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Abstract We deal with a generalization of the classical risk model when an insurance com-
pany gets additional funds whenever a claim arrives and consider some practical approaches
to the estimation of the ruin probability. In particular, we get an upper exponential bound and
construct an analogue to the De Vylder approximation for the ruin probability. We compare
results of these approaches with statistical estimates obtained by the Monte Carlo method for
selected distributions of claim sizes and additional funds.
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1 Introduction

Let (Ω,F,P) be a probability space satisfying the usual conditions, and let all the
objects be defined on it. We deal with the risk model that generalizes the classical one
and was considered in [10].
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In the classical risk model (see, e.g., [1, 7, 11]), an insurance company has an
initial surplus x ≥ 0 and receives premiums with constant intensity c > 0. Claim sizes
form a sequence (ξi)i≥1 of nonnegative i.i.d. random variables with c.d.f. F1(y) =
P[ξi ≤ y] and finite expectation E[ξi] = μ1. The number of claims on the time
interval [0, t] is a homogeneous Poisson process (Nt )t≥0 with intensity λ > 0.

In addition to the classical risk model, we suppose that the insurance company
gets additional funds ηi when the ith claim arrives. These funds can be considered,
for instance, as additional investment income, which does not depend on the surplus
of the company. We assume that (ηi)i≥1 is a sequence of nonnegative i.i.d. random
variables with c.d.f. F2(y) = P[ηi ≤ y] and finite expectation E[ηi] = μ2. The
sequences (ξi)i≥1, (ηi)i≥1 and the process (Nt )t≥0 are mutually independent. Let
(Ft )t≥0 be the filtration generated by (ξi)i≥1, (ηi)i≥1, and (Nt )t≥0.

Let Xt(x) be the surplus of the insurance company at time t , provided that its
initial surplus is x. Then the surplus process (Xt (x))t≥0 is defined as

Xt(x) = x + ct −
Nt∑
i=1

(ξi − ηi), t ≥ 0. (1)

Note that we set
∑0

i=1(ξi − ηi) = 0 in (1) if Nt = 0.
The ruin time is defined as

τ(x) = inf
{
t ≥ 0 : Xt(x) < 0

}
.

We suppose that τ(x) = ∞ if Xt(x) ≥ 0 for all t ≥ 0. The infinite-horizon ruin
probability is given by

ψ(x) = P
[
inft≥0 Xt(x) < 0

]
,

which is equivalent to
ψ(x) = P

[
τ(x) < ∞]

.

The corresponding infinite-horizon survival probability equals

ϕ(x) = 1 − ψ(x).

Note that the ruin never occurs if P[ξi − ηi ≤ 0] = 1. If P[ξi − ηi ≥ 0] = 1,
then we deal with the classical risk model. So in what follows, we assume that
P[ξi − ηi > 0] > 0 and P[ξi − ηi < 0] > 0. In this case, if c − λμ1 + λμ2 ≤ 0, then
ϕ(x) = 0 for all x ≥ 0; if c − λμ1 + λμ2 > 0, then limx→+∞ ϕ(x) = 1 (see [10,
Lemma 2.1]).

In this paper, we consider some practical approaches to the estimation of the ruin
probability. In particular, we get an upper exponential bound and construct an ana-
logue to the De Vylder approximation for the ruin probability. Moreover, we compare
results of these approaches with statistical estimates obtained by the Monte Carlo
method for selected distributions of claim sizes and additional funds.

Paper [10], where this risk model is considered, is devoted to the investigation of
continuity and differentiability of the infinite-horizon survival probability and deriva-
tion of an integro-differential equation for this function. When claim sizes and addi-
tional funds are exponentially distributed, a closed-form solution to this equation can
be found.
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Theorem 1 ([10], Theorem 4.1). Let the surplus process (Xt (x))t≥0 follow (1) under
the above assumptions, the random variables ξi and ηi , i ≥ 1, be exponentially
distributed with means μ1 and μ2 correspondingly, and c − λμ1 + λμ2 > 0. Then

ϕ(x) = 1 + λμ1(1 − αμ2)

(cα − λ)(1 − αμ2)(μ1 + μ2) + λμ2
eαx (2)

for all x ≥ 0, where

α =
λμ1μ2 + cμ1 − cμ2 −

√
c2(μ2

1 + μ2
2) + λ2μ2

1μ
2
2 + 2cμ1μ2(c − λμ1 + λμ2)

2cμ1μ2
.

