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Abstract Sufficient conditions are presented on the offspring and immigration distributions
of a second-order Galton–Watson process (Xn)n�−1 with immigration, under which the dis-
tribution of the initial values (X0, X−1) can be uniquely chosen such that the process becomes
strongly stationary and the common distribution of Xn, n � −1, is regularly varying.

Keywords Second-order Galton–Watson process with immigration, regularly varying
distribution, tail behavior

2010 MSC 60J80, 60G70

1 Introduction

Higher-order Galton–Watson processes with immigration having finite second mo-
ment (also called Generalized Integer-valued AutoRegressive (GINAR) processes)
have been introduced by Latour [14, equation (1.1)]. Pénisson and Jacob [16] used
higher-order Galton–Watson processes (without immigration) for studying the decay
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phase of an epidemic, and, as an application, they investigated the Bovine Spongi-
form Encephalopathy epidemic in Great Britain after the 1988 feed ban law. As a
continuation, Pénisson [15] introduced estimators of the so-called infection parame-
ter in the growth and decay phases of an epidemic. Recently, Kashikar and Deshmukh
[12, 13] and Kashikar [11] used second order Galton–Watson processes (without im-
migration) for modeling the swine flu data for Pune, India and La-Gloria, Mexico.
Kashikar and Deshmukh [12] also studied their basic probabilistic properties such as
a formula for their probability generator function, probability of extinction, long run
behavior and conditional least squares estimation of the offspring means.

Let Z+, N, R and R+ denote the set of non-negative integers, positive integers,
real numbers and non-negative real numbers, respectively. The natural basis of Rd

will be denoted by {e1, . . . , ed}. For x ∈ R, the integer part of x is denoted by �x�.
Every random variable will be defined on a probability space (�,A,P). Conver-
gence in distribution and equality in distributions of random variables or stochastic

processes is denoted by
D−→ and

D=, respectively.
First, we recall the Galton–Watson process with immigration, which assumes that

an individual can reproduce only once during its lifetime at age 1, and then it dies
immediately. The initial population size at time 0 will be denoted by X0. For each
n ∈ N, the population consists of the offsprings born at time n and the immigrants
arriving at time n. For each n, i ∈ N, the number of offsprings produced at time n by
the ith individual of the (n − 1)th generation will be denoted by ξn,i . The number of
immigrants in the nth generation will be denoted by εn. Then, for the population size
Xn of the nth generation, we have

Xn =
Xn−1∑
i=1

ξn,i + εn, n ∈ N, (1)

where
∑0

i=1 := 0. Here
{
X0, ξn,i , εn : n, i ∈ N

}
are supposed to be independent

non-negative integer-valued random variables, and {ξn,i : n, i ∈ N} and {εn : n ∈ N}
are supposed to consist of identically distributed random variables, respectively. If
εn = 0, n ∈ N, then we say that (Xn)n∈Z+ is a Galton–Watson process (without
immigration).

Next, we introduce the second-order Galton–Watson branching model with im-
migration. In this model we suppose that an individual reproduces at age 1 and also
at age 2, and then it dies immediately. For each n ∈ N, the population consists again
of the offsprings born at time n and the immigrants arriving at time n. For each
n, i, j ∈ N, the number of offsprings produced at time n by the ith individual of
the (n − 1)th generation and by the j th individual of the (n − 2)th generation will be
denoted by ξn,i and ηn,j , respectively, and εn denotes the number of immigrants in
the nth generation. Then, for the population size Xn of the nth generation, we have

Xn =
Xn−1∑
i=1

ξn,i +
Xn−2∑
j=1

ηn,j + εn, n ∈ N, (2)

where X−1 and X0 are non-negative integer-valued random variables (the initial
population sizes). Here

{
X−1, X0, ξn,i , ηn,j , εn : n, i, j ∈ N

}
are supposed to be
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non-negative integer-valued random variables such that
{
(X−1, X0), ξn,i , ηn,j , εn :

n, i, j ∈ N
}

are independent, and {ξn,i : n, i ∈ N}, {ηn,j : n, j ∈ N} and {εn : n ∈ N}
are supposed to consist of identically distributed random variables, respectively. Note
that the number of individuals alive at time n ∈ Z+ is Xn+Xn−1, which can be larger
than the population size Xn of the nth generation, since the individuals of the popula-
tion at time n−1 are still alive at time n, because they can reproduce also at age 2. The
stochastic process (Xn)n�−1 given by (2) is called a second-order Galton–Watson
process with immigration or a Generalized Integer-valued AutoRegressive process
of order 2 (GINAR(2) process), see, e.g., Latour [14]. Especially, if ξ1,1 and η1,1
are Bernoulli distributed random variables, then (Xn)n�−1 is also called an Integer-
valued AutoRegressive process of order 2 (INAR(2) process), see, e.g., Du and Li [8].
If ε1 = 0, then we say that (Xn)n�−1 is a second-order Galton–Watson process with-
out immigration, introduced and studied by Kashikar and Deshmukh [12] as well.

The process given in (2) with the special choice η1,1 = 0 gives back the process
given in (1), which will be called a first-order Galton–Watson process with immigra-
tion to make a distinction.

For notational convenience, let ξ , η and ε be random variables such that ξ
D= ξ1,1,

η
D= η1,1 and ε

D= ε1, and put mξ := E(ξ) ∈ [0,∞], mη := E(η) ∈ [0,∞] and
mε := E(ε) ∈ [0,∞].

If (Xn)n∈Z+ is a (first-order) Galton–Watson process with immigration such that
mξ ∈ (0, 1), P(ε = 0) < 1 and

∑∞
j=1 P(ε = j) log(j) < ∞, then the Markov

process (Xn)n∈Z+ admits a unique stationary distribution (see, e.g., Quine [17]), i.e.,
the distribution of the initial value X0 can be uniquely chosen so that the process
becomes strongly stationary. If ε is regularly varying with index α ∈ (0,∞), i.e.,
P(ε > x) ∈ (0,∞) for all x ∈ (0,∞), and

lim
x→∞

P(ε > qx)

P(ε > x)
= q−α for all q ∈ (0,∞),

then, by Lemma A.3,
∑∞

j=1 P(ε = j) log(j) < ∞. The content of Theorem 2.1.1 in
Basrak et al. [4] is the following statement.

Theorem 1. Let (Xn)n∈Z+ be a (first-order) Galton–Watson process with immigra-
tion such that mξ ∈ (0, 1) and ε is regularly varying with index α ∈ (0, 2). In case
of α ∈ [1, 2), assume additionally that E(ξ2) < ∞. Let the distribution of the initial
value X0 be such that the process is strongly stationary. Then we have

P(X0 > x) ∼
∞∑
i=0

miα
ξ P(ε > x) = 1

1 − mα
ξ

P(ε > x) as x → ∞,

and hence X0 is also regularly varying with index α.

Note that in case of α = 1 and mε = ∞ Basrak et al. [4, Theorem 2.1.1] assume
additionally that ε is consistently varying (or in other words intermediate varying),
but, eventually, this follows from the fact that ε is regularly varying. Basrak et al. [4,
Remark 2.2.2] derived the result of Theorem 1 also for α ∈ [2, 3) under the additional
assumption E(ξ3) < ∞ (not mentioned in the paper), and they remarked that the
same applies to all α ∈ [3,∞) (possibly under an additional moment assumption
E(ξ �α�+1) < ∞).
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In Barczy et al. [3] we study regularly varying non-stationary (first-order) Galton–
Watson processes with immigration.

If (Xn)n�−1 is a second-order Galton–Watson process with immigration such that
mξ ,mη ∈ (0, 1) with mξ + mη < 1, P(ε = 0) < 1 and

∑∞
j=1 P(ε = j) log(j) < ∞,

then the distribution of the initial values (X0, X−1) can be uniquely chosen so that
the process becomes strongly stationary, see Lemma 3.

