in [15], Lemma 2.3. It should be noticed that Lemma 1 gives more
even in the Lévy case, since one can define both processes in the initial probability
space.

In the following lemma we claim that Y is PII and we precise its semimartingale
triplet. For that we introduce the functions b̄ = (b̄u)0≤u≤t , c̄ = (c̄u)0≤u≤t and K̄ =
(K̄u)0≤u≤t putting

b̄u = 1{t}(u)(bt − b0) + bt−u, (6)

c̄u = 1{t}(u)(ct − c0) + ct−u, (7)

K̄u(A) = 1{t}(u)(Kt (A) − K0(A)) + Kt−u(A), (8)

where 1{·} is the indicator function and A ∈ B(R). It means, for instance for b̄ =
(b̄u)0≤u≤t , that

b̄u =
{

bt−u if 0 ≤ u < t,

bt if u = t.
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So, the function b̄ can have a discontinuity at t , since in general b0 	= bt . These
functions are constructed to correspond, in a way, to the derivatives in time of the
semimartingale characteristics of the process Y .

Lemma 2 (cf. [31]). The process Y is a process with independent increments, it is
a semimartingale with respect to its natural filtration, and its semimartingale triplet
(B̄, C̄, ν̄) is given as: for 0 ≤ s ≤ t ,

B̄s =
∫ s

0
b̄udu, C̄s =

∫ s

0
c̄udu, ν̄(du, dx) = K̄u(dx) du. (9)

To obtain an integro-differential equation for the density, we introduce two im-
portant processes related to the process Y , namely the process V = (Vs)0≤s≤t and
J = (Js)0≤s≤t , with

Vs = e−Ys Js, Js =
∫ s

0
eYudu. (10)

We underline that both processes depend on the parameter t , since it is so for the
process Y .

We notice that according to Lemma 1, It = Vt (P-a.s.), and then they have the
same laws. As we will see, the process V = (Vs)0≤s≤t is a Markov process with
respect to the natural filtration F

Y = (FY
s )0≤s≤t of the process Y and this fact will

help us very much to find the equation for the density of the law of It .

Lemma 3. The process V = (Vs)0≤s≤t is a Markov process with respect to the
natural filtration F

Y = (FY
s )0≤s≤t of the process Y .

Proof. We write that for h > 0

Vs+h = e−Ys+h

∫ s+h

0
eYudu = e−(Ys+h−Ys) [Vs +

∫ s+h

s

eYu−Ys du].

Then for all measurable bounded functions f

E(f (Vs+h) |FY
s ) = E

(
f (e−(Ys+h−Ys)[Vs +

∫ s+h

s

eYu−Ys du]) |FY
s

)
=

E
(

f (e−(Ys+h−Ys)[x +
∫ s+h

s

eYu−Ys du])
)

|x=Vs

,

since Y is a process with independent increments. Hence, E(f (Vs+h) |FY
s ) is a mea-

surable function of Vs and we conclude that V is a Markov process with respect to
the filtration generated by Y .

Remark 2. In the case of Lévy processes a similar result was proved in [15], Lemma
5.1, using the homogeneity of the processes. Since a PII process is not homogeneous
in general, the proof of the Markov property here is different.

We define the set of functions

C = {f ∈ C2
b(R+) | sup

y∈R+
|f ′(y)y| < ∞, sup

y∈R+
|f ′′(y)y2| < ∞}
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such that f (0) = f ′(0) = 0. Here we use the usual notation C2
b(R+) for the set of

twice continuously differentiable functions with bounded derivatives on R
+.

For 0 ≤ s ≤ t we put

as = −bs + 1

2
cs +

∫
R

(e−x − 1 + x)K̄s(dx). (11)

We notice that the assumptions (3) and (4) imply that (λ-a.s.)∫
R

|e−x − 1 + x| K̄s(dx) < +∞,

so that as is (λ-a.s.) well defined. We introduce also for f ∈ C the generator
(AV

s )0≤s<t of the process V via

AV
s (f )(y) = (1 + y as) f ′(y) + 1

2
cs f ′′(y) y2+ (12)∫

R

[
f (ye−x) − f (y) − f ′(y)y(e−x − 1)

]
K̄s(dx).

Theorem 1. Under the assumptions (3), (4) and (5), the infinitesimal generator
(AV

s )0≤s<t of the Markov process V is given by (12). In addition, for 0 ≤ s ≤ t

and f ∈ C
E(f (Vs)) =

∫ s

0
E(AV

u (f )(Vu) )du (13)

where AV
t = lims→t− AV

s . If for 0 < s < t the density ps w.r.t. the Lebesgue measure
λ of the law of Vs exists and belongs to the class C1,2(]0, t[×R

+,∗), then λ-a.s.