Remark 1 ([10], Remark 4.1). It is justified in the proof of Theorem 1 that α < 0
and

−1 <
λμ1(1 − αμ2)

(cα − λ)(1 − αμ2)(μ1 + μ2) + λμ2
< 0.

So the function ϕ(x) defined by (2) satisfies all the natural properties of the survival
probability. In particular, this function is nondecreasing and bounded by 0 from below
and by 1 from above.

It is well known that even for the classical risk model, there are only a few cases
where an analytic expression for the survival probability can be found. So numerous
approximations have been considered and investigated for the classical risk model
(see, e.g., [1, 2, 4, 5, 7, 11]). “Simple approximations” form a special class of approx-
imations for the ruin or survival probabilities. They use only some moments of the
distribution of claim sizes and do not take into account the detailed tail behavior of
that distribution. Such approximations may be based on limit theorems or on heuristic
arguments. The most successful “simple approximation” is certainly the De Vylder
approximation [5], which is based on the heuristic idea to replace the risk process
with a risk process with exponentially distributed claim sizes such that the first three
moments coincide (see also [7, 11]). This approximation is known to work extremely
well for some distributions of claim sizes. Later, Grandell analyzed the De Vylder
approximation and other “simple approximations” from a more mathematical point
of view and gave a possible explanation why the De Vylder approximation is so good
(see [8]).

We deal with the case where the claim sizes have a light-tailed distribution. The
rest of the paper is organized as follows. In Section 2, we get an upper exponential
bound for the ruin probability, which is an analogue of the famous Lundberg inequal-
ity. Section 3 is devoted to the construction of an analogue of the De Vylder approxi-
mation. In Section 4, we give a simple formula that relates the accuracy and reliability
of the approximation of the ruin probability by its statistical estimate obtained by the
Monte Carlo method. In Section 5, we compare the results of these approaches for
some distributions of claim sizes and additional funds. Section 6 concludes the paper.

2 Exponential bound

To get an upper exponential bound for the ruin probability, we use the martingale
approach introduced by Gerber [6] (see also [3, 7, 11]).
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Let

Ut = ct −
Nt∑
i=1

(ξi − ηi), t ≥ 0.

For all R ≥ 0, we define the exponential process (Vt (R))t≥0 by

Vt (R) = e−RUt .

Lemma 1. If there is R̂ > 0 such that

λ

(∫ +∞

0
eR̂y dF1(y) ·

∫ +∞

0
e−R̂y dF2(y) − 1

)
= cR̂, (3)

then (Vt (R̂))t≥0 is an (Ft )-martingale.

Proof. For all R > 0 such that E[eRξi ] < ∞, if any, we have

E
[
Vt(R)

] = e−cRt
E

[
exp

{
R

Nt∑
i=1

(ξi − ηi)

}]

= e−cRt
∞∑

j=0

e−λt (λt)j

j !
(
E

[
eR(ξi−ηi )

])j

= exp
{
t
(
λE

[
eR(ξi−ηi )

] − λ − cR
)}

.

(4)

If there is R̂ > 0 such that (3) holds, then E[eR̂ξi ] < ∞, and for all t2 ≥ t1 ≥ 0,
we have

E
[
Vt2(R̂) /Ft1

] = E

[
exp

{
−R̂

(
ct2 −

Nt2∑
i=1

(ξi − ηi)

)}/
Ft1

]

= E

[
exp

{
−R̂

(
ct1 −

Nt1∑
i=1

(ξi − ηi)

)}]

× E

[
exp

{
−R̂

(
c(t2 − t1) −

Nt2∑
i=Nt1

(ξi − ηi)

)}/
Ft1

]

= E
[
Vt1(R̂)

] · E
[

exp

{
−R̂

(
c(t2 − t1) −

Nt2−t1∑
i=1

(ξi − ηi)

)}]

= E
[
Vt1(R̂)

]
.