The main result of the paper is the following analogue of Theorem 1.

Theorem 2. Let (Xn)n�−1 be a second-order Galton–Watson process with immi-
gration such that mξ ,mη ∈ (0, 1) with mξ + mη < 1, and ε is regularly varying
with index α ∈ (0, 2). In case of α ∈ [1, 2), assume additionally that E(ξ2) < ∞
and E(η2) < ∞. Let the distribution of the initial values (X0, X−1) be such that the
process is strongly stationary. Then we have

P(X0 > x) ∼
∞∑
i=0

mα
i P(ε > x) as x → ∞,

where m0 := 1, mk := λk+1+ −λk+1−
λ+−λ− , k ∈ N, and

λ+ :=
mξ +

√
m2

ξ + 4mη

2
, λ− :=

mξ −
√

m2
ξ + 4mη

2
. (3)

Consequently, X0 is also regularly varying with index α.

Note that λ+ and λ− are the eigenvalues of the offspring mean matrix given in (8)
of a corresponding 2-type Galton–Watson process with immigration. Note that for all
k ∈ Z+, we have mk = E(Vk,0), where (Vn,0)n�−1 is a second-order Galton–Watson
process (without immigration) with the initial values V0,0 = 1 and V−1,0 = 0, and
with the same offspring distributions as (Xn)n�−1, see (9). Consequently, the series∑∞

i=0 mα
i appearing in Theorem 2 is convergent, since for each i ∈ N, we have

mi = E(Vi,0) � λi+ < 1 by (10) and the assumption mξ + mη < 1.
Our technique and result might be extended to p-th order Galton–Watson branch-

ing processes with immigration. More generally, one can pose an open problem,
namely, under what conditions on the offspring and immigration distributions of a
general p-type Galton–Watson branching process with immigration, its unique (p-
dimensional) stationary distribution is jointly regularly varying. We also note that
there is a vast literature on tail behavior of regularly varying time series (see, e.g.,
Hult and Samorodnitsky [10]), however, the available results do not seem to be ap-
plicable for describing the tail behavior of the stationary distribution for regularly
varying branching processes with immigration. The link between GINAR and au-
toregressive processes is that their autocovariance functions are identical under finite
second moment assumptions, but we cannot see that it would imply anything for the
tail behavior of a GINAR process knowing the tail behaviour of a corresponding au-
toregressive process. Further, in our situation the second moment is infinite, so the
autocovariance function is not defined.

Very recently, Bősze and Pap [5] have studied regularly varying non-stationary
second-order Galton–Watson processes with immigration. They have found some suf-
ficient conditions on the initial, the offspring and the immigration distributions of a
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non-stationary second-order Galton–Watson process with immigration under which
the distribution of the process in question is regularly varying at any fixed time. The
results in Bősze and Pap [5] can be considered as extensions of the results in Barczy
et al. [3] on not necessarily stationary (first-order) Galton–Watson processes with im-
migration. Concerning the results in Bősze and Pap [5] and in the present paper, there
is no overlap, for more details see Remark 1.

The paper is organized as follows. In Section 2 we present preliminaries. First we
recall a representation of a second-order Galton–Watson process without or with im-
migration as a (special) 2-type Galton–Watson process without or with immigration,
respectively. Then, we derive an explicit formula for the expectation of a second-
order Galton–Watson process with immigration at time n and describe its asymptotic
behavior as n → ∞, and, assuming finiteness of the second moments of the off-
spring distributions, we give an estimation of the second moment of a second-order
Galton–Watson process (without immigration). Next, we recall sufficient conditions
for the existence of a unique stationary distribution for a 2-type Galton–Watson pro-
cess with immigration, and a representation of this stationary distribution. Applying
these results to the special 2-type Galton–Watson process with immigration belong-
ing to the class of second-order Galton–Watson processes with immigration, we ob-
tain sufficient conditions for the existence of a unique distribution of the initial values
(X0, X−1) such that the process becomes strongly stationary, see Lemma 3. Section 3
is devoted to the proof of Theorem 2. In the course of the proof sufficient conditions
are given under which the distribution of a second-order Galton–Watson processes
(without immigration) (Xn)n�−1 at a fixed time is regularly varying provided that
X0 is regularly varying and X−1 = 0, see Proposition 1. In the Appendix we collect
some results on regularly varying functions and distributions, to name a few of them:
convolution property, Karamata’s theorem and Potter’s bounds. Note that the ArXiv
version [2] of this paper contains more details, proofs and appendices.

2 Preliminaries on second-order Galton–Watson processes with immigration

First, we recall a representation of a second-order Galton–Watson process without
or with immigration as a (special) 2-type Galton–Watson process without or with
immigration, respectively. Let (Xn)n�−1 be a second-order Galton–Watson process
with immigration given in (2), and let us introduce the random vectors

Y n :=
[
Yn,1
Yn,2

]
:=
[

Xn

Xn−1

]
, n ∈ Z+. (4)

Then we have

Y n =
Yn−1,1∑
i=1

[
ξn,i

1

]
+

Yn−1,2∑
j=1

[
ηn,j

0

]
+
[
εn

0

]
, n ∈ N, (5)

hence (Y n)n∈Z+ is a (special) 2-type Galton–Watson process with immigration and
with initial vector

Y 0 =
[

X0
X−1

]
.
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In fact, the type 1 and 2 individuals are identified with individuals of age 0 and 1,
respectively, and for each n, i, j ∈ N, at time n, the ith individual of type 1 of the
(n − 1)th generation produces ξn,i individuals of type 1 and exactly one individual
of type 2, and the j th individual of type 2 of the (n − 1)th generation produces ηn,j

individuals of type 1 and no individual of type 2.
The representation (5) works backwards as well, namely, let (Y k)k∈Z+ be a special

2-type Galton–Watson process with immigration given by

Y k =
Yk−1,1∑
j=1

[
ξk,j,1,1

1

]
+

Yk−1,2∑
j=1

[
ξk,j,2,1

0

]
+
[
εk,1

0

]
, k ∈ N, (6)

where Y 0 is a 2-dimensional integer-valued random vector. Here, for each k, j ∈ N

and i ∈ {1, 2}, ξk,j,i,1 denotes the number of type 1 offsprings in the kth generation
produced by the j th offspring of the (k − 1)th generation of type i, and εk denotes the
number of type 1 immigrants in the kth generation. For the second coordinate process
of (Y k)k∈Z+ , we get Yk,2 = Yk−1,1, k ∈ N, and substituting this into (6), the first
coordinate process of (Y k)k∈Z+ satisfies

Yk,1 =
Yk−1,1∑
j=1

ξk,j,1,1 +
Yk−2,1∑
j=1

ξk,j,2,1 + εk,1, k � 2.

Thus, the first coordinate process of (Y k)k∈Z+ given by (6) satisfies equation (2) with
Xn := Yn,1, ξn,i := ξn,i,1,1, ηn,j := ξn,j,2,1, εn := εn,1, n, i, j ∈ N, and with the
initial values X0 := Y0,1 and X−1 := Y0,2, i.e., it is a second-order Galton–Watson
process with immigration.