∂

∂s
ps(y) = 1

2
c̄s

∂2

∂y2 (y2 ps(y)) − ∂

∂y
((ās y + 1) ps(y))+ (14)∫

R

[
exps(yex) − ps(y) + (e−x − 1)

∂

∂y
(yps(y))

]
K̄s(dx)

and the density pt of the law of It verifies

pt(y) =
∫ t

0

{
1

2
c̄s

∂2

∂y2 (y2 ps(y)) − ∂

∂y
((ās y + 1) ps(y))+ (15)∫

R

[
exps(yex) − ps(y) + (e−x − 1)

∂

∂y
(yps(y))

]
K̄s(dx)

}
ds.

The proof of Theorem 1 will be divided in four parts. In Lemma 4 we give
a semimartingale decomposition of the process (e−Ys )0≤s≤t , then in Lemma 5 we
prove a semimartingale decomposition of (f (Vs))0≤s≤t with f belonging to C and in
Lemma 6 we prove (13), and finally in Lemma 7 we obtain the equation (14). Then
we combine all results together to get (15).

Lemma 4. For 0 ≤ s ≤ t

e−Ys = e−Y0 + As + Ns (16)

where A = (As)0≤s≤t is a process with locally bounded variation and N = (Ns)0≤s≤t

is a local martingale.
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Proof. By Ito’s formula we get

e−Ys = 1 −
∫ s

0
e−Yu−dYu + 1

2

∫ s

0
e−Yu−d〈Y c〉u (17)

+
∫ s

0

∫
R

e−Yu−(e−x − 1 + x)μY (du, dx)

where μY is the measure of jumps of the process Y .
Let us write the expressions for A and N . From Ito’s formula obtained previously

we find that the process (As)s≥0 is given by

As =
∫ s

0
e−Yu−[−b̄u + 1

2
c̄u +

∫
R

(e−x − 1 + x)K̄u(dx)] du (18)

and it is a process of locally bounded variation on bounded intervals. In fact, let us
introduce a sequence of stopping times: for n ≥ 1

τn = inf{0 ≤ s ≤ t | e−Ys ≥ n} (19)

with inf{∅} = ∞. We notice that this sequence of stopping times tends to +∞ as
n → ∞. Then, since e−Ys− < n on the stochastic interval [[0, τn[[, we get from (3), (4)
and (5) that

Var(A)s∧τn ≤ n

∫ t

0

[
|b̄u| + 1

2
c̄u +

∫
R

|e−x − 1 + x| K̄u(dx)

]
du < ∞.

In (16) the process N = (Ns)s≥0 is defined by

Ns = −
∫ s

0
e−Yu−dM̄u+ (20)∫ s

0

∫
R

e−Yu−(e−x − 1 + x)(μY (du, dx) − K̄u(dx)du).

In the relation (20), the process M̄ is the local martingale component of the semi-
martingale decomposition of Y , Ys = B̄s + M̄s , and μY is the measure of jumps of
the process Y . It should be noticed that since Y is a process with independent incre-
ments and B̄ is deterministic, M̄ is a martingale (see [36], Th. 58, p. 45) as well as its
pure discontinuous part M̄d . Then, the process (Ns∧τn)0≤s≤t is a local martingale as
a stochastic integral of a bounded function w.r.t. a martingale.

Lemma 5. For f ∈ C we have

f (Vs) = f (V0) + BV
s + NV

s (21)

where BV is a process with locally bounded variation and NV is a local martingale.

Proof. For f ∈ C and 0 ≤ s ≤ t we write Ito’s formula:

f (Vs) = f (V0) +
∫ s

0
f ′(Vu−)dVu + 1

2

∫ s

0
f ′′(Vu−)d〈V c〉u+ (22)∫ s

0

∫
R

(
f (Vu− + x) − f (Vu−) − f ′(Vu−)x

)
μV (du, dx)
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where μV is the measure of jumps of the process V . From the definition of the process
V we can easily find that

dVs = ds + Js d( e−Ys ). (23)

Combining this formula with Ito’s decomposition (17) we find that

dV c
s = −e−Ys−Js dY c

s = −Vs− dY c
s .

Moreover,
d〈V c〉s = V 2

s− d〈Y c〉s ,
and


Vs = Vs − Vs− = e−Ys−Js(e
−
Ys − 1) = Vs−(e−
Ys − 1).

We use the relations (23), (16), (18), (20) and (22) to obtain a final decomposition
for f (Vs). To present this final decomposition, we put for y ≥ 0 and x ∈ R

F(y, x) = f (ye−x) − f (y) − f ′(y)y(e−x − 1),

and also

BV
s =

∫ s

0

[
f ′(Vu−)(1 + āu Vu−) + 1

2
f ′′(Vu−)V 2

u− c̄u +
∫
R

F(Vu−, x)K̄u(dx)

]
du

and

NV
s =

∫ s

0
f ′(Vu−) Vu−[−dM̄u +

∫
R

(e−x − 1 + x)(μY (du, dx) − K̄u(dx) du]+∫ s

0

∫
R

F(Vu−, x)(μY (du, dx) − K̄u(dx) du).