Here we used the fact that

E

[
exp

{
−R̂

(
c(t2 − t1) −

Nt2−t1∑
i=1

(ξi − ηi)

)}]

= exp
{
(t2 − t1)

(
λE

[
eR̂(ξi−ηi )

] − λ − cR̂
)} = 1

by (3) and (4).
Thus, (Vt (R̂))t≥0 is an (Ft )-martingale, which is the desired conclusion.



Practical approaches to the estimation of the ruin probability 171

Theorem 2. If there is R̂ > 0 such that (3) holds, then for all x ≥ 0, we have

ψ(x) ≤ e−R̂x . (5)

Proof. It is easily seen that τ(x) is an (Ft )-stopping time. Hence, τ(x) ∧ T is a
bounded (Ft )-stopping time for any fixed T ≥ 0. The process (Vt (R̂))t≥0 is an (Ft )-
martingale by Lemma 1. Moreover, (Vt (R̂))t≥0 is positive a.s. by its definition. Con-
sequently, applying the optional stopping theorem yields

1 = V0(R̂) = E
[
Vτ(x)∧T (R̂)

]
= E

[
Vτ(x)(R̂) · I{τ(x)<T }

] + E
[
VT (R̂) · I{τ(x)≥T }

]
≥ E

[
Vτ(x)(R̂) · I{τ(x)<T }

]

= E

[
exp

{
−R̂

(
cτ(x) −

Nτ(x)∑
i=1

(ξi − ηi)

)}
· I{τ(x)<T }

]

≥ eR̂x · P[
τ(x) < T

]
,

where I{·} is the indicator of an event. This gives

P
[
τ(x) < T

] ≤ e−R̂x (6)

for all T ≥ 0. Letting T → ∞ in (6) yields

P
[
τ(x) < ∞] ≤ e−R̂x,

which is our assertion.

Example 1. Let the random variables ξi and ηi , i ≥ 1, be exponentially distributed
with means μ1 and μ2, respectively. Then (3) can be rewritten as

λ

(
1

(1 − μ1R̂)(1 + μ2R̂)
− 1

)
= cR̂,

where R̂ ∈ (0, 1/μ1). This condition is equivalent to

cμ1μ2R̂
3 + (λμ1μ2 + cμ1 − cμ2)R̂

2 − (c − λμ1 + λμ2)R̂ = 0. (7)

If c − λμ1 + λμ2 > 0, then

c2(μ2
1 + μ2

2

) + λ2μ2
1μ

2
2 + 2cμ1μ2(c − λμ1 + λμ2) > 0.

So there are three real solutions to (7). They are

R̂1 = 0,

R̂2 = −λμ1μ2 + cμ1 − cμ2 − √
A(c, λ, μ1, μ2)

2cμ1μ2
,
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R̂3 = −λμ1μ2 + cμ1 − cμ2 + √
A(c, λ, μ1, μ2)

2cμ1μ2
,

where

A(c, λ, μ1, μ2) = c2(μ2
1 + μ2

2

) + λ2μ2
1μ

2
2 + 2cμ1μ2(c − λμ1 + λμ2).

Furthermore, it is easy to check that, in this case,

|λμ1μ2 + cμ1 − cμ2| <
√

A(c, λ, μ1, μ2).

From this we conclude that R̂2 > 0 and R̂3 < 0. Since

A(c, λ, μ1, μ2) < (λμ1μ2 + cμ1 + cμ2)
2,

we have

R̂2 <
(λμ1μ2 + cμ1 + cμ2) − (λμ1μ2 + cμ1 − cμ2)

2cμ1μ2
<

1

μ1
.

Hence, R̂2 is a unique positive solution to (7), and an exponential bound (5) can be
rewritten as follows:

ψ(x) ≤ e−R̂2x. (8)

Comparing (8) with (2), we see that the exponential bound and the analytic expression
for the ruin probability differ in a constant multiplier only.

If c − λμ1 + λμ2 ≤ 0, then μ1 > μ2, which gives λμ1μ2 + cμ1 − cμ2 > 0.
Let R̂2 and R̂3 be two nonzero solutions to (7). Applying Vieta’s formulas yields
R̂2 + R̂3 < 0 and R̂2R̂3 > 0. Consequently, if R̂2 and R̂3 are real, they are negative.
Thus, (7) has no positive solution, and Theorem 2 does not give us an exponential
bound for the ruin probability. Indeed, in this case, ψ(x) = 1 for all x ≥ 0 (see [10,
Lemma 2.1]).