Note that, for a second-order Galton–Watson process (Xn)n�−1 (without immi-
gration), the additive (or branching) property of a 2-type Galton–Watson process
(without immigration) (see, e.g. in Athreya and Ney [1, Chapter V, Section 1]), to-
gether with the law of total probability, for each n ∈ N, implies

Xn
D=

X0∑
i=1

ζ
(n)
i,0 +

X−1∑
j=1

ζ
(n)
j,−1, (7)

where
{
(X0, X−1), ζ

(n)
i,0 , ζ

(n)
j,−1 : i, j ∈ N

}
are independent random variables such that

{ζ (n)
i,0 : i ∈ N} are independent copies of Vn,0 and {ζ (n)

j,−1 : j ∈ N} are independent
copies of Vn,−1, where (Vk,0)k�−1 and (Vk,−1)k�−1 are second-order Galton–Watson
processes (without immigration) with initial values V0,0 = 1, V−1,0 = 0, V0,−1 = 0
and V−1,−1 = 1, and with the same offspring distributions as (Xk)k�−1.

Moreover, if (Xn)n�−1 is a second-order Galton–Watson process with immigra-
tion, then for each n ∈ N, we have

Xn = V
(n)
0 (X0, X−1) +

n∑
i=1

V
(n−i)
i (εi , 0),
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where
{
V

(n)
0 (X0, X−1), V

(n−i)
i (εi , 0) : i ∈ {1, . . . , n}} are independent random vari-

ables such that V
(n)
0 (X0, X−1) represents the number of newborns at time n, re-

sulting from the initial individuals X0 at time 0 and X−1 at time −1, and for each
i ∈ {1, . . . , n}, V

(n−i)
i (εi , 0) represents the number of newborns at time n, resulting

from the immigration εi at time i, see the ArXiv version [2] of this paper.
Our next aim is to derive an explicit formula for the expectation of a subcritical

second-order Galton–Watson process with immigration at time n and to describe its
asymptotic behavior as n → ∞.

Recall that ξ , η and ε are random variables such that ξ
D= ξ1,1, η

D= η1,1 and ε
D=

ε1, and we put mξ = E(ξ) ∈ [0,∞], mη = E(η) ∈ [0,∞] and mε = E(ε) ∈ [0,∞].
If mξ ∈ R+, mη ∈ R+, mε ∈ R+, E(X0) ∈ R+ and E(X−1) ∈ R+, then (2) implies

E(Xn |FX
n−1) = Xn−1mξ + Xn−2mη + mε, n ∈ N,

where FX
n := σ(X−1, X0, . . . , Xn), n ∈ Z+. Consequently,

E(Xn) = mξ E(Xn−1) + mη E(Xn−2) + mε, n ∈ N,

which can be written in the matrix form[
E(Xn)

E(Xn−1)

]
= Mξ,η

[
E(Xn−1)

E(Xn−2)

]
+
[
mε

0

]
, n ∈ N,

with

Mξ,η :=
[
mξ mη

1 0

]
. (8)

Note that Mξ,η is the mean matrix of the 2-type Galton–Watson process (Y n)n∈Z+
given in (4). Thus, we conclude[

E(Xn)

E(Xn−1)

]
= Mn

ξ,η

[
E(X0)

E(X−1)

]
+

n∑
k=1

Mn−k
ξ,η

[
mε

0

]
, n ∈ N.

Hence, the asymptotic behavior of the sequence (E(Xn))n∈N depends on the asymp-
totic behavior of the powers (Mn

ξ,η)n∈N, which is related to the spectral radius 


of Mξ,η. The matrix Mξ,η has eigenvalues λ+ and λ− given in (3) and satisfy-
ing λ+ ∈ R+ and λ− ∈ [−λ+, 0], hence the spectral radius of Mξ,η is 
 = λ+.
If (Xn)n�−1 is a second-order Galton–Watson process with immigration such that
mξ ∈ R+ and mη ∈ R+, then (Xn)n�−1 is called subcritical, critical or supercritical
if 
 < 1, 
 = 1 or 
 > 1, respectively. It is easy to check that a second-order Galton–
Watson process with immigration is subcritical, critical or supercritical if and only if
mξ + mη < 1, mξ + mη = 1 or mξ + mη > 1, respectively.

Lemma 1. Let (Xn)n�−1 be a second-order Galton–Watson process with immigra-
tion such that mξ ,mη ∈ (0, 1) with mξ + mη < 1, mε ∈ R+, E(X0) ∈ R+ and
E(X−1) ∈ R+. Then, for all n ∈ N, we have

E(Xn) = λn+1+ − λn+1−
λ+ − λ−

E(X0) + λn+ − λn−
λ+ − λ−

mη E(X−1)

+ 1

λ+ − λ−

(
λ+

1 − λn+
1 − λ+

− λ−
1 − λn−
1 − λ−

)
mε,

(9)
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and hence

E(Xn) = mε

(1 − λ+)(1 − λ−)
+ O(λn+) as n → ∞.

Further, in case of mε = 0, i.e., when there is no immigration, we have the following
more precise statements:

E(Xn) = λ+ E(X0) + mη E(X−1)

λ+ − λ−
λn+ + O(|λ−|n) as n → ∞,

and
E(Xn) � 
n

E(X0) + 
n−1mη E(X−1), n ∈ N. (10)

The first moment of a subcritical second-order Galton–Watson process (Xn)n�−1
(without immigration) can be estimated by (10). Next, we present an auxiliary lemma
on an estimation of the second moment of a subcritical second-order Galton–Watson
process (without immigration).

Lemma 2. Let (Xn)n�−1 be a second-order Galton–Watson process (without immi-
gration) such that mξ ,mη ∈ (0, 1) with mξ +mη < 1, X0 = 1, X−1 = 0, E(ξ2) < ∞
and E(η2) < ∞. Then for all n ∈ N,

E(X2
n) �

(
1 + Var(ξ)


(1 − 
)
+ Var(η)


2(1 − 
)

)

n.

The proofs of Lemmata 1 and 2 together with statements in the critical and super-
critical cases can be found in the ArXiv version [2] of this paper.

Next, we recall 2-type Galton–Watson processes with immigration. For each
k, j ∈ Z+ and i, � ∈ {1, 2}, the number of individuals of type i born or arrived
as immigrants in the kth generation will be denoted by Xk,i , the number of type �

offsprings produced by the j th individual who is of type i belonging to the (k − 1)th

generation will be denoted by ξk,j,i,�, and the number of type i immigrants in the kth

generation will be denoted by εk,i . Then we have[
Xk,1
Xk,2

]
=

Xk−1,1∑
j=1

[
ξk,j,1,1
ξk,j,1,2

]
+

Xk−1,2∑
j=1

[
ξk,j,2,1
ξk,j,2,2

]
+
[
εk,1
εk,2

]
, k ∈ N.

Here
{
X0, ξ k,j,i , εk : k, j ∈ N, i ∈ {1, 2}} are supposed to be independent, and

{ξ k,j,1 : k, j ∈ N}, {ξ k,j,2 : k, j ∈ N} and {εk : k ∈ N} are supposed to consist of
identically distributed random vectors, where

X0 :=
[
X0,1
X0,2

]
, ξ k,j,i :=

[
ξk,j,i,1
ξk,j,i,2

]
, εk :=

[
εk,1
εk,2

]
.

For notational convenience, let ξ1, ξ2 and ε be random vectors such that ξ1
D= ξ1,1,1,

ξ2
D= ξ1,1,2 and ε

D= ε1, and put mξ1
:= E(ξ1) ∈ [0,∞]2, mξ2

:= E(ξ2) ∈ [0,∞]2,
mε := E(ε) ∈ [0,∞]2, and

Mξ := [mξ1
mξ2

] ∈ [0,∞]2×2.