It remains to show that the process BV is of locally bounded variation and the
process NV is a local martingale. Let us use the sequence of stopping times τn defined
by (19) and let

D = sup
y∈R

max(|f (y)|, |f ′(y)|, |f ′(y)y|, |f ′′(y)y2|).

Then, for 0 ≤ s ≤ t ,

Var(BV )s∧τn ≤ D

∫ t

0

(
1 + |b̄u| + c̄u +

∫
R

|e−x − 1 + x| K̄u(x)dx

)
du

+
∫ t

0

∫
R

|F(Vu−, x)|K̄u(dx) du.

The first term of the r.h.s. is finite since the functions (B̄s)0≤s≤t and (C̄s)0≤s≤t have
finite variation on finite intervals and since (5) holds. Now, using the Taylor–Lagrange
formula of the second order, we find that for y > 0 and |x| ≤ 1

|F(y, x)| = 1

2
|f ′′(y(1 + θ(e−x − 1)))|y2(e−x − 1)2 ≤ D(e−x − 1)2

2[1 + θ(e−x − 1)]2
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where 0 < θ < 1. Since for |x| ≤ 1, 1 + θ(e−x − 1) ≥ 1
e

and |e−x − 1| ≤ e|x|, we
find that |F(Vu−, x)| ≤ 1

2De4x2.
For |x| > 1 we use the Taylor–Lagrange formula of the first order to get

|F(y, x)| = |(f ′(y(1 + θ(e−x − 1))) − f ′(y))y(e−x − 1)| ≤
D

[
|1 + θ(e−x − 1)|−1 + 1

]
|e−x − 1|.

Again, for x > 1, 1 + θ(e−x − 1) ≥ e−x , and for x < −1, 1 + θ(e−x − 1) ≥ 1.
Moreover, for x > 1, |e−x − 1| ≤ 1 and for x < −1, |e−x − 1| ≤ e−x . Finally,

|F(y, x)| ≤ C
(
e|x|1{|x|>1} + x2 1{|x|≤1}

)
with some positive constant C. Then, the assumptions (4) and (5) imply that∫ t

0

∫
R

|F(Vu−, x)|K̄u(dx) du < +∞.

So, the process BV is of locally bounded variation.
Using the above results we see also that (NV

s∧τn
)0≤s≤t is a local martingale as an

integral of a bounded function w.r.t. a martingale.

Lemma 6. Under the assumptions of Theorem 1, for 0 ≤ s ≤ t and f ∈ C we have
the equation (13).

Proof. Let (τ ′
n)n∈N be a localizing sequence for NV and τ̄n = τn ∧ τ ′

n where τn is
defined by (19). Let s ∈ [0, t[ and δ > 0 such that s + δ ≤ t . Then, from the previous
decomposition using the localisation we get

E(f (V(s+δ)∧τ̄n ) − f (Vs∧τ̄n ) |FY
s ) = E(BV

(s+δ)∧τ̄n
− BV

s∧τ̄n
|FY

s ).

Since f is a bounded function and limn→∞ τ̄n = +∞, we can pass to the limit in the
l.h.s. by the Lebesgue convergence theorem. The same can be done on the r.h.s. since
the process BV = (BV

s )0≤s≤t is a process of bounded variation on bounded intervals,
uniformly in s and n. After taking a limit as n → +∞ we get that

E(f (Vs+δ) − f (Vs) |FY
s ) = E(BV

s+δ − BV
s |FY

s ).

Now, we write the expression for BV
s+δ − BV

s :

BV
s+δ − BV

s =
∫ s+δ

s

[f ′(Vu−)(1 + āu Vu−)+
1

2
f ′′(Vu−)V 2

u− c̄u +
∫
R

F(Vu−, x)K̄u(dx) ]du.

We remark that

lim
δ→0

BV
s+δ − BV

s

δ
= f ′(Vs−)(1+ ās Vs−)+ 1

2
f ′′(Vs−)V 2

s− c̄s +
∫
R

F(Vs−, x)K̄s(dx).
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We show that the quantities
BV

s+δ−BV
s

δ
are uniformly bounded, for small δ > 0, by a

constant. In fact, we can write that

| BV
s+δ − BV

s |
δ

≤ C

δ

∫ s+δ

s

[(
1 + āu + 1

2
c̄u

)
+

∫
R

|F(Vu−, x)|K̄u(dx)

]
du.

We use the estimations for |F(Vs−, x)| obtained previously, and the fact that the quan-
tities 1

δ

∫ s+δ

s
āudu, 1

δ

∫ s+δ

s
c̄udu and

1

δ

∫ s+δ

s

∫
R

(
x2I{|x|≤1} + e|x|I{|x|>1}

)
K̄u(dx)du

are uniformly bounded by a constant for s ∈ [0, t[ and small values of δ > 0. This
conclusion follows from the fact that derivatives of the semimartingale characteristics
of the process Y are deterministic càdlàg functions. So, we deduce that the quantities
|BV

s+δ−BV
s |

δ
are uniformly bounded for s ∈ [0, t[ for small δ > 0 by a constant, too.