3 Analogue to the De Vylder approximation

To construct an analogue to the De Vylder approximation, we replace the process
(Ut )t≥0 with a process (Ũt )t≥0 with exponentially distributed claim sizes such that

E
[
Uk

t

] = E
[
Ũ k

t

]
, k = 1, 2, 3. (9)

Since the process (Ũt )t≥0 in this risk model is determined by the four parameters
(c̃, λ̃, μ̃1, μ̃2) in contrast to the classical risk model, where it is determined by three
parameters, we use the additional condition

μ1

μ2
= μ̃1

μ̃2
. (10)

Note that we could have used the condition E[U4
t ] = E[Ũ4

t ] instead of (10), but it
would have led to tedious calculations and solving polynomial equations of higher
degree.
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Let (ξ̃i )i≥1 be a sequence of i.i.d. random variables exponentially distributed with
mean μ̃1. Similarly, let (η̃i)i≥1 be a sequence of i.i.d. random variables exponentially
distributed with mean μ̃2. An easy computation shows that

E
[
ξ̃ k
i

] = k!μ̃k
1 and E

[
η̃k

i

] = k!μ̃k
2. (11)

Let E[ξ3
i ] < ∞ and E[η3

i ] < ∞. Then we have

E[Ut ] = ct − E

[ Nt∑
i=1

(ξi − ηi)

]
= ct − λt E[ξi − ηi],

E
[
U2

t

] = (ct)2 − 2ct E

[ Nt∑
i=1

(ξi − ηi)

]
+ E

[( Nt∑
i=1

(ξi − ηi)

)2]

= (ct)2 − 2ct · λt E[ξi − ηi] + λt E
[
(ξi − ηi)

2] + (λt)2(
E[ξi − ηi]

)2

= λt E
[
(ξi − ηi)

2] + (
ct − λt E[ξi − ηi]

)2

= λt E
[
(ξi − ηi)

2] + (
E[Ut ]

)2
,

E
[
U3

t

] = (ct)3 − 3(ct)2
E

[ Nt∑
i=1

(ξi − ηi)

]

+ 3ct E

[( Nt∑
i=1

(ξi − ηi)

)2]
− E

[( Nt∑
i=1

(ξi − ηi)

)3]

= (ct)3 − 3(ct)2 · λt E[ξi − ηi] + 3ct (λt E
[
(ξi − ηi)

2]
+ (λt)2(

E[ξi − ηi]
)2 − λt E

[
(ξi − ηi)

3] − 3(λt)2
E

[
(ξi − ηi)

2]
+ λt E

[
(ξi − ηi)

2]
E

[
(ξi − ηi)

2] − (λt)3(
E[ξi − ηi]

)3

= −λt E
[
(ξi − ηi)

3] + (
ct − λt E[ξi − ηi]

)3

+ 3λt E
[
(ξi − ηi)

2](ct − λt E[ξi − ηi]
)

= −λt E
[
(ξi − ηi)

3] + (
E[Ut ]

)3 + 3
(
E

[
U2

t

] − (
E[Ut ]

)2)
E[Ut ].

Applying similar arguments to the process (Ũt )t≥0, we conclude that (9) is equiv-
alent to ⎧⎪⎪⎨

⎪⎪⎩
ct − λt E[ξi − ηi] = c̃t − λ̃t E[ξ̃i − η̃i],

λt E
[
(ξi − ηi)

2] = λ̃t E
[
(ξ̃i − η̃i )

2],
−λt E

[
(ξi − ηi)

3] = −λ̃t E
[
(ξ̃i − η̃i )

3],
(12)

By (11) we can rewrite (12) as
⎧⎪⎪⎨
⎪⎪⎩

c − λ(μ1 − μ2) = c̃ − λ̃(μ̃1 − μ̃2),

λE
[
(ξi − ηi)

2] = 2λ̃
(
μ̃2

1 − μ̃1μ̃2 + μ̃2
2

)
,

λE
[
(ξi − ηi)

3] = 6λ̃
(
μ̃3

1 − μ̃2
1μ̃2 + μ̃1μ̃

2
2 − μ̃3

2

)
.