We call Mξ the offspring mean matrix, and note that many authors define the off-
spring mean matrix as M	

ξ . If mξ1
∈ R

2+, mξ2
∈ R

2+, the spectral radius of Mξ
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is less than 1, Mξ is primitive, i.e., there exists m ∈ N such that Mm
ξ ∈ R

2×2++ ,

P(ε = 0) < 1 and E(1{ε 
=0} log((e1 + e2)
	ε)) < ∞, then, by the Theorem in Quine

[17], there exists a unique stationary distribution π for (Xn)n∈Z+ . As a consequence
of formula (16) for the probability generating function of π in Quine [17], we have

n∑
i=0

V
(i)
i (εi )

D−→ π as n → ∞,

where (V
(i)
k (εi ))k∈Z+ , i ∈ Z+, are independent copies of a 2-type Galton–Watson

process (V k(ε))k∈Z+ (without immigration) with an initial vector V 0(ε) = ε and
with the same offspring distributions as (Xk)k∈Z+ . Consequently, we have

∞∑
i=0

V
(i)
i (εi )

D= π , (11)

where the series
∑∞

i=0 V
(i)
i (εi ) converges with probability 1, see, e.g., Heyer [9, The-

orem 3.1.6]. The above representation of the stationary distribution π for (Xn)n∈Z+
can be interpreted in a way that we consider independent 2-type Galton–Watson pro-
cesses without immigration such that the ith one admits initial vector εi , i ∈ Z+,
evaluate the ith 2-type Galton–Watson processes at time point i, and then sum up all
these random variables.

Next, we give sufficient conditions for the strong stationarity of a subcritical
second-order Galton–Watson process with immigration.

Lemma 3. If (Xn)n�−1 is a second-order Galton–Watson process with immigration
such that mξ ,mη ∈ (0, 1) with mξ + mη < 1, P(ε = 0) < 1 and

∑∞
j=1 P(ε =

j) log(j) < ∞, then the distribution of the initial values (X0, X−1) can be uniquely
chosen so that the process becomes strongly stationary, and we have a representation

X0
D=

∞∑
i=0

V
(i)
i (εi), (12)

where the series converges with probability 1 and (V
(i)
k (εi))k�−1, i ∈ Z+, are in-

dependent copies of (Vk(ε))k�−1, which is a second-order Galton–Watson process
(without immigration) with the initial values V0(ε) = ε and V−1(ε) = 0, and with
the same offspring distributions as (Xk)k�−1. In fact, the distribution of (X0, X−1) is
the unique stationary distribution of the corresponding special 2-type Galton–Watson
process (Y n)n∈Z+ with immigration given in (5).

Proof. First we show that the process (Xn)n�−1 is strongly stationary if and only if
the distribution of the initial population sizes (X0, X−1)

	 coincides with the sta-

tionary distribution π of the Markov chain (Y k)k∈Z+ . If (X0, X−1)
	 D= π , then

Y 0
D= π , thus (Y k)k∈Z+ is strongly stationary, and hence for each n,m ∈ Z0,

(Y 0, . . . ,Y n)
D= (Ym, . . . ,Y n+m), yielding

(X0, X−1, X1, X0, . . . , Xn,Xn−1)

D= (Xm,Xm−1, Xm+1, Xm, . . . , Xn+m,Xn+m−1).
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Especially, (X−1, X0, X1, . . . , Xn)
D= (Xm−1, Xm,Xm+1, . . . , Xn+m), hence

(Xn)n�−1 is strongly stationary. Since

(Xm,Xm−1, Xm+1, Xm, . . . , Xn+m,Xn+m−1)

is a continuous function of (Xm−1, Xm,Xm+1, . . . , Xn+m), these considerations
work backwards as well. Consequently, π is the unique stationary distribution of the
second-order Markov chain (Xn)n�−1.

The offspring mean matrix of (Y n)n∈Z+ has the form[
mξ mη

1 0

]
= Mξ,η,

the spectral radius of Mξ,η is 
 which is less than 1, and Mξ,η is primitive, since

M2
ξ,η =

[
mξ mη

1 0

]2

=
[
m2

ξ + mη mξmη

mξ mη

]
∈ (0,∞)2.

Hence, as it was recalled earlier, there exists a unique stationary distribution π for
(Y n)n∈Z+ . Moreover, the stationary distribution π of (Y n)n∈Z+ has a representa-
tion given in (11). Using the considerations for the backward representation, we
have (e	

1 V k(ε))k∈Z+ = (Vk(ε))k∈Z+ and (e	
2 V k(ε))k∈Z+ = (Vk−1(ε))k∈Z+ , where

(Vk(ε))k�−1 is a second-order Galton–Watson process (without immigration) with
initial values V0(ε) = ε and V−1(ε) = 0, and with the same offspring distributions as
(Xk)k�−1. Consequently, the marginals of the stationary distribution π are the same
distributions π . So, under the given conditions, (Xn)n�−1 is strongly stationary if and
only if the distribution of (X0, X−1) coincides with π . In this case the distribution of
X0 is π , and it admits the representation (12).

Note also that (Xn)n�−1 is only a second-order Markov chain, but not a Markov
chain.

Remark 1. Note that there is no overlap between the results in the recent paper of
Bősze and Pap [5] on non-stationary second-order Galton–Watson processes with
immigration and in the present paper. In [5] the authors always suppose that the ini-
tial values X0 and X−1 of a second-order Galton–Watson process with immigration
(Xn)n�−1 are independent, so in the results of [5] the distribution of (X0, X−1) can-
not be chosen as the unique stationary distribution π of the special 2-type Galton–
Watson process (Y n)n∈Z+ with immigration given in (5), since the marginals of π are
not independent in general.

3 Proof of Theorem 2

For the proof of Theorem 2, we need an auxiliary result on the tail behaviour of
second-order Galton–Watson processes (without immigration) (Xn)n�−1 such that
X0 is regularly varying and X−1 = 0.
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Proposition 1. Let (Xn)n�−1 be a second-order Galton–Watson process (without
immigration) such that X0 is regularly varying with index β0 ∈ R+, X−1 = 0, mξ ∈
(0,∞) and mη ∈ R+. In case of β0 ∈ [1,∞), assume additionally that there exists
r ∈ (β0,∞) with E(ξ r ) < ∞ and E(ηr) < ∞. Then for all n ∈ N,

P(Xn > x) ∼ mβ0
n P(X0 > x) as x → ∞,

where mi , i ∈ Z+, are given in Theorem 2, and hence, Xn is also regularly varying
with index β0 for each n ∈ N.

Proof of Proposition 1. Let us fix n ∈ N. In view of the additive property (7), it is
sufficient to prove

P

( X0∑
i=1

ζ
(n)
i,0 > x

)
∼ mβ0

n P(X0 > x) as x → ∞.

This follows from Proposition A.1, since E(ζ
(n)
1,0 ) = mn ∈ (0,∞), n ∈ N, by (9).

Proof of Theorem 2. We will use the ideas of the proof of Theorem 2.1.1 in
Basrak et al. [4] and the representation (12) of the distribution of X0. Recall that
(V

(i)
k (εi))k�−1, i ∈ Z+, are independent copies of (Vk(ε))k�−1, which is a second-

order Galton–Watson process (without immigration) with the initial values V0(ε) = ε

and V−1(ε) = 0, and with the same offspring distributions as (Xk)k�−1. Due to the
representation (7), for each i ∈ Z+, we have

V
(i)
i (εi)

D=
εi∑

j=1

ζ
(i)
j,0,

where
{
εi, ζ

(i)
j,0 : j ∈ N

}
are independent random variables such that {ζ (i)

j,0 : j ∈ N}
are independent copies of Vi,0, where (Vk,0)k�−1 is a second-order Galton–Watson
process (without immigration) with the initial values V0,0 = 1 and V−1,0 = 0, and
with the same offspring distributions as (Xk)k�−1. For each i ∈ Z+, by Proposition

