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Abstract We present a model of a continuous-time Markov branching process with the in-
finitesimal generating function defined by the geometric probability distribution. It is proved
that the solution of the backward Kolmogorov equation is expressed by the composition of spe-
cial functions – Wright function in the subcritical case and Lambert-W function in the critical
case. We found the explicit form of conditional limit distribution in the subcritical branching
reproduction. In the critical case, the extinction probability and probability mass function are
expressed as a series containing Bell polynomial, Stirling numbers, and Lah numbers.

Keywords Branching process, Lagrange inversion, Gauss hypergeometric, Wright,
Lambert-W functions, extinction probability
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1 Introduction

Any time-homogeneous Markov branching process (MBP) X(t), t > 0, is defined
and studied by its probability generating function (p.g.f.) F(t, s), |s| < 1, as an
unique solution of the Kolmogorov equations [1, 7, 19]. The backward Kolmogorov
equation is nonlinear, of the type separate differentials, due to the time-homogeneous
property. First of all, we find the indefinite integral primitive. Then, in order to respect
the initial conditions, it is essential to define the inverse function of the primitive.
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We apply the Lagrange inversion method as it is shown in many books and articles
[3, 8, 12].

The correspondence between MBP and integer-valued positive Lévy processes is
noted in the books [9], page 236, and [1], page 126. The geometric distribution is
present in many application models, mainly in biology and epidemiology. However,
the most important implementation is in statistical physics, where it is known as Bose-
Einstein distribution [20].

In the present text, we are focused on the subcritical and critical infinitesimal geo-
metric branching reproductions. We prove that the p.g.f. F(t, s) in the subcritical case
is expressed as a composition of Gauss hypergeometric and Wright functions. Many
special cases of the Wright function 1�1(α, a; β, b; z) are considered in [11, 16]. The
numerical evaluation of the Wright function is studied in [10]. The Laplace transform
pairs related to the Mittag-Leffler functions and the reduced Wright functions is sur-
veyed in [11]. We remark that in our model, for the subcritical MBP with mean of
reproduction 0 < m < 1, the parameters of the Wright function are α = a = m,
and −1 < β = m − 1 < 0, and b = m + 1. The principal parameter, defining the
domain of convergence is equal to 1 + β − α = 1 + (m − 1) − m = 0 [16]. The
factorial moments of X(t), t > 0, are presented by series containing the partial Bell
polynomials [21]. The conditional limit distribution is defined in its explicit form. It
is a new unimodal integer-valued distribution supported by (1, 2, . . .). Its index of
dispersion depends on the solution of a transcendental equation.

In the critical case, the p.g.f. F(t, s) is defined by the composition of the Lambert-
W function and linear-fractional one. The probability mass function (p.m.f.) of X(t),
t > 0, is expressed by the values of the Lambert-W function at the point x = eKt+1

and can be calculated by using any corresponding software packages. The agreement
between Lagrange inversion method and series expansion of the Lambert-W function
is confirmed at the approximation of the extinction probability.

The Lambert-W function is considered as the real-valued composite inverse func-
tion of the function V (x) = xex, x ≥ −1. The properties and many applications of
the Lambert-W function are provided in [5]. The sequence of series and derivatives
of W(x) are studied in [4]. The new probability property such that W(x) is a Bern-
stein function is developed in [15]. The computation of Lambert W-functions without
transcendental function evaluations is considered in [6]. A historical review is given
in [2].

The main convenience of the obtained results based on special functions is com-
putation simplicity. It is not a novelty and there are many applications. The most
important ones are related to the multi-body computational problems, firstly noticed
in the numeric calculation of the eigenstates of hydrogen molecular ion H+. The ef-
fective solution was obtained by using the Lambert-W function, which becomes a
common method for solving similar problems in Physics [13]. The best advantage of
using Lambert-W is the effective approach to the solution of slowly convergent series
expansions [17]. It is possible due to very well studied properties and well-developed
software packages, noted in [5, 6, 22].

We began our work on the infinitesimal geometric branching mechanism follow-
ing the methods of branching processes theory and Lagrange inversion. Using them,
we extended our results to obtain a computational effective generalisation based on
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Lambert-W and Wright functions. Some of the improvements are demonstrated by
easily computed numerical applications.