(13)
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Substituting μ̃2 = μ2μ̃1/μ1 into the second and third equations of system (13)
yields

λE
[
(ξi − ηi)

2] = 2λ̃μ̃2
1

(
1 − μ2

μ1
+ μ2

2

μ2
1

)
, (14)

λE
[
(ξi − ηi)

3] = 6λ̃μ̃3
1

(
1 − μ2

μ1
+ μ2

2

μ2
1

− μ3
2

μ3
1

)
. (15)

Dividing (15) by (14) gives

μ̃1 = μ1(μ
2
1 − μ1μ2 + μ2

2)E[(ξi − ηi)
3]

3(μ3
1 − μ2

1μ2 + μ1μ
2
2 − μ3

2)E[(ξi − ηi)2] . (16)

Consequently, we have

μ̃2 = μ2(μ
2
1 − μ1μ2 + μ2

2)E[(ξi − ηi)
3]

3(μ3
1 − μ2

1μ2 + μ1μ
2
2 − μ3

2)E[(ξi − ηi)2] . (17)

Substituting (16) into (14), we get

λ̃ = 9λ(μ3
1 − μ2

1μ2 + μ1μ
2
2 − μ3

2)
2 (E[(ξi − ηi)

2])3

2(μ2
1 − μ1μ2 + μ2

2)
3 (E[(ξi − ηi)3])2

. (18)

Substituting (16)–(18) into the first equation of system (13), we obtain

c̃ = c − λ(μ1 − μ2)

(
1 − 3(μ3

1 − μ2
1μ2 + μ1μ

2
2 − μ3

2) (E[(ξi − ηi)
2])2

2(μ2
1 − μ1μ2 + μ2

2)
2 E[(ξi − ηi)3]

)
. (19)

Note that since F1(y) and F2(y) are known, it is easy to find E[(ξi − ηi)
2] and

E[(ξi − ηi)
3] if E[ξ3

i ] < ∞ and E[η3
i ] < ∞.

By (16) and (17), μ̃1 and μ̃2 are positive, provided that(
μ3

1 − μ2
1μ2 + μ1μ

2
2 − μ3

2

)
E

[
(ξi − ηi)

3] > 0. (20)

If (20) holds, then μ1 
= μ2. So λ̃ is also positive. Moreover, c̃ is positive, provided
that

c − λ(μ1 − μ2)

(
1 − 3(μ3

1 − μ2
1μ2 + μ1μ

2
2 − μ3

2) (E[(ξi − ηi)
2])2

2(μ2
1 − μ1μ2 + μ2

2)
2 E[(ξi − ηi)3]

)
> 0. (21)

Thus, we get the following result.

Proposition 1 (An analogue to the De Vylder approximation). Let the surplus pro-
cess (Xt (x))t≥0 follow (1) under the above assumptions, c − λμ1 + λμ2 > 0,
E[ξ3

i ] < ∞, E[η3
i ] < ∞, and let conditions (20) and (21) hold. Then the ruin proba-

bility is approximately equal to

ψDV (x) = λ̃μ̃1(α̃μ̃2 − 1)

(c̃α̃ − λ̃)(1 − α̃μ̃2)(μ̃1 + μ̃2) + λ̃μ̃2
eα̃x

for all x ≥ 0, where
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α̃ =
λ̃μ̃1μ̃2 + c̃μ̃1 − c̃μ̃2 −

√
c̃2(μ̃2

1 + μ̃2
2) + λ̃2μ̃2

1μ̃
2
2 + 2c̃μ̃1μ̃2(c̃ − λ̃μ̃1 + λ̃μ̃2)

2c̃μ̃1μ̃2

and the parameters (c̃, λ̃, μ̃1, μ̃2) are defined by (16)–(19).