1, we obtain P(V
(i)
i (εi) > x) ∼ mα

i P(ε > x) as x → ∞, yielding that the random

variables V
(i)
i (εi), i ∈ Z+, are also regularly varying with index α. Since V

(i)
i (εi),

i ∈ Z+, are independent, for each n ∈ Z+, by Lemma A.5, we have

P

( n∑
i=0

V
(i)
i (εi) > x

)
∼

n∑
i=0

mα
i P(ε > x) as x → ∞, (13)

and hence the random variables
∑n

i=0 V
(i)
i (εi), n ∈ Z+, are also regularly varying

with index α. For each n ∈ N, using that V
(i)
i (εi), i ∈ Z+, are non-negative, we have

lim inf
x→∞

P(X0 > x)

P(ε > x)
= lim inf

x→∞
P(
∑∞

i=0 V
(i)
i (εi) > x)

P(ε > x)

� lim inf
x→∞

P(
∑n

i=0 V
(i)
i (εi) > x)

P(ε > x)
=

n∑
i=0

mα
i ,



326 M. Barczy et al.

hence, letting n → ∞, we obtain

lim inf
x→∞

P(X0 > x)

P(ε > x)
�

∞∑
i=0

mα
i . (14)

Moreover, for each n ∈ N and q ∈ (0, 1), we have

lim sup
x→∞

P(X0 > x)

P(ε > x)
= lim sup

x→∞
P
(∑n−1

i=0 V
(i)
i (εi) +∑∞

i=n V
(i)
i (εi) > x

)
P(ε > x)

� lim sup
x→∞

P
(∑n−1

i=0 V
(i)
i (εi) > (1 − q)x

)+ P
(∑∞

i=n V
(i)
i (εi) > qx

)
P(ε > x)

� L1,n(q) + L2,n(q)

with

L1,n(q) := lim sup
x→∞

P
(∑n−1

i=0 V
(i)
i (εi) > (1 − q)x

)
P(ε > x)

,

L2,n(q) := lim sup
x→∞

P
(∑∞

i=n V
(i)
i (εi) > qx

)
P(ε > x)

.

Since ε is regularly varying with index α, by (13), we obtain

L1,n(q) = lim sup
x→∞

P
(∑n−1

i=0 V
(i)
i (εi) > (1 − q)x

)
P(ε > (1 − q)x)

· P(ε > (1 − q)x)

P(ε > x)

= (1 − q)−α

n−1∑
i=0

mα
i

and

L2,n(q) = lim sup
x→∞

P
(∑∞

i=n V
(i)
i (εi) > qx

)
P(ε > qx)

· P(ε > qx)

P(ε > x)

= q−α lim sup
x→∞

P
(∑∞

i=n V
(i)
i (εi) > qx

)
P(ε > qx)

,

and hence

lim
n→∞ L1,n(q) = (1 − q)−α

∞∑
i=0

mα
i ,

lim
n→∞ L2,n(q) = q−α lim

n→∞ lim sup
x→∞

P
(∑∞

i=n V
(i)
i (εi) > qx

)
P(ε > qx)

.

The aim of the following discussion is to show

lim
n→∞ lim sup

x→∞
P
(∑∞

i=n V
(i)
i (εi) > qx

)
P(ε > qx)

= 0, q ∈ (0, 1). (15)
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First, we consider the case α ∈ (0, 1). For each x ∈ (0,∞), n ∈ N and δ ∈ (0, 1),
we have

P

( ∞∑
i=n

V
(i)
i (εi) > x

)

= P

(∑
i�n

V
(i)
i (εi) > x, sup

i�n


iεi > (1 − δ)x

)

+ P

(∑
i�n

V
(i)
i (εi) > x, sup

i�n


iεi � (1 − δ)x

)

= P

(∑
i�n

V
(i)
i (εi) > x, sup

i�n


iεi > (1 − δ)x

)

+ P

(∑
i�n

V
(i)
i (εi)1{εi�(1−δ)
−ix} > x, sup

i�n


iεi � (1 − δ)x

)

� P

(
sup
i�n


iεi > (1 − δ)x

)
+ P

(∑
i�n

V
(i)
i (εi)1{εi�(1−δ)
−ix} > x

)
=: P1,n(x, δ) + P2,n(x, δ),

where 
 = λ+. By subadditivity of probability,

P1,n(x, δ) �
∑
i�n

P(
iεi > (1 − δ)x) =
∑
i�n

P(ε > (1 − δ)
−ix).

Using Potter’s upper bound (see Lemma A.6), for δ ∈ (0, α
2 ), there exists x0 ∈ (0,∞)

such that

P(ε > (1 − δ)
−ix)

P(ε > x)
< (1 + δ)[(1 − δ)
−i]−α+δ < (1 + δ)[(1 − δ)
−i]− α

2 (16)

if x ∈ [x0,∞) and (1 − δ)
−i ∈ [1,∞), which holds for sufficiently large i ∈ N due
to 
 ∈ (0, 1). Consequently, if δ ∈ (0, α

2 ), then

lim
n→∞ lim sup

x→∞
P1,n(x, δ)

P(ε > x)
� lim

n→∞
∑
i�n

(1 + δ)[(1 − δ)
−i]− α
2 = 0,

since 

α
2 < 1 (due to 
 ∈ (0, 1)) yields

∑∞
i=0(


−i )−α/2 < ∞. Now we turn to prove

that limn→∞ lim supx→∞
P2,n(x,δ)

P(ε1>x)
= 0. By Markov’s inequality,

P2,n(x, δ) � 1

x

∑
i�n

E
(
V

(i)
i (εi)1{εi�(1−δ)
−ix}

)
.

By the representation V
(i)
i (εi)

D=∑εi

j=1 ζ
(i)
j,0, we have

E
(
V

(i)
i (εi)1{εi�(1−δ)
−i x}

) = E

( εi∑
j=1

ζ
(i)
j,01{εi�(1−δ)
−ix}

)
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= E

[
E

( εi∑
j=1

ζ
(i)
j,01{εi�(1−δ)
−ix}

∣∣∣∣ εi

)]
= E

( εi∑
j=1

E(ζ
(i)
1,0)1{εi�(1−δ)
−ix}

)
= E(ζ

(i)
1,0)E

(
εi1{εi�(1−δ)
−i x}

)
,

since {ζ (i)
j,0 : j ∈ N} and εi are independent. Moreover,

E
(
εi1{εi�(1−δ)
−ix}

) = E
(
ε1{ε�(1−δ)
−ix}

) =
∫ ∞

0
P
(
ε1{ε�(1−δ)
−ix} > t

)
dt

=
∫ (1−δ)
−i x

0
P(t < ε � (1 − δ)
−ix) dt �

∫ (1−δ)
−ix

0
P(ε > t) dt.

By Karamata’s theorem (see Theorem A.1), we have

lim
y→∞

∫ y

0 P(ε > t) dt

y P(ε > y)
= 1

1 − α
,

thus there exists y0 ∈ (0,∞) such that∫ y

0
P(ε > t) dt � 2y P(ε > y)

1 − α
, y ∈ [y0,∞),

hence ∫ (1−δ)
−i x

0
P(ε > t) dt � 2(1 − δ)
−ix P(ε > (1 − δ)
−ix)

1 − α

whenever (1−δ)
−ix ∈ [y0,∞), which holds for i � n with sufficiently large n ∈ N

and x ∈ [(1 − δ)−1
ny0,∞) due to 
 ∈ (0, 1). Thus, for sufficiently large n ∈ N and
x ∈ [(1 − δ)−1
ny0,∞), we obtain

P2,n(x, δ)

P(ε > x)
� 1

x P(ε > x)

∑
i�n

E(ζ
(i)
1,0)

∫ (1−δ)
−i x

0
P(ε > t) dt

� 2(1 − δ)

1 − α

∑
i�n

P(ε > (1 − δ)
−ix)