2 Subcritical geometric branching

The studied geometric branching reproduction process X(t), t > 0, is a time-homo-
geneous MBP starting with one particle as initial condition. Its Markov property is
guaranteed by the assumption that the lifetime of particles is an exponentially dis-
tributed random variable with a constant parameter K > 0. The reproduction is de-
fined by the integer-valued random variable η representing the offspring numbers as
follows,

P(η = k) = mk

(1 + m)k+1 , k = 0, 1, . . . , m > 0. (1)

The parameter m > 0 defines the mean of the offspring numbers. In this notation the
p.g.f. of the reproduction law is,

h(s) = 1

1 + m − ms
, h′(s) = m

(1 + m − ms)2 , h′′(s) = 2m2

(1 + m − ms)3 .

The infinitesimal generating function f (s) present in the Kolmogorov equations is
defined by the constant K and p.g.f. h(s) as

f (s) = K(h(s) − s) = K

(
1

1 + m − ms
− s

)
= K(1 − s)(1 − ms)

1 + m(1 − s)
,

and has the following derivatives, for k = 1, 2, 3, . . .,

f ′(s) = f ′(1) − Km(1 − s)(2 + m − ms)

(1 + m − ms)2 , f (k)(s) = Kmkk!
(1 + m − ms)k+1 .

The p.g.f. of the number of particles alive at the time t > 0

F(t, s) =
∞∑

k=0

skP (X(t) = k|X(0) = 1) (2)

yields the backward Kolmogorov equation

∂

∂t
(F (t, s)) = f (F (t, s)) , F (0, s) = s. (3)

The equation h(s) = s has two solutions, s1 = 1/m and s2 = 1, where m = h
′
(1).

The value s = 1/m is the fixed point for the p.g.f. h(s) and for its first derivative
h

′
(s). The branching reproduction is classified as subcritical if 0 < m < 1 and criti-

cal if m = 1. This classification is in accordance with the notion of ultimate extinction
probability q = 1 in both cases in consideration, subcritical and critical one. In par-
ticular, for the subcritical reproduction when 0 < m < 1, the first derivative f ′(s) is
negative in the interval 0 ≤ s ≤ 1, and

f ′(0) = −K(1 + m + m2)

(1 + m)2 < 0, f ′(1) = K(m − 1) < 0. (4)
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All derivatives for k = 2, 3, . . ., at the points s = 0 and s = 1 are related by the
constant (1 + m)k+1 as follows,

f (k)(0) = K
k!mk

(1 + m)k+1 , f (k)(1) = Kk!mk, f (k)(0) = f (k)(1)

(1 + m)k+1 .

In the subcritical case, we study in parallel the p.g.f. F(t, s) of the branching process
X(t), t > 0, defined by (2) and equation (3), and the function

R(t, s) = 1 − F(t, s), (5)

satisfying the following non-linear equation:

∂R(t, s)

∂t
= −f (1 − R(t, s)), R(0, s) = 1 − s. (6)

In order to solve these equations (3) and (6), when f ′(1) < 0, we define respectively
the function

A0(s) = exp

{
f ′(1)

∫ s

0

dx

f (x)

}
, s ∈ [0, 1), A0(0) = 1, A0(1) = 0.

and the function

A(s) = exp

{
f ′(1)

∫ s

0

−dx

f (1 − x)

}
, s ∈ [0, 1), A(0) = 0, A(1) = 1,

where
A′

0(s)

A0(s)
= f ′(1)

f (s)
,

A′(s)
A(s)

= −f ′(1)

f (1 − s)
,

see [14, 1]. We remark that in the subcritical case

1

f (s)
= −1

f ′(1)

{
1

1 − s
− m2

1 − ms

}
, f ′(1) = K(m − 1) < 0. (7)

The solution of the indefinite integral is∫
dx

f (x)
=

∫ −1

f ′(1)

(
1

1 − x
− m2

1 − mx

)
dx = 1

f ′(1)
log

( |1 − x|
|1 − mx|m

)
. (8)

Knowing the primitive (8) of the equation (3) we formulate the following lemma
without proof.