Under these conditions we can exchange the limit and the conditional expectation
and it gives us the expression for the generator of V at 0 ≤ s < t . As a conclusion,
we get that for 0 ≤ s < t

d

ds
E(f (Vs)) = EAV

s (f )(Vs−). (24)

Let us prove that we can replace Vs− by Vs in the above expression. In fact, for λ ∈ R

E(e
iλ ln(

Vs
Vs− )

) = E(e−iλ
Ys ) = lim
h→0+ E(e−iλ(Ys+h−Ys)) = 1,

since the characteristic function of Y is continuous in time and Y is PII. Hence, Vs− =
Vs (P-a.s.) and they have the same laws. Then after the replacement of Vs− by Vs

in (24) and the integration w.r.t. s we obtain (13). For s = t we take lims→t− in (13).

Lemma 7. Under the assumptions of Theorem 1, for 0 < s < t we have the rela-
tion (14).

Proof. We denote by Ps the law of Vs . Then from (13) we get that for 0 < s < t∫ s

0

∫ ∞

0

[
f ′(y)(1 + y āu) + 1

2
f ′′(y)y2 c̄u+ (25)∫

R

(
f (ye−x) − f (y) − f ′(y)y(e−x − 1)

)
K̄u(x)dx

]
Pu(dy) du =

∫ ∞

0
f (y)Ps(dy).

Moreover, since we assume that the law Ps of Vs has a density ps w.r.t. the
Lebesgue measure, it gives∫ s

0

∫ ∞

0

[
f ′(y)(1 + y āu) + 1

2
f ′′(y)y2 c̄u+ (26)
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R

(
f (ye−x) − f (y) − f ′(y)y(e−x − 1)

)
K̄u(x)dx

]
pu(y)dy du

=
∫ ∞

0
f (y)ps(y)dy.

To obtain the equation for the density, we consider the set of continuously differen-
tiable functions on compact support C2

K ⊆ C. We take the right-hand partial derivative
in s of the above equation to get

∫ ∞

0

[
f ′(y)(1 + y ās) + 1

2
f ′′(y)y2 c̄s+ (27)∫

R

(
f (ye−x) − f (y) − f ′(y)y(e−x − 1)

)
K̄s(x)dx

]
ps(y)

=
∫ ∞

0
f (y)

∂

∂s
ps(y) dy.

Using the integration by parts formula we deduce that

∫ ∞

0
f ′(y) ps(y)dy = −

∫ ∞

0

∂

∂y
(ps(y)) f (y)dy,∫ ∞

0
f ′(y) y ps(y)dy = −

∫ ∞

0

∂

∂y
(y ps(y)) f (y)dy,

∫ ∞

0
f ′′(y) y2 ps(y)dy =

∫ ∞

0

∂2

∂y2 (y2 ps(y)) f (y)dy.

By the change of variables and by the integration by parts we obtain

∫ ∞

0

∫
R

ps(y)
[
f (ye−x) − f (y) − f ′(y)y(e−x − 1)

]
K̄s(dx)dy =∫ ∞

0

(∫
R

[exps(yex) − ps(y) + (e−x − 1)
∂

∂y
(yps(y)] K̄s(dx)

)
f (y)dy.

The mentioned relations together with the equation (27) give that for all f ∈ C2
K∫ ∞

0
f (y)

[
− ∂

∂s
ps(y) + 1

2
c̄s

∂

∂y
(y2ps(y)) − ∂

∂y
((āsy + 1)ps(y))

+
∫
R

exps(yex) − ps(y) + (e−x − 1)
∂

∂y
(yps(y))K̄s(dx)

]
= 0,

and it proves our claim about the equation for ps .

Proof of Theorem 1. We use the result of Lemma 7. Then we integrate the equation
for ps on the interval ]0, t − δ[ for δ > 0 and we pass to the limit as δ → 0. Since
the laws of Vt− and Vt coincide, we get in this way the equation for pt . Since It = Vt

(P-a.s.), pt is a density of the law of It .
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3 Some results about the existence of smooth densities

In the case of Lévy processes, the question of existence of a smooth density of I∞ in
the Schwarz sense was considered in Carmona, Petit, Yor [15] and Bertoin, Yor [10].
Sufficient conditions for the smoothness of the one-dimensional law of an Ornstein–
Uhlenbeck process driven by a pure discontinuous Lévy process was obtained in Bon-
darchuk, Kulik [14], namely under the Kallenberg condition the density of the one-
dimensional distribution of an Ornstein–Uhlenbeck process is of the class C∞

b (R).
The question of existence of the density of the law of Vs , 0 < s < t , of the class

C1,2(]0, t[,R) is a rather difficult one, which was, at our knowledge, an open question
in all cited works on exponential functionals. We give here a partial answer to this
question via the known result on the Malliavin calculus from Bichteler, Gravereaux,
Jacod [11]. For the convenience of the readers we present this result here in the one-
dimensional setting.