P(ε > x)
,

since E(ζ
(i)
1,0) � 
i , i ∈ Z+, by (10) and ζ

(0)
1,0 = 1. Using (16), we get

P2,n(x, δ)

P(ε > x)
� 2(1 − δ)

1 − α

∑
i�n

(1 + δ)[(1 − δ)
−i]− α
2

for δ ∈ (0, α
2 ), for sufficiently large n ∈ N and for all x ∈ [max(x0, (1 − δ)−1
ny0),

∞). Hence for δ ∈ (0, α
2 ) we have

lim
n→∞ lim sup

x→∞
P2,n(x, δ)

P(ε > x)
� lim

n→∞
2(1 − δ2)

1 − α

∑
i�n

[(1 − δ)
−i]− α
2 = 0,



On tail behaviour of stationary second-order Galton–Watson processes with immigration 329

where the last step follows by the fact that the series
∑∞

i=0(

i)

α
2 is convergent, since


 ∈ (0, 1).
Consequently, due to the fact that P(

∑∞
i=n V

(i)
i (εi) > x)�P1,n(x, δ)+P2,n(x, δ),

x ∈ (0,∞), n ∈ N, δ ∈ (0, 1), we obtain (15), and we conclude limn→∞ L2,n(q) = 0
for all q ∈ (0, 1). Thus we obtain

lim sup
x→∞

P(X0 > x)

P(ε > x)
� lim

n→∞ L1,n(q) + lim
n→∞ L2,n(q) = (1 − q)−α

∞∑
i=0

mα
i

for all q ∈ (0, 1). Letting q ↓ 0, this yields

lim sup
x→∞

P(X0 > x)

P(ε > x)
�

∞∑
i=0

mα
i .

Taking into account (14), the proof of (15) is complete in case of α ∈ (0, 1).
Next, we consider the case α ∈ [1, 2). Note that (15) is equivalent to

lim
n→∞ lim sup

x→∞
P
(∑∞

i=n V
(i)
i (εi) >

√
x
)

P(ε >
√

x)

= lim
n→∞ lim sup

x→∞
P
((∑∞

i=n V
(i)
i (εi)

)2
> x

)
P(ε2 > x)

= 0.

Repeating a similar argument as for α ∈ (0, 1), we obtain

P

(( ∞∑
i=n

V
(i)
i (εi)

)2

> x

)

= P

(( ∞∑
i=n

V
(i)
i (εi)

)2

> x, sup
i�n


2iε2
i > (1 − δ)x

)

+ P

(( ∞∑
i=n

V
(i)
i (εi)

)2

> x, sup
i�n


2iε2
i � (1 − δ)x

)

= P

(( ∞∑
i=n

V
(i)
i (εi)

)2

> x, sup
i�n


2iε2
i > (1 − δ)x

)

+ P

(( ∞∑
i=n

V
(i)
i (εi)1{ε2

i �(1−δ)
−2ix}

)2

> x, sup
i�n


2iε2
i � (1 − δ)x

)

� P

(
sup
i�n


2iε2
i > (1 − δ)x

)
+ P

(( ∞∑
i=n

V
(i)
i (εi)1{ε2

i �(1−δ)
−2i x}

)2

> x

)
=: P1,n(x, δ) + P2,n(x, δ)

for each x ∈ (0,∞), n ∈ N and δ ∈ (0, 1). By the subadditivity of probability,

P1,n(x, δ) �
∞∑

i=n

P(
2iε2
i > (1 − δ)x) =

∞∑
i=n

P(ε2 > (1 − δ)
−2ix)
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for each x ∈ (0,∞), n ∈ N and δ ∈ (0, 1). Since ε2 is regularly varying with index α
2

(see Lemma A.1), using Potter’s upper bound (see Lemma A.6) for δ ∈ (0, α
4

)
, there

exists x0 ∈ (0,∞) such that

P(ε2 > (1 − δ)
−2ix)

P(ε2 > x)
< (1+δ)[(1−δ)
−2i]− α

2 +δ < (1+δ)[(1−δ)
−2i]− α
4 (17)

if x ∈ [x0,∞) and (1 − δ)
−2i ∈ [1,∞), which holds for sufficiently large i ∈ N

(due to 
 ∈ (0, 1)). Consequently, if δ ∈ (0, α
4 ), then

lim
n→∞ lim sup

x→∞
P1,n(x, δ)

P(ε2 > x)
� lim

n→∞

∞∑
i=n

(1 + δ)[(1 − δ)
−2i]− α
4 = 0,

since 

α
2 < 1 (due to 
 ∈ (0, 1)). By Markov’s inequality, for x ∈ (0,∞), n ∈ N and

δ ∈ (0, 1), we have

P2,n(x, δ)

P(ε2 > x)
� 1

x P(ε2 > x)
E

(( ∞∑
i=n

V
(i)
i (εi)1{ε2

i �(1−δ)
−2i x}

)2)

= 1

x P(ε2 > x)
E

( ∞∑
i=n

V
(i)
i (εi)

21{ε2
i �(1−δ)
−2ix}

)

+ 1

x P(ε2 > x)
E

( ∞∑
i,j=n, i 
=j

V
(i)
i (εi)V

(j)
j (εj )1{ε2

i �(1−δ)
−2ix}1{ε2
j�(1−δ)
−2j x}

)
=: J2,1,n(x, δ) + J2,2,n(x, δ)

for each x ∈ (0,∞), n ∈ N and δ ∈ (0, 1). By Lemma 2, (9) and (10) with X0 = 1
and X−1 = 0, we have

E(V
(i)
i (n)2) = E

⎛⎜⎝
⎛⎝ n∑

j=1

ζ
(i)
j,0

⎞⎠2
⎞⎟⎠ =

n∑
j=1

E
(
(ζ

(i)
j,0)

2)+
n∑

j,�=1, j 
=�

E
(
ζ

(i)
j,0

)
E
(
ζ

(i)
�,0

)

� csub

n∑
j=1


i +
n∑

j,�=1, j 
=�


i
i � csubn
i + (n2 − n)
2i

� csub

in + 
2in2

for i, n ∈ N. Hence, using that (εi, V
(i)
i (εi))

D= (εi,
∑εi

j=1 ζ
(i)
j,0

)
and that εi and {ζ (i)

j,0 :
j ∈ N} are independent, we have

J2,1,n(x, δ) =
∞∑

i=n

E
(
V

(i)
i (εi)

21{ε2
i �(1−δ)
−2i x}

)
x P(ε2 > x)

=
∞∑

i=n

E
((∑εi

j=1 ζ
(i)
j,0

)2
1{εi�(1−δ)

1
2 
−ix

1
2 }
)

x P(ε2 > x)
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=
∞∑

i=n

∑
0���(1−δ)

1
2 
−i x

1
2
E

((∑�
j=1 ζ

(i)
j,0

)2)
P(εi = �)

x P(ε2 > x)

�
∞∑

i=n

∑
0���(1−δ)

1
2 
−i x

1
2

(
csub


i� + 
2i�2
)
P(ε = �)

x P(ε2 > x)

=
∞∑

i=n

csub

i
E(ε1{ε2�(1−δ)
−2ix})

x P(ε2 > x)

+
∞∑

i=n


2i
E(ε21{ε2�(1−δ)
−2ix})

x P(ε2 > x)

=: J2,1,1,n(x, δ) + J2,1,2,n(x, δ).