Lemma 1. Let X(t), t > 0, be a subcritical time-homogeneous MBP with branching
mechanism given by (1) where 0 < m < 1. The solution of the backward Kolmogorov
equation (3) satisfying F(t, 1) = 1, is

F(t, s) = A−1
0 (ef ′(1)tA0(s)), A0(s) = 1 − s

(1 − ms)m
, s < 1/m,

respectively, the solution of the equation (6) with R(t, 1) = 0, is

R(t, s) = A−1(ef ′(1)tA(1 − s)), A(s) = s

(1 − m + ms)m
, 1 − 1/m < s.
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where A−1
0 (x) and A−1(x) are the composite inverse functions, and

A0(s) = A(1 − s), A−1
0 (x) = 1 − A−1(x), −∞ < x < ∞.

The mathematical expectation of the number of particles alive at the time t > 0
in the subcritical case has the following exponential decreasing behaviour,

E[X(t)] = exp{f ′(1)t} = eMt < 1, M = f ′(1) = K(m − 1) < 0, m = h′(1).

The extinction probability to the positive time P(X(t) = 0) = F(t, 0), t > 0, is
expressed by the inversion function

F(t, 0) = A−1
0 (eMtA0(0)) = A−1

0 (eMt ), eMt < 1, A0(0) = 1.

Respectively, the survival probability is given as follows,

R(t, 0) = A−1(eMtA(1)) = A−1(eMt ) = 1 − A−1
0 (eMt ).

We remark that at the point s = 1/2 the functions A0(1/2) = A(1/2) and the re-
spective vertical asymptotes are left and right symmetric to s = 1/2. The function
A0(s) is decreasing, concave and all its derivatives A(k)

0 (s) are negative in the inter-
val, s < 1/m. The function A(s) is increasing, concave, the consecutive derivatives
are alternating positive and negative in the interval, s > 1 − 1/m. Namely,

A(2k)
0 (s) = A(2k)(1 − s) < 0, A(2k−1)

0 (s) = −A(2k−1)(1 − s) < 0.

In details, denoting the falling and rising factorials as follows:

[x]n↓ = x(x − 1)...(x − n + 1) = �(x + 1)

�(x + 1 − n)
, (9)

and

[x]n↑ = x(x + 1)...(x + n − 1) = �(x + n)

�(x)
, (10)

we write the derivatives in the following form,

A(k)(s) = (−1)k−1[m](k−1)↑θk−1(k + ms)

(1 − m)m(1 + θs)m+k
, θ = m

1 − m
> 0.

In particular, for k = 1, 2, . . ., at the points s = 0 and s = 1 we have

ak = A(k)(0) = (−1)k−1k[m](k−1)↑θk−1

(1 − m)m
= (−1)kA(k)

0 (1), (11)

and

A(k)(1) = (−1)k−1[m](k−1)↑θk−1(k + m)

(1 − m)m(1 + θ)m+k
= (−1)kA(k)

0 (0). (12)

Obviously, the following relation follows from (11) and (12)

A(k)(1) = A(k)(0)
k + m

k(1 + θ)m+k
.

The range of the function A(s) is the whole real line (−∞,∞). It is considered as
the domain of definition for the A−1(x). Knowing the derivatives (11), we find the
function A−1(x) in its representation as an exponential generating function in the
interval |x| < 1/mm+1, 0 < m < 1.
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2.1 Lagrange inversion and special functions

Now, we look for the properties of the composite inverse of the functions A0(s) and
A(s). The function A(s) and its inverse A−1(s) are some particular cases of the
Wright function [11, 16]

1�1(α, a; β, b; z) :=
∞∑

n=0

�(αn + a)

�(βn + b)

zn

n! ,

and the Gauss hypergeometric function [8, 3]

2F1(c, d; g; z) :=
∞∑

k=0

[c]k↑[d]k↑
[g]k↑

zk

k! , 2F1 (c, d; d; z) =
(

1

1 − z

)c

, |z| < 1.

Obviously, knowing the notation θ = m
1−m

> 0, 0 < m < 1, we see that the

A(s) = s

(1 − m)m(1 + θs)m
= 2F1(m, 1; 1; −θs)

s

(1 − m)m
, |θs| < 1. (13)

Using the previous definitions, it will be proved in the following theorem that for
|x| < 1/mm+1 and 0 < m < 1 the inverse function

A−1(x) = 1�1

(
m,m; m − 1,m + 1; mx

(1 − m)1−m

)
m(1 − m)x. (14)

Theorem 1. Let us consider the function A0(s) given by

A0(s) = A(1 − s) = 1 − s

(1 − ms)m
, 0 < m < 1, A0(0) = 1, A0(1) = 0.