We consider the stochastic differential equation

Zx
t = x +

∫ t

0
a(Zx

s−) ds +
∫ t

0
b(Zx

s−)dWs +
∫ t

0

∫
R

c(Zx
s−, z)(μ − ν)(ds, dz)

where x ∈ R, a, b, c are measurable functions on R and R
2 respectively, W is the

standard Brownian motion, and μ and ν are the jump measure and its compensator of
Zx . It is assumed that the solution of this equation exists and is unique, and also that
the following assumptions hold.

Assumption (A-r):

(i) a and b are r-times differentiable with bounded derivatives of all orders from
1 to r ,

(ii) c(·, z) is r-times differentiable and there exists a sigma-finite measure G on R

such that

(a) c(0, ·) ∈ ⋂
2≤p<∞ Lp(R∗,G),

(b) for 1 ≤ n ≤ r , supy | ∂n

∂yn (c(y, ·) | ∈ ⋂
2≤p<∞ Lp(R∗,G).

Assumption (SB): there exist γ > 0 and δ > 0 such that

b2(y) ≥ γ

1 + |y|δ .

Assumption (SC-bis): there exists ζ > 0 such that for all u ∈ [0, 1]

|1 + u
∂

∂y
c(y, z)| > ζ.

Theorem 2.29 (cf. [11], p. 15) Suppose that the assumptions (A-(2r+10)), (SB) and
(SC-bis) are satisfied. Then for t > 0 the law of Zx

t has a density pt(x, y) w.r.t. the
Lebesgue measure and the map (t, x, y) → pt(x, y) is of the class Cr (]0, t]×R×R).
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To apply this theorem, let us write a stochastic differential equation for (Vs)0≤s≤t .
For that we put for 0 ≤ s ≤ t⎧⎨

⎩
as(y) = y(−b̄s + 1

2 c̄s + ∫
R
(e−z − 1 + z)K̄s(dz) + 1,

bs(y) = y
√

c̄s ,

cs(y, z) = y(e−z − 1).

Proposition 1. Suppose that∫ t

0

∫
R

|e−z − 1 + z|K̄s(dz) < +∞

and that c̄s > 0 for 0 < s ≤ t . Then the process (Vs)0≤s≤t satisfies the stochastic
differential equation

Vs =
∫ s

0
au(Vu−)du −

∫ s

0
bu(Vu−)dWu +

∫ s

0

∫
R

cu(Vu−, z)(dμY − K̄u(dz)du)

(28)
where μY is the jump measure of Y and W is the Dubins–Dambis–Schwarz Brownian
motion corresponding to the continuous martingale part Y c of Y .

Proof. We recall that Vs is defined by (10). Let us introduce the process Ŷ via the
relation: for 0 ≤ s ≤ t ,

e−Ys = E(Ŷ )s (29)

where E(·) is the Doléans-Dade exponential. Then,

Vs = E(Ŷ )s

∫ s

0

du

E(Ŷ )u

and we can see by the integration by parts formula that (Vs)0≤s≤t is the unique strong
solution of the equation

dVs = Vs−dŶs + ds (30)

with the initial condition V0 = 0. Using the definition of the Doléans-Dade exponen-
tial we see that (29) is equivalent to

e−Ys = eŶs− 1
2 <Ŷ c>

∏
0<u≤s

(1 + 
Ŷu) e−
Ŷu

where Ŷ c is a continuous martingale part of Ŷ . From this equality we find that Ŷ c
s =

−Y c
s , ln(1 + 
Ŷs) = −
Ys and that the semimartingale characteristics (B̂, Ĉ, ν̂) of

Ŷ are: ⎧⎨
⎩

B̂s = −B̄s + 1
2 C̄s + ∫ s

0

∫
R
(e−z − 1 + z)K̄u(dz)du,

Ĉs = C̄s,

ν̂(ds, dz) = (e−z − 1)K̄s(dz)ds.

Since (B̄, C̄, ν̄) are absolutely continuous w.r.t. the Lebesgue measure with the deriva-
tives (b̄, c̄, K̄), we get that

Ŷs =
∫ s

0
(−b̄u + 1

2
c̄u +

∫
R

(e−z − 1 + z)K̄u(dz))du −
∫ s

0

√
c̄u dWu+
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0

∫
R

(e−z − 1)(μY (du, dz) − K̄u(dz)du)

where W is the Dubins–Dambis–Schwarz Brownian motion corresponding to the
continuous martingale part of Y . Let us put this decomposition into (30), and we
obtain (28).