Remark 2. Note that α̃ < 0 and

λ̃μ̃1(α̃μ̃2 − 1)

(c̃α̃ − λ̃)(1 − α̃μ̃2)(μ̃1 + μ̃2) + λ̃μ̃2
> 0

in Proposition 1. Indeed, the parameters (c̃, λ̃, μ̃1, μ̃2) are positive. Moreover, since
c −λμ1 +λμ2 > 0, we have c̃ − λ̃μ̃1 + λ̃μ̃2 > 0 by the first equation of system (13).
Hence, Theorem 1 and Remark 1 give us the desired conclusion.

Remark 3. If claim sizes and additional funds are exponentially distributed, then it
is easily seen from (16)–(19) that ψ(x) = ψDV (x).

4 Statistical estimate obtained by the Monte Carlo method

Let N be the total number of simulations of the surplus process Xt(x), and let ψ̂(x)

be the corresponding statistical estimate obtained by the Monte Carlo method. To get
it, we divide the number of simulations that lead to the ruin by the total number of
simulations.

Proposition 2. Let the surplus process (Xt (x))t≥0 follow (1) under the above as-
sumptions. Then for any ε > 0, we have

P
[∣∣ψ(x) − ψ̂(x)

∣∣ > ε
] ≤ 2e−2ε2N. (22)

The assertion of Proposition 2 follows immediately from Hoeffding’s inequality
(see [9]).

Remark 4. Formula (22) relates the accuracy and reliability of the approximation of
the ruin probability by its statistical estimate obtained by the Monte Carlo method.
It enables us to find the number of simulations N , which is necessary in order to
calculate the ruin probability with the required accuracy and reliability. An obvious
shortcoming of the Monte Carlo method is a too large number of simulations N .
In all examples in Section 5, we assume that ε = 0.001 and 2e−2ε2N = 0.001.
Consequently, N = 3 800 452.

5 Comparison of results

5.1 Erlang distributions for claim sizes and additional funds

Let the probability density functions of ξi and ηi be

f1(y) = k
k1
1 yk1−1e−k1y/μ1

μ
k1
1 (k1 − 1)! and f2(y) = k

k2
2 yk2−1e−k2y/μ2

μ
k2
2 (k2 − 1)!

for y ≥ 0, respectively, where k1 and k2 are positive integers.
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In what follows, h1(R) and h2(R), where R ≥ 0, denote the moment generating
functions of ξi and ηi , respectively, that is,

h1(R) = E
[
eRξi

]
and h2(R) = E

[
eRηi

]
.

An easy computation shows that

h1(R) =
∫ +∞

0
eRy dF1(y) =

(
k1

k1 − μ1R

)k1

, 0 ≤ R <
k1

μ1
,

h2(R) =
∫ +∞

0
eRy dF2(y) =

(
k2

k2 − μ2R

)k2

, 0 ≤ R <
k2

μ2
.

Moreover, for all R ≥ 0, we have∫ +∞

0
e−Ry dF2(y) =

(
k2

k2 + μ2R

)k2

.

Thus, condition (3) can be rewritten as

λ

(
k1

k1 − μ1R̂

)k1
(

k2

k2 + μ2R̂

)k2

= λ + cR̂, (23)

where 0 < R̂ < k1/μ1. Furthermore, we have

E[ξi] = h′
1(0) = μ1, E[ηi] = h′

2(0) = μ2,

E
[
ξ2
i

] = h′′
1(0) = (k1 + 1)μ2

1

k1
, E

[
η2

i

] = h′′
2(0) = (k2 + 1)μ2

2

k2
,

E
[
ξ3
i

] = h′′′
1 (0) = (k1 + 1)(k1 + 2)μ3

1

k2
1

, E
[
η3

i

] = h′′′
2 (0) = (k2 + 1)(k2 + 2)μ3

2

k2
2

.

Hence, we get

E
[
(ξi − ηi)

2] = E
[
ξ2
i

] − 2E[ξi]E[ηi] + E
[
η2

i

]

= (k1 + 1)μ2
1

k1
− 2μ1μ2 + (k2 + 1)μ2

2

k2
,

E
[
(ξi − ηi)

3] = E
[
ξ3
i

] − 3E
[
ξ2
i

]
E[ηi] + 3E[ξi]E

[
η2

i

] − E
[
η3

i

]

= (k1 + 1)(k1 + 2)μ3
1

k2
1

− 3(k1 + 1)μ2
1μ2

k1

+ 3(k2 + 1)μ2
2μ1

k2
− (k2 + 1)(k2 + 2)μ3

2

k2
2

.