Then for its composite inverse function is valid

A−1
0 (x) = 1 − A−1(x) = 1 −

∞∑
k=1

bkx
k

k! , |x| < 1/mm+1,

where

bk = (1 − m)mk

(
m

1 − m

)k−1

[mk](k−1)↓. (15)

Proof. First of all, we confirm the relation

A−1
0 (A0(s)) = 1 − A−1(A0(s)) = 1 − A−1(A(1 − s)) = 1 − (1 − s) = s.

The function A(s) is represented as an exponential generating function in the neigh-
bourhood of zero |s| < 1/θ = (1 − m)/m, 0 < m < 1 (13), with coefficients
ak = A(k)(0) (11) as follows

A(s) =
∞∑

k=1

k(−1)k−1[m](k−1)↑
(1 − m)m

(
m

1 − m

)k−1
sk

k! , a1 = 1

(1 − m)m
> 1. (16)
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To apply the Lagrange inversion method to it, we use the following representation,

A(s) = s

g(s)
, g(s) = (1 − m)m

(
1 + ms

1 − m

)m

, g(0) = (1 − m)m > 0,

and obviously g(1) = 1, see [3, 8]. Denote the inverse function in its series expansion
as

A−1(x) =
∞∑

k=1

bkx
k

k! .

Then the coefficients bk are given by the derivatives of the function (g(s))k at the
point s = 0 as follows,

bk = dk−1

dsk−1

[
(g(s))k

]
s=0

.

The Taylor series expansion of the function

(g(s))k = (1 − m)mk

(
1 + ms

1 − m

)mk

, mk > 0,

is given by the binomial coefficients as follows,

(g(s))k = (1 − m)mk

∞∑
j=0

(
ms

1 − m

)j [mk]j↓
j ! .

The derivative of the order j to this function at the point s = 0 is

dj

dsj
[(g(s))k](s=0) = (1 − m)mk

(
m

1 − m

)j

[mk]j↓.

It is enough to take j = k − 1 in order to obtain the coefficient bk in (15). Then

A−1(x) =
∞∑

k=1

(1 − m)mk

(
m

1 − m

)k−1

[mk](k−1)↓
(

xk

k!
)

, b1 = (1 − m)m < 1.

Applying the definition of decreasing factorials by Gamma function (9, 10),

�(mk + 1)

�(mk + 1 − k + 1)
= mk�(mk)

�((m − 1)k + 2)
= mk�(m(k − 1) + m)

�((m − 1)(k − 1) + m + 1)

we find

A−1(x) = m(1−m)x

∞∑
k=1

(
m

(1 − m)1−m

)k−1
�(m(k − 1) + m)

�((m − 1)(k − 1) + m + 1)

xk−1

(k − 1)! .

The change of variable k − 1 = j leads to the representation (14).
We remark that the coefficients bk are either positive, zero or negative, due to

the decreasing factorials. It is confirmed, when the reflection formulas for Gamma
function

�(z)�(−z) = −π

z sin(πz)
, �(z)�(1 − z) = π

sin(πz)
, z 
= 0,±1,±2, . . . ,
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are applied on the representation

[mk](k−1)↓ = �(mk + 1)

�(1 + (1 − (1 − m)k))
= �(mk + 1)�((1 − m)k) sin(π(1 − m)k)

π(1 − (1 − m)k)
.

Obviously, for k(1 − m) = j, j = 2, 3, . . ., the value bk = 0. By this reason, in the
considered case, the function A−1(x) is not a p.g.f..

The radius of convergence of the series expansion

A−1(x) =
∞∑

k=1

bkx
k

k! , bk =
(

m

(1 − m)1−m

)k
(1 − m)[mk](k−1)↓

m
,

is calculated with a root test based on

lim sup
k→∞

k

√ |bk|
k! =

(
m

(1 − m)1−m

)
lim sup
k→∞

k

√
(1 − m)|[mk](k−1)↓|

mk!
and Stiling’s formula for the Gamma function. When k → ∞ we have

�(mk + 1) ∼ √
2πmk

(
mk

e

)mk

,

and

k! ∼ √
2πk

(
k

e

)k

, �((1 − m)k) ∼
√

2π(1 − m)k

(1 − m)k

(
(1 − m)k

e

)(1−m)k

.