To apply Theorem 2.29 from [11] we suppose that the process X, and hence also
the process Y , are Lévy processes. We introduce a supplementary process

V ε
s = ε + E(Ŷ )s

∫ s

0

du

E(Ŷ )u

with ε > 0. We see that V ε
s −ε = Vs , and V 0

s = Vs , and also that the density ps(ε, y)

of the law of V ε
s w.r.t. the Lebesgue measure and the density ps(y) of the law of Vs

exist or not at the same time and they are related: for all x > 0 and y > 0

ps(ε, y + ε) = ps(y).

So, both densities are of the same regularity w.r.t. (s, y). In addition we have: for all
s ≥ 0 and all ω ∈ �, V ε

s (ω) ≥ ε.

Proposition 2. Suppose that X is a Lévy process with a triplet (b0, c0,K0) and the
following conditions are satisfied:

1. c0 > 0,

2.
∫
z<−1 e−pz K0(dz) < +∞ for p ≥ 2,

3. there exists a constant A > 0 such that K0(]A,+∞[) = 0.

Then, for s > 0, the law of Vs has a density ps and the map (s, y) → ps(y) is of the
class C∞(]0, t] × R

+,∗).

Proof. When X is a Lévy process, and hence Y is a Lévy process with the same
parameters, the functions as , bs , cs figured in (28) are independent of s and are equal
to: ⎧⎨

⎩
a(y) = y(−b0 + 1

2c0 − ∫
R
(e−z − 1 + z)K0(dz)) + 1,

b(y) = y
√

c0,

c(y, z) = y(e−z − 1).

We consider now the process V ε with ε > 0. This process satisfy the same equa-
tion (28) as the process V does with the replacement of Vu− and Vs by V ε

u− and V ε
s ,

respectively, and also with the replacement of the functions as(y), bs(y) and cs(y, z)

by a(y), b(y), c(y, s) with y ≥ ε.
We see that the Assumption (A-r) is satisfied for all r ≥ 1 with G = K0. The

Assumption (SB) is valid for γ = ε2c0 and any δ > 0, and the Assumption (SC-bis)
is satisfied with ζ = 1

2e−A. As a conclusion, the map (s, x, y) → ps(x, y) is of the
class C∞ (]0, t] × [ε,+∞[×[ε,+∞[) for all ε > 0, and, hence, the map (s, y) →
ps(x, y+x) is of the class C∞(]0, t]×R

+,∗×R
+,∗). Finally, the map (s, y) → ps(y)

is of the class C∞(]0, t],R+,∗).
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For the PII case we obtain the following partial result.

Corollary 1. Let s ∈]0, t[ be fixed. Suppose that

1.
∫ s

0 c̄udu > 0,

2.
∫ s

0

∫
z<−1 e−pz Ks(dz) < +∞ for p ≥ 2,

3. there exists a constant A > 0 such that Ks(]A,+∞[) = 0 for all 0 < s < t .

Then, the law of Vs has a density ps such that the map y → ps(y) is of the class
C∞(R+,∗).

Proof. We notice that the law of Ys coincide at the time s with the law of a Lévy
process Ỹ with the triplet ( 1

s
B̄s ,

1
s
C̄s,

1
s

∫ s

0

∫
R

K̄u(dz)du). Then we consider a GOU

process driven by Ỹ . The previous proposition can be applied, and this gives the
claim.

4 When X is a Lévy process

In this section we consider a particular case of Lévy processes. Namely, let X be a
Lévy process with the parameters (b0, c0,K0). As before, we suppose that∫

R

(x2 ∧ 1)K0(dx) < +∞ and
∫

|x|>1
e|x|K0(dx) < +∞ (31)

and we put

a0 = −b0 + 1

2
c0 +

∫
R

(e−x − 1 + x)K0(dx).

Due to the homogeneity of a Lévy process, the equation for the density can be
simplified as we can see from the following proposition.

Proposition 3. Suppose that (31) holds and the density pt of the law of It exists and
belongs to the class C1,2(]0, t] × R

+,∗). Then this density satisfies the equation

∂

∂t
pt (y) = 1

2
c0

∂2

∂y2 (y2 pt(y)) − ∂

∂y
((a0y + 1) pt (y))+ (32)∫

R

[
expt (yex) − pt(y) + (e−x − 1)

∂

∂y
(ypt (y))

]
K0(dx).

In the particular case, when I∞ < +∞ (P-a.s.) and the density p∞ of the law of I∞
exists and belongs to the class C2(R+,∗), we have

1

2
c0

d2

dy2 (y2 p∞(y)) − d

dy
((a0y + 1) p∞(y))+ (33)∫

R

[
exp∞(yex) − p∞(y) + (e−x − 1)

d

dy
(yp∞(y))

]
K0(dx) = 0.
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Remark 3. A similar equation for the density of I∞ in the case when
∫
R
(|x| ∧

1)K0(dx) < ∞ was obtained in [15]. We recall that the condition on K0 in [15]
is stronger at zero than our condition. This explains the fact that our equation has a
slightly different form. Namely, under the condition in [15] one can separate third
term in the integral part and combine it with the second term of the above equation.
Moreover, similar equations for I∞ can be found in [24] and [26]. It should be men-
tioned that the cited authors did not obtain the equation for the density of It .