Substituting E[(ξi − ηi)
2] and E[(ξi − ηi)

3] into (16)–(19), we obtain the parameters
(c̃, λ̃, μ̃1, μ̃2).

Example 2. Let c = 10, λ = 4, μ1 = 2, μ2 = 0.5, k1 = 3, k2 = 2. Then
R̂ ≈ 0.349093, which may not be an unique positive solution to (23), and

ψDV (x) = 0.612268 e−0.332472 x.

The results of computations are given in Table 1.
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Table 1. Results of computations: Erlang distributions for claim sizes and additional funds

x ψ̂(x) ψDV (x)
(ψDV (x)

ψ̂(x)
− 1

) · 100% e−R̂x
(
e−R̂x

ψ̂(x)
− 1

) · 100%

0 0.634149 0.612268 −3.45% 1.000000 57.69%
1 0.492768 0.439087 −10.89% 0.705327 43.14%
2 0.355769 0.314891 −11.49% 0.497487 39.83%
5 0.137737 0.116142 −15.68% 0.174564 26.74%

10 0.023224 0.022031 −5.14% 0.030473 31.21%

5.2 Hyperexponential distributions for claim sizes and additional funds

Let

F1(y) = p1,1F1,1(y) + p1,2F1,2(y) + · · · + p1,k1F1,k1(y), y ≥ 0,

where k1 ≥ 1, p1,j > 0,
∑k1

j=1 p1,j = 1,
∑k1

j=1 p1,j μ1,j = μ1, and F1,j is the c.d.f.
of the exponential distribution with mean μ1,j ;

F2(y) = p2,1F2,1(y) + p2,2F2,2(y) + · · · + p2,k2F2,k2(y), y ≥ 0,

where k2 ≥ 1, p2,j > 0,
∑k2

j=1 p2,j = 1,
∑k2

j=1 p2,j μ2,j = μ2, and F2,j is the c.d.f.
of the exponential distribution with mean μ2,j .

It is easy to check that

h1(R) =
k1∑

j=1

p1,j

1 − μ1,jR
, 0 ≤ R < min

{
1

μ1,1
,

1

μ1,2
, . . . ,

1

μ1,k1

}
,

h2(R) =
k2∑

j=1

p2,j

1 − μ2,jR
, 0 ≤ R < min

{
1

μ2,1
,

1

μ2,2
, . . . ,

1

μ2,k2

}
.

Furthermore, for all R ≥ 0, we have

∫ +∞

0
e−Ry dF2(y) =

k2∑
j=1

p2,j

1 + μ2,jR
.

Hence, condition (3) can be rewritten as

λ

( k1∑
j=1

p1,j

1 − μ1,j R̂
·

k2∑
j=1

p2,j

1 + μ2,j R̂

)
= λ + cR̂, (24)

where 0 < R̂ < min{1/μ1,1, 1/μ1,2, . . . , 1/μ1,k1}. Moreover, we have

E[ξi] = h′
1(0) =

k1∑
j=1

p1,j μ1,j = μ1, E[ηi] = h′
2(0) =

k2∑
j=1

p2,j μ2,j = μ2,
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Table 2. Results of computations: hyperexponential distributions for claim sizes and additional
funds

x ψ̂(x) ψDV (x)
(ψDV (x)

ψ̂(x)
− 1

) · 100% e−R̂x
(
e−R̂x

ψ̂(x)
− 1

) · 100%

0 0.647560 0.581428 −10.21% 1.000000 54.43%
1 0.540924 0.521454 −3.60% 0.895291 65.51%
2 0.488597 0.467667 −4.28% 0.801545 64.05%
5 0.346390 0.337363 −2.61% 0.575201 66.06%

10 0.202323 0.195749 −3.25% 0.330856 63.53%
20 0.067802 0.065903 −2.80% 0.109466 61.45%
25 0.038194 0.038239 0.12% 0.062965 64.86%

E
[
ξ2
i

] = h′′
1(0) =

k1∑
j=1

2p1,j μ2
1,j , E

[
η2

i

] = h′′
2(0) =

k2∑
j=1

2p2,j μ2
2,j ,

E
[
ξ3
i

] = h′′′
1 (0) =

k1∑
j=1

6p1,j μ3
1,j , E

[
η3

i

] = h′′′
2 (0) =

k2∑
j=1

6p2,j μ3
2,j .