We extract the multiple

{(
mk

e

)m (
(1 − m)k

e

)(1−m)
e

k

}k

= {mm(1 − m)1−m}k.

Then, obviously,

lim sup
k→∞

2k

√
2π(1 − m)

mk
= 1, lim sup

k→∞
k
√| sin(π(1 − m)k)| = 1.

And finally,

lim sup
k→∞

k

√ |bk|
k! =

(
m

(1 − m)1−m

)
{mm(1 − m)1−m} = m1+m.

We obtain the radius of convergence of the series expansion to the inverse function
A−1(x) in dependence of the parameter m as follows,

R(A−1)(m) = 1

m1+m
> 1, 0 < m < 1. (17)
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In particular, when the parameter 0 < m < 1 is a rational number then the inverse
function can be calculated as a solution of corresponding algebraic equation. For
example, when m = 1/2 then

A(s) =
√

2s√
1 + s

, A−1(x) = x(x + √
x2 + 8)

4
,

and if m = 1/3 then

A(s) =
3
√

3s
3
√

2 + s
, A−1(x) = x

3
√

3

⎧⎪⎨
⎪⎩

3

√√√√
1 +

√
1 − x3

81
+ 3

√√√√
1 −

√
1 − x3

81

⎫⎪⎬
⎪⎭ ,

and if m = 2/3 then

A(s) =
3
√

9s

3
√

(1 + 2s)2
,

and

A−1(x) = x
3
√

18

⎧⎪⎨
⎪⎩

3

√√√√(
2

3

)7

x6 + 16x3

27
+ 1 +

√(
2

3

)5

x3 + 1

⎫⎪⎬
⎪⎭

+ x
3
√

18

⎧⎪⎨
⎪⎩

3

√√√√(
2

3

)7

x6 + 16x3

27
+ 1 −

√(
2

3

)5

x3 + 1

⎫⎪⎬
⎪⎭ + 4x3

27
.

Respectively, their radiuses of convergence are as follows

R(A−1)(1/2) = 2
√

2, R(A−1)(1/3) = 3 3
√

3, R(A−1)(2/3) = 3

2
3

√
9

4
.

In the aim to describe the behaviour of the process X(t), t > 0, we consider the
factorial moments E[X(t)]n↓ = F

(n)
s (t, 1). The derivatives of the p.g.f. F(t, s) are

expressed by the partial Bell polynomials defined as

Bn,k(a•) =
∑

(k1,k2,...,kn)

n!ak1
1 ...a

kn
n

k1!(1!)k1 ...kn!(n!)kn
, a• = (a1, a2, . . .),

see [21]. The sum is over all partitions of n into k parts, that is over all nonnegative
integer solutions (k1, k2, . . . , kn) of the equations:

k1 + 2k2 + · · · + nkn = n, k1 + k2 + · · · + kn = k.

The following theorem is based on the inequality (17) showing that the convergence
interval of the series

∑∞
k=1 bks

k/k! contains the point s = 1.
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Theorem 2. Let X(t), t > 0, be a subcritical time-homogeneous MBP with branch-
ing mechanism given by (1) where 0 < m < 1. Then the factorial moments
E[X(t)]n↓ = F

(n)
s (t, 1) are expressed by the mathematical expectation eMt =

E[X(t)] = F ′
s(t, 1) and partial Bell polynomials Bn,k(a•) as follows,

F (n)
s (t, 1) = (−1)n+1

n∑
k=1

Bn,k(a•)bk(e
Mt )k, M < 0,

where the sequences a• = (a1, a2, . . .) and b• = (b1, b2, . . .) are defined as (11) and
(15).

Proof. As we have seen previously, the solution of the equation (6) is

1 − F(t, s) = A−1(eMtA(1 − s)) =
∞∑

k=1

bk(e
Mt )k(A(1 − s))k

k! .

The change of variable z = 1 − s, s → 1, z → 0, gives the opportunity to work with
the representation (16) of A as the exponential generating function in the neighbour-
hood of zero. The powers of the exponential generating functions, see [21], are given
by

(A(z))k

k! = 1

k!