Proof. In the case of Lévy processes we write that (P-a.s.)

Vs = e−Ys Js = e−Xt+X(t−s)−
∫ s

0
eXt−X(t−u)−du =∫ s

0
eX(t−s)−−X(t−u)−du =

∫ s

0
eX(t−s)−X(t−u)du.

Due to the homogeneity of Lévy processes we have the following identity in law:

L((Xt−u − Xt−s)0≤u≤s) = L((Xs−u)0≤u≤s).

Then,

L(

∫ s

0
eX(t−s)−X(t−u)du) = L(

∫ s

0
e−X(s−u)du) = L(

∫ s

0
e−Xudu)

where the last equality is obtained by the time change. As a conclusion, L(Vs) =
L(Is) for 0 ≤ s ≤ t , and, hence, (ps)0<s≤t are the densities of the laws of (Is)0<s≤t .
In addition, again due to the homogeneity, for all 0 ≤ s ≤ t , b̄s = bt−s = b0, c̄s =
ct−s = c0, K̄s(dx) = Kt−s(dx) = K0(dx). Then, from Theorem 1 we obtain (32).

Again due to the homogeneity, for 0 < s ≤ t , the generator AV
s (f ) = A(f ),

where

A(f )(y) = (1 + y a0) f ′(y)+
1

2
c0 f ′′(y) y2 +

∫
R

[
f (ye−x) − f (y) − f ′(y)y(e−x − 1)

]
K0(dx)

and it does not depend on s. Moreover, since L(Vs) = L(Is) for 0 ≤ s ≤ t , the
equality (13) becomes

Ef (Is) =
∫ s

0
EA(f )(Iu)du.

We suppose now that I∞ < +∞ (P-a.s.). We divide both sides of the above equality
by s and let s go to infinity. Since f is bounded, we get zero as a limit on the left-hand
side. Since Is → I∞ as s → +∞ for each ω ∈ �, we also get for f ∈ C

lim
s→∞ EA(f )(Is) = EA(f )(I∞).

Then, EA(f )(I∞) = 0 and we obtain (33) in the same way as in Theorem 1, by the
integration by parts and the time change.



308 L. Vostrikova

Corollary 2. Under the assumptions of Proposition 3, the distribution function Ft of
It satisfies the second order integro-differential equation

∂

∂t
Ft (y) = 1

2
c0

∂

∂y
(y2 ∂

∂y
Ft (y)) − (a0y + 1)

∂

∂y
Ft (y)+ (34)∫

R

[
Ft (yex) − Ft (y) + (e−x − 1) y

∂

∂y
Ft (y))

]
K0(dx)

with the boundary conditions

Ft(0) = 0, lim
y→+∞ Ft(y) = 1.

When I∞ < +∞, for the distribution function F∞ of the law of I∞, the similar
equation

1

2
c0

d

dy
(y2 F ′∞(y)) − (a0y + 1) F ′∞(y)+ (35)∫

R

[
F∞(yex) − F∞(y) + (e−x − 1) y F ′∞(y))

]
K0(dx) = 0

is valid with the similar boundary conditions

F∞(0) = 0, lim
y→+∞ F∞(y) = 1.

Proof. We integrate each term of the equation (32) of Proposition 3 on [0, y] and use
the fact that ∫ y

0
pt (u)du = Ft(y) − Ft(0) = Ft(y)

since Ft (0) = 0. We take into account the fact that the map (t, u) → pt (u) is of the
class C1.2(R+,∗ × R

+,∗) what allows to exchange the integration and the derivation.
We do the same for F∞(y).

Corollary 3. (cf. [17, 13]) Let us consider a Brownian motion with drift, i.e.

dXt = b0dt + √
c0dWt

where c0 	= 0 and b0 ∈ R. Then the law of the exponential functional It associated
with X has a density which satisfies

∂

∂t
pt (y) = 1

2
c0

∂2

∂y2 (y2 pt(y)) − ∂

∂y
((a0y + 1) pt (y)).

In particular, when b0 > 0 we have I∞ < +∞ (P-a.s.) and

p∞(x) = 1

�(
2 b0
c0

) x

(
2

c0x

) 2b0
c0

exp

(
− 2

c0x

)
. (36)



On distributions of exponential functionals of the processes with independent increments 309

Proof. From Proposition 3 we find the equation for pt . From Corollary 1 we get the
equation for F∞:

1

2
c0

d

dy
(y2 F ′∞(y)) − (a0y + 1) F ′∞(y) = 0.

This equation is equivalent to

1

2
c0y

2 F ′′∞(y) − ((a0 − c0)y + 1) F ′∞(y) = 0.

By the reduction of the order of the equation, we find that

F ′∞(y) = C y
2(

a0
c0

−1)
exp

(
− 2

c0y

)

with some positive constant C. Using boundary conditions we calculate a constant

C. We get that C = 1

�
(

1− 2a0
c0

) (
c0
2

)2
a0
c0

−1
where �(·) is the gamma function. Since

1 − 2a0
c0

= 2b0
c0

, this gives us the final result.