Since ε2 is regularly varying with index α
2 ∈ [ 1

2 , 1) (see Lemma A.1), by Karamata’s
theorem (see Theorem A.1), we have

lim
y→∞

∫ y

0 P(ε2 > t) dt

y P(ε2 > y)
= 1

1 − α
2

,

thus there exists y0 ∈ (0,∞) such that∫ y

0
P(ε2 > t) dt � 2y P(ε2 > y)

1 − α
2

, y ∈ [y0,∞),

hence

E(ε21{ε2�(1−δ)
−2ix}) =
∫ ∞

0
P(ε21{ε2�(1−δ)
−2ix} > y) dy

=
∫ (1−δ)
−2i x

0
P(y < ε2 � (1 − δ)
−2ix) dy

�
∫ (1−δ)
−2i x

0
P(ε2 > t) dt

� 2(1 − δ)
−2ix P(ε2 > (1 − δ)
−2ix)

1 − α
2

whenever (1 − δ)
−2ix ∈ [y0,∞), which holds for i � n with sufficiently large
n ∈ N, and x ∈ [(1 − δ)−1
2ny0,∞) due to 
 ∈ (0, 1). Thus for δ ∈ (0, α

4 ),
for sufficiently large n ∈ N (satisfying (1 − δ)
−2n ∈ (1,∞) as well) and for all
x ∈ [max(x0, (1 − δ)−1
2ny0),∞), using (17), we obtain

J2,1,2,n(x, δ) � 2(1 − δ)

1 − α
2

∞∑
i=n

P(ε2 > (1 − δ)
−2ix)

P(ε2 > x)

� 2(1 − δ)

1 − α
2

∞∑
i=n

(1 + δ)[(1 − δ)
−2i]− α
4
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= 2(1 − δ2)

1 − α
2

∞∑
i=n

[(1 − δ)
−2i]− α
4 .

Hence for δ ∈ (0, α
4 ), we have

lim
n→∞ lim sup

x→∞
J2,1,2,n(x, δ) � 2(1 − δ2)

1 − α
2

lim
n→∞

∞∑
i=n

[(1 − δ)
−2i]− α
4 = 0,

yielding limn→∞ lim supx→∞ J2,1,2,n(x, δ) = 0 for δ ∈ (0, α
4 ). Further, if α ∈ (1, 2),

or α = 1 and mε < ∞, we have

J2,1,1,n(x, δ) � csub

∞∑
i=n


i mε

x P(ε2 > x)
,

and hence, using that limx→∞ x P(ε2 > x) = ∞ (see Lemma A.2),

lim
n→∞ lim sup

x→∞
J2,1,1,n(x, δ) � csubmε lim

n→∞

( ∞∑
i=n


i

)
lim sup
x→∞

1

x P(ε2 > x)
= 0,

yielding limn→∞ lim supx→∞ J2,1,1,n(x, δ) = 0 for δ ∈ (0, 1).
If α = 1 and mε = ∞, then we have

J2,1,1,n(x, δ) =
∞∑

i=n

csub

i
E
(
ε1{ε�(1−δ)

1
2 
−i x

1
2 }
)

x P(ε2 > x)

for x ∈ (0,∞), n ∈ N and δ ∈ (0, 1). Note that

E(ε1{ε�y}) �
∫ ∞

0
P(ε1{ε�y} > t) dt =

∫ y

0
P(t < ε � y) dt

�
∫ y

0
P(t < ε) dt =: L̃(y)

for y ∈ R+. Because of α = 1, Proposition 1.5.9a in Bingham et al. [6] yields that
L̃ is a slowly varying function (at infinity). By Potter’s bounds (see Lemma A.6), for
every δ ∈ (0,∞), there exists z0 ∈ (0,∞) such that

L̃(y)

L̃(z)
< (1 + δ)

(
y

z

)δ

for z � z0 and y � z. Hence, for x � z2
0, we have

E
(
ε1{ε�(1−δ)

1
2 
−ix

1
2 }
)
� L̃

(
(1 − δ)

1
2 
−ix

1
2
)
� L̃(
−ix

1
2 ) � (1 + δ)
−iδL̃(x

1
2 )

for i � n, where we also used that L̃ is monotone increasing. Using this, we conclude
that for every δ ∈ (0,∞), there exists z0 ∈ (0,∞) such that for x � z2

0, we have

J2,1,1,n(x, δ) � (1 + δ)csub
L̃(x

1
2 )

x P(ε2 > x)

∞∑
i=n


−iδ.
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Here, since 
 ∈ (0, 1) and δ ∈ (0,∞), we have limn→∞
∑∞

i=n 
−iδ = 0, and

L̃(
√

x)

x P(ε2 > x)
= L̃(

√
x)

x1/4 · 1

x3/4 P(ε >
√

x)
→ 0 as x → ∞,

by Lemma A.2, due to the fact that L̃ is slowly varying and the function
(0,∞) 
 x �→ P(ε >

√
x) is regularly varying with index −1/2. Hence

limn→∞ lim supx→∞ J2,1,1,n(x, δ) = 0 for δ ∈ (0, 1) in case of α = 1 and mε = ∞.
Consequently, we have limn→∞ lim supx→∞ J2,1,n(x, δ) = 0 for δ ∈ (0, α

4 ).
Now we turn to prove limn→∞ lim supx→∞ J2,2,n(x, δ) = 0 for δ ∈ (0, 1). Using

that {(εi, V
(i)
i (εi)) : i ∈ N} are independent, we have

J2,2,n(x, δ) � 1

x P(ε2 > x)

∞∑
i,j=n, i 
=j

E(V
(i)
i (εi)1{ε2

i �(1−δ)
−2ix})

× E(V
(j)
j (εj )1{ε2

j�(1−δ)
−2j x}).

Here, using that
(
εi, V

(i)
i (εi)

) D= (
εi,
∑εi

j=1 ζ
(i)
j,0

)
, where εi and {ζ (i)

j,0 : j ∈ N} are

independent, and (10) with X0 = 1 and X−1 = 0, we have

E(V
(i)
i (εi)1{ε2

i �(1−δ)
−2i x}) = E

⎛⎝⎛⎝ εi∑
j=1

ζ
(i)
j,0

⎞⎠1{ε2
i �(1−δ)
−2ix}

⎞⎠
=

�(1−δ)
1
2 
−i x

1
2 �∑

�=0

E

⎛⎝ �∑
j=1

ζ
(i)
j,0

⎞⎠P(εi = �) �
�(1−δ)

1
2 
−ix

1
2 �∑

�=0

�
i
P(εi = �)

= 
i
E(εi1{ε2

i �(1−δ)
−2ix})

for x ∈ (0,∞) and δ ∈ (0, 1). If α ∈ (1, 2), or α = 1 and mε < ∞, then

J2,2,n(x, δ)

� 1

x P(ε2 > x)

∞∑
i,j=n, i 
=j


i+j
E(εi1{ε2

i �(1−δ)
−2ix})E(εj1{ε2
j�(1−δ)
−2j x})

� m2
ε

x P(ε2 > x)

∞∑
i,j=n, i 
=j


i+j � m2
ε

x P(ε2 > x)

( ∞∑
i=n


i

)2

for x ∈ (0,∞) and δ ∈ (0, 1), and then, by Lemma A.2,

lim
n→∞ lim sup

x→∞
J2,2,n(x, δ) � m2

ε lim
n→∞

( ∞∑
i=n


i

)2

lim sup
x→∞

1

x P(ε2 > x)

= m2
ε

(
lim

n→∞

2n

(1 − 
)2

)
· 0 = 0,
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yielding that limn→∞ lim supx→∞ J2,2,n(x, δ) = 0.
If α = 1 and mε = ∞, then we can apply the same argument as for J2,1,1,n(x, δ).