⎛
⎝ ∞∑

j=1

aj

zj

j !

⎞
⎠

k

=
∞∑

n=k

Bn,k(a•)
zn

n! . (18)

Then, exchanging the order of summation we obtain from (18),

1 − F(t, s) =
∞∑

k=1

bk(e
Mt )k

∞∑
n=k

Bn,k(a•)
(1 − s)n

n!

=
∞∑

n=1

n∑
k=1

Bn,k(a•)bk(e
Mt )k

(1 − s)n

n! .

Note, that applying the Faa Di Bruno formula for derivatives of the composite
functions A(A−1(x)) = x and A−1(A(s)) = s gives

B1,1(a•)b1 = 1,

n∑
k=1

Bn,k(a•)bk = 0, n = 2, 3, . . .

It means that all factorial moments F
(k)
s (t, 1) of order k = 2, 3, . . . contain the mul-

tiple eMt (1 − eMt ).
Finally, the important process behaviour like conditional limit probability is ob-

tained in the following theorem.

Theorem 3. Let X(t), t > 0, be a subcritical time-homogeneous MBP with branch-
ing mechanism given by (1) where 0 < m < 1. Then the conditional limit probability
exists and is given by

lim
t→∞ P(X(t) = n|X(t > 0)) = pn = P(ξ = n), n = 1, 2, . . . ,
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with p.g.f.

F ∗(s) =
∞∑

n=1

pns
n = 1 − 1

(1 − ms)m
+ s

(1 − ms)m
.

The p.m.f. is defined by the increasing factorials (10), [m](k−1)↑ as follows

pk = mk−1(1 − m)(m + k)[m](k−1)↑
k! > 0, 0 < m < 1, k = 1, 2, . . . .

The factorial moments E[ξ ]k↓ of the limit random variable is

fk = dkF ∗

dsk
(1) = k[m](k−1)↑

(1 − m)m

(
m

1 − m

)k−1

> 0, 0 < m < 1, k = 1, 2, . . . .

Proof. The p.g.f. of the conditional probability is written as follows

∞∑
n=1

snP (X(t) = n|X(t) > 0) = F(t, s) − F(t, 0)

1 − F(t, 0)
= 1 − R(t, s)

R(t, 0)
.

Knowing the differentiability of the function A−1 in the neighborhood of zero, we
apply the theorem of l’Hospital to find the limit

lim
t→∞

R(t, s)

R(t, 0)
= lim

t→∞
A−1(eMtA(1 − s))

A−1(eMt )
= A(1 − s) = A0(s) = 1 − s

(1 − ms)m
.

To obtain the p.m.f. we consider the Taylor series expansion of the p.g.f. F ∗(s) in the
neighbourhood of zero,

F ∗(s) = 1 − A0(s) = 1 −
∞∑

k=0

[m]k↑(ms)k

k! + s

∞∑
j=0

[m]j↑(ms)j

j ! .

The change of variable j + 1 = k in the second sum leads to,

F ∗(s) =
∞∑

k=1

(
−[m]k↑(m)k

k! + [m](k−1)↑(m)k−1

(k − 1)!

)
sk

=
∞∑

k=1

[m](k−1)↑(m)k−1

(k − 1)!
(

1 − m(m + k − 1)

k

)
sk

= (1 − m)

∞∑
k=1

mk−1sk(m + k)[m](k−1)↑
k! .

We remark that(
1 − m(m + k − 1)

k

)
=

(
k − m2 − mk + m

k

)
=

(
m(1 − m) + k(1 − m)

k

)
.

The relation between derivatives of the functions A and A0 at the points zero and s =
1 is obvious. In this way, we recognise the factorial moments fk as given previously
in (11), and also their relation with the p.m.f. pk in (12).
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In a more general view, the conditional limit distribution for the studied pro-
cess can be also considered as a mixture of shifted Negative-Binomial distributions,
closely connected to the family of delta Lagrangian probability distribution [3, 8].
The probabilities pk of this process can be computed numerically after direct imple-
mentation of the Theorem 3. The computation process is recurrent and relies on the
following ratio, where for k = 1, 2, . . ..,

ϒk(m) = pk+1

pk

= m

(
1 + m

k + 1

) (
1 − 1

k + m

)
< 1, 0 < m < 1. (19)

This ratio (19) shows that the Panjer recursion (even generalized) does not take place.
The inequality ϒk(m) < 1 is equivalent to the following

k2(1 − m) + k(m + 1 − 2m2) + m(2 − m2) > 0, k = 1, 2, . . . ,

where (m + 1 − 2m2) > 0 when −1/2 < m < 1. It is important to note that the ratio
(19) is increasing as a function of the parameter m, namely

ϒk(m) < ϒk(m + ε), 0 < m < m + ε < 1.