Remark 4. The formula for p∞ is the well-known result probably for the first time
mentioned in the book by Ibragimov, Khasminsky “Statistical Estimation – Asymp-
totic Theory”. This formula appears also in [15], Example 1, but in the form of the
identity in law. This result can be find also in [13].

Remark 5. Some rather complicated formulas concerning pt were given in [17] and
in [13], formula 1.10.4, p. 264. Recently, in [12], based on the derived differential
equation for the distribution function, we obtained the Laplace transform for the den-
sity of the exponential integral functional of a Brownian motion with drift,

p̂λ(y) =
∫ +∞

0
e−λsps(y)ds

where λ > 0. Namely,

p̂λ(y) = 1

λ

(
y

c0

2

)−k �
(

1 − 2b0
c0

+ k
)

�
(

1 − 2b0
c0

+ 2k
) {

k

yk+1 M

(
k, 1 − 2b0

c0
+ 2k,− 2

yc0

)

− 2k

c0 yk+2(1 − 2b0
c0

+ 2k)
M

(
k + 1, 2 − 2b0

c0
+ 2k,− 2

yc0

)}

where k = b0+
√

b2
0+2λc0

c0
and M is the confluent hypergeometric function of the first

kind known as Kummer’s function. The Laplace transform in this case can be inverted
in the usual way by the Bromwich–Mellin formula

ps(y) =
∫ λ0+∞

λ0−i∞
eλs p̂λ(y)dλ

for any fixed λ0 > 0 and s > 0.
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Let us denote by ν+ and ν− the Lévy measures of positive and negative jumps,
respectively; namely, for x > 0

ν+([x,+∞[) =
∫ +∞

x

K0(du), ν−(] − ∞,−x]) =
∫ −x

−∞
K0(du).

To simplify the notations, we put also

ν+(x) = ν+([x,+∞[), ν−(x) = ν−(] − ∞,−x]).
Let us suppose in addition that ∫

R

|x|K0(dx) < ∞.

Corollary 4. Suppose that X is a Lévy process with integrable jumps. Then, under
the conditions of Proposition 3, the density pt of It satisfies the equation

∂

∂t
pt (y) = 1

2
c0

∂2

∂y2 (y2 pt(y)) − ∂

∂y
((r0y + 1) pt (y))+∫ +∞

y

pt (z)ν
+(ln(

z

y
)) dz +

∫ y

0
pt (z)ν

−(− ln(
z

y
)) dz

where r0 = a0 − ∫
R
(e−x − 1)K0(dx) = −b0 + 1

2c0 + ∫
R

x K0(dx).
In the particular case, when I∞ < +∞ (P-a.s.), we get

1

2
c0

∂2

∂y2 (y2 p∞(y)) − ∂

∂y
((r0y + 1) p∞(y))+∫ +∞

y

p∞(z)ν+(ln(
z

y
)) dz +

∫ y

0
p∞(z)ν−(− ln(

z

y
)) dz = 0.

Proof. We take the equation (34) and rewrite it in the form

∂

∂t
Ft (y) = 1

2
c0

∂

∂y
(y2 ∂

∂y
Ft (y)) − (r0y + 1)

∂

∂y
Ft (y)+∫

R

[
Ft(yex) − Ft(y)

]
K0(dx).

Then we divide the integral over R in two parts, integrating on ]0,+∞[ and ]−∞, 0[.
We integrate by parts, ∫

R

[Ft (yex) − Ft(y)]K0(dx) =
∫ +∞

0

∂

∂x
Ft (yex) yex ν+(x)dx +

∫ 0

−∞
∂

∂x
Ft (yex) yex ν−(−x)dx,

and change the variables z = yex . We differentiate the result w.r.t. t , and this gives
the claim.
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Remark 6. The equation for p∞ mentioned in Corollary 4 was also obtained in [15],
example E.

Corollary 5. Suppose that for x ∈ R

K0(x) = e−μxI{x>0}.

Then, under the assumptions of Proposition 3, the density pt of It satisfies

∂

∂t
pt (y) = 1

2
c0

∂2

∂y2 (y2 pt(y)) − ∂

∂y
((r0y + 1) pt (y)) + yμ

μ

∫ ∞

y

pt (z)

zμ
dz.

In particular, when I∞ < +∞ (P-a.s.), we have

1

2
c0

∂2

∂y2 (y2 p∞(y)) − ∂

∂y
((r0y + 1) p∞(y)) + yμ

μ

∫ ∞

y

p∞(z)

zμ
dz = 0.

Proof. We take into account that ν+(x) = 1
μ
e−μx and ν−(x) = 0 for all x > 0, and

this gives us the equation for pt and p∞ in this particular case.
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