Namely,

J2,2,n(x, δ) � (1 + δ)2

x P(ε2 > x)

∞∑
i,j=n, i 
=j


(1−δ)(i+j)(L̃(x
1
2 ))2

� (1 + δ)2 (L̃(x
1
2 ))2

x P(ε2 > x)

∞∑
i,j=n, i 
=j


(1−δ)(i+j)

= (1 + δ)2 (L̃(x
1
2 ))2

x P(ε2 > x)

( ∞∑
i=n


(1−δ)i

)2

for x ∈ (0,∞) and δ ∈ (0, 1), where

(L̃(x
1
2 ))2

x P(ε2 > x)
=
(

L̃(x
1
2 )

x
1
2

)2
1

x
3
4 P(ε >

√
x)

→ 0 as x → ∞,

yielding that limn→∞ lim supx→∞ J2,2,n(x, δ) = 0 for δ ∈ (0, 1) in case of α = 1
and mε = ∞ as well.

Consequently, limn→∞ lim supx→∞
P2,n(x,δ)

P(ε2>x)
= 0 for δ ∈ (0, α

4 ) yielding (15) in
case of α ∈ [1, 2) as well, and we conclude limn→∞ L2,n(q) = 0 for all q ∈ (0, 1).
The proof can be finished as in case of α ∈ (0, 1).

Remark 2. The statement of Theorem 2 remains true in the case when mξ ∈ (0, 1)

and mη = 0. In this case we get the statement for classical Galton–Watson processes,
see Theorem 2.1.1 in Basrak et al. [4] or Theorem 1. However, note that this is not a
special case of Theorem 2, since in this case the mean matrix Mξ,η is not primitive.

A Regularly varying distributions

First, we recall the notions of slowly varying and regularly varying functions, respec-
tively.

Definition A.1. A measurable function U : (0,∞) → (0,∞) is called regularly
varying at infinity with index ρ ∈ R if for all q ∈ (0,∞),

lim
x→∞

U(qx)

U(x)
= qρ.

In case of ρ = 0, U is called slowly varying at infinity.

Next, we recall the notion of regularly varying random variables.

Definition A.2. A non-negative random variable X is called regularly varying with
index α ∈ R+ if U(x) := P(X > x) ∈ (0,∞) for all x ∈ (0,∞), and U is regularly
varying at infinity with index −α.
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Lemma A.1. If ζ is a non-negative regularly varying random variable with index
α ∈ R+, then for each c ∈ (0,∞), ζ c is regularly varying with index α

c
.

Lemma A.2. If L : (0,∞) → (0,∞) is a slowly varying function (at infinity), then

lim
x→∞ xδL(x) = ∞, lim

x→∞ x−δL(x) = 0, δ ∈ (0,∞).

For Lemma A.2, see Bingham et al. [6, Proposition 1.3.6. (v)].

Lemma A.3. If ε is a non-negative regularly varying random variable with index
α ∈ (0,∞), then

∑∞
j=1 P(ε = j) log(j) < ∞.

Proof. Since
∑∞

j=1 P(ε = j) log(j) � E(log(ε + 1)), it is enough to prove that
E(log(ε + 1)) < ∞. Since log(ε + 1) � 0, we have

E(log(ε + 1)) =
∫ ∞

0
P(log(ε + 1) � x) dx =

∫ ∞

0
P(ε � ex − 1) dx

=
∫ 1

0
P(ε � ex − 1) dx +

∫ ∞

1
P(ε � ex − 1) dx := I1 + I2.

Here I1 � 1, and, by substitution y = ex − 1,

I2 =
∫ ∞

e−1
y−αL(y)

1

1 + y
dy,

where L(y) := yα
P(ε > y), y ∈ (0,∞), is a slowly varying function. By Lemma

A.2, there exists y0 ∈ (e − 1,∞) such that y− α
2 L(y) � 1 for all y ∈ [y0,∞). Hence

I2 =
∫ y0

e−1
y−αL(y)

1

1 + y
dy +

∫ ∞

y0

y−αL(y)
1

1 + y
dy

�
∫ y0

e−1
y−αL(y)

1

1 + y
dy +

∫ ∞

y0

y− α
2

1

1 + y
dy

�
∫ y0

e−1
y−αL(y)

1

1 + y
dy +

∫ ∞

y0

y− α
2 −1 dy

�
∫ y0

e−1

1

1 + y
dy +

∫ ∞

y0

y− α
2 −1 dy < ∞,

since y−αL(y) = P(ε > y) � 1 for all y ∈ (0,∞).

Lemma A.4. If X1 and X2 are non-negative regularly varying random variables with
index α1 ∈ R+ and α2 ∈ R+, respectively, such that α1 < α2, then P(X2 > x) =
o(P(X1 > x)) as x → ∞.

For a proof of Lemma A.4, see, e.g., Barczy et al. [3, Lemma C.7].

Lemma A.5 (Convolution property). If X1 and X2 are non-negative random vari-
ables such that X1 is regularly varying with index α1 ∈ R+ and P(X2 > x) =
o(P(X1 > x)) as x → ∞, then P(X1 + X2 > x) ∼ P(X1 > x) as x → ∞, and
hence X1 + X2 is regularly varying with index α1.
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If X1 and X2 are independent non-negative regularly varying random variables
with index α1 ∈ R+ and α2 ∈ R+, respectively, then

P(X1 + X2 > x) ∼

⎧⎪⎨⎪⎩
P(X1 > x) if α1 < α2,

P(X1 > x) + P(X2 > x) if α1 = α2,

P(X2 > x) if α1 > α2,

as x → ∞, and hence X1 + X2 is regularly varying with index min{α1, α2}.
The statements of Lemma A.5 follow, e.g., from parts 1 and 3 of Lemma B.6.1

of Buraczewski et al. [7] and Lemma A.4 together with the fact that the sum of two
slowly varying functions is slowly varying.

Theorem A.1 (Karamata’s theorem). Let U : (0,∞) → (0,∞) be a locally inte-
grable function such that it is integrable on intervals including 0 as well.
(i) If U is regularly varying (at infinity) with index −α ∈ [−1,∞), then (0,∞) 

x �→ ∫ x

0 U(t) dt is regularly varying (at infinity) with index 1 − α, and

lim
x→∞

xU(x)∫ x

0 U(t) dt
= 1 − α.

(ii) If U is regularly varying (at infinity) with index −α ∈ (−∞,−1), then (0,∞) 

x �→ ∫∞

x
U(t) dt is regularly varying (at infinity) with index 1 − α, and

lim
x→∞

xU(x)∫∞
x

U(t) dt
= −1 + α.

For Theorem A.1, see, e.g., Resnick [18, Theorem 2.1].

Lemma A.6 (Potter’s bounds). If U : (0,∞) → (0,∞) is a regularly varying func-
tion (at infinity) with index −α ∈ R, then for every δ ∈ (0,∞), there exists x0 ∈ R+
such that

(1 − δ)q−α−δ <
U(qx)

U(x)
< (1 + δ)q−α+δ, x ∈ [x0,∞), q ∈ [1,∞).

For Lemma A.6, see, e.g., Resnick [18, Proposition 2.6].
Finally, we recall a result on the tail behaviour of regularly varying random sums.

Proposition A.1. Let τ be a non-negative integer-valued random variable and let
{ζ, ζi : i ∈ N} be independent and identically distributed non-negative random
variables, independent of τ , such that τ is regularly varying with index β ∈ R+
and E(ζ ) ∈ (0,∞). In case of β ∈ [1,∞), assume additionally that there exists
r ∈ (β,∞) with E(ζ r ) < ∞. Then we have

P

( τ∑
i=1

ζi > x

)
∼ P

(
τ >

x

E(ζ )

)
∼ (E(ζ ))β P(τ > x) as x → ∞,

and hence
∑τ

i=1 ζi is also regularly varying with index β.

For a proof of Proposition A.1, see, e.g., Barczy et al. [3, Proposition F.3].
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