The histogram of the p.m.f. can be generated by the consecutive multiplication with
ϒk(m) < 1, where the maximum is given by p1 = 1 − m2. Some results for ϒk(m)

and computed from them probabilities pk are shown in Figure 1.

Fig. 1. The graphics shows ϒk(m) (left) and related values for pk (right) computed for m = 1/3
(red), m = 1/2 (green) and m = 2/3 (blue)

Mean-Variance-Skewness-Kurtosis can be easily expressed by the factorial mo-
ments. In particular, for several factorial moments we have,

E[ξ ] = f1 = 1

(1 − m)m
, f2 = 2m2

(1 − m)m+1 , f3 = 3m3(m + 1)

(1 − m)m+2 .

The central moments, respectively, are as follows

V ar[ξ ] = f2 + f1 − (f1)
2 = 1

(1 − m)m

{
2m2

1 − m
+ 1 − 1

(1 − m)m

}
,

and
E[ξ − f1]3 = f3 + 3f2 + f1 + 2(f1)

3 − 3f1(f1 + f2).
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The main parameter for applications is the variance-to-mean ratio (VMR) or index of
dispersion equal respectively to

V ar[ξ ]
E[ξ ] = 2m2

1 − m
+ 1 − 1

(1 − m)m
, 0 < m < 1.

The measure VMR of dispersion obtains the value equal to one for the threshold pa-
rameter m∗, which is estimated as 0.58905 < m∗ < 0.589058. This result is obtained
after the numeric solution of the equation

2m2 = (1 − m)1−m,

with a precision higher than 10−5. The conditional limit probability is over-dispersed
when the branching process X(t), t > 0, is near critical, m∗ < m < 1, and under-
dispersed when 0 < m < m∗ < 1. The values of VMR are shown in Figure 2.

Fig. 2. Index of Dispersion (VMR)

In the class of Panjer probability distributions, the VMR = 1 for the Poisson dis-
tribution, respectively, VMR > 1 for the geometric and Negative-Binomial distribu-
tion, and VMR < 1 for the binomial distribution. This enables the index of dispersion
to assess whether observed data can be modeled using a Poisson process. The “under-
dispersed” distribution corresponds to the relatively regular randomness. If the index
of dispersion is larger than 1, a data-set can correspond to the existence of clusters of
occurrences.

Remark 1. In its general setting, the problem of conditional limit behaviour of MBP
is studied in the book [19]. It is interesting to compare the infinitesimal geometric
branching reproduction with a reproduction defined by the quadratic p.g.f. having the
same offspring’s mean and variance. Let the p.g.f. of the offspring’s numbers for the
process Y(t) be given by

u(s) = (m2 − m + 1) + s(m − 2m2) + m2s2, u′(1) = m, u′′(1) = 2m2.

The infinitesimal generating function is

v(s) = K(m − 1)(s − 1) + Km2(s − 1)2, v′(1) = f ′(1) = M, v′′(1) = f ′′(1).

Then the decomposition

v′(1)

v(s)
= 1

s − 1
− 



s − 1
, 
 = m2

m2 + (1 − m)
, 1 − 
 = (1 − m)

m2 + (1 − m)
.
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We denote the corresponding functions expressing the solutions of the Kolmogorov
equations by the letters D0 and D,

D0(s) =
∫ s

0

v′(1)dx

v(x)
= 1 − s

1 − 
s
= (1 − s)

1 − 
 + 
(1 − s)
, D(s) = s

1 − 
 + 
s
.

Then

D−1
0 (s) = D0(s), D−1(s) = 1 − D0(s) = (1 − 
)s

1 − 
s
= D∗(s).

We see that the conditional limit distribution is a shifted geometric distribution with
parameter 
 < 1. The solution