Consequently, we get

E
[
(ξi − ηi)

2] = 2

( k1∑
j=1

p1,j μ2
1,j − μ1μ2 +

k2∑
j=1

p2,j μ2
2,j

)
,

E
[
(ξi − ηi)

3]

= 6

( k1∑
j=1

p1,j μ3
1,j − μ2

k1∑
j=1

p1,j μ2
1,j + μ1

k2∑
j=1

p2,j μ2
2,j −

k2∑
j=1

p2,j μ3
2,j

)
.

Example 3. Let c = 10, λ = 4, μ1 = 2, μ2 = 0.5, k1 = 3, k2 = 2, p1,1 = 0.4,
μ1,1 = 0.5, p1,2 = 0.3, μ1,2 = 2, p1,3 = 0.3, μ1,3 = 4, p2,1 = 0.75, μ2,1 = 0.4,
p2,2 = 0.25, μ2,2 = 0.8. Then R̂ ≈ 0.110607, which may not be a unique positive
solution to (24), and

ψDV (x) = 0.581428 e−0.108865 x.

The results of computations are given in Table 2.

5.3 Exponential distribution for claim sizes and degenerate distribution for addi-
tional funds

Let ξi be exponentially distributed with mean μ1 and E[ηi = μ2] = 1. Then condi-
tion (3) can be rewritten as

λe−μ2R̂

1 − μ1R̂
= λ + cR̂,

where R̂ ∈ (0, 1/μ1), which is equivalent to

λe−μ2R̂ = −cμ1R̂
2 + (c − λμ1)R̂ + λ. (25)
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Table 3. Results of computations: exponential distribution for claim sizes and degenerate dis-
tribution additional funds

x ψ̂(x) ψDV (x)
(ψDV (x)

ψ̂(x)
− 1

) · 100% e−R̂x
(
e−R̂x

ψ̂(x)
− 1

) · 100%

0 0.637998 0.582498 −8.70% 1.000000 56.74%
1 0.549737 0.482780 −12.18% 0.822610 49.64%
2 0.465171 0.400133 −13.98% 0.676687 45.47%
5 0.277026 0.227808 −17.77% 0.376678 37.97%

10 0.113399 0.089093 −21.43% 0.141886 25.12%

If c − λμ1 + λμ2 > 0, then it is easy to check that (25) has a unique solution
R̂ ∈ (0, 1/μ1).

Since
E[ξi] = μ1, E

[
ξ2
i

] = 2μ2
1, E

[
ξ3
i

] = 6μ3
1,

E[ηi] = μ2, E
[
η2

i

] = μ2
2, E

[
η3

i

] = μ3
2,

we get
E

[
(ξi − ηi)

2] = 2μ2
1 − 2μ1μ2 + μ2

2,

E
[
(ξi − ηi)

3] = 6μ3
1 − 6μ2

1μ2 + 3μ1μ
2
2 − μ3

2.

Example 4. Let c = 10, λ = 4, μ1 = 2, μ2 = 0.5. Then R̂ ≈ 0.195273 and

ψDV (x) = 0.582498 e−0.187764 x.

The results of computations are given in Table 3.

6 Conclusion

Tables 1–3 provide results of computations when the initial surplus is not too large.
In this case, the statistical estimates obtained by the Monte Carlo method can be
used instead of the exact ruin probabilities to compare an accuracy of the exponential
bound and the analogue to the De Vylder approximation. To get appropriate statis-
tical estimates by the Monte Carlo method for large initial surpluses, the number of
simulations must be exceeding. The results of computations show that the exponen-
tial bound is very rough. The analogue to the De Vylder approximation gives much
more accurate estimations, especially in the case of hyperexponential distributions
for claim sizes and additional funds. Nevertheless, it is heuristic, and its real accuracy
is unknown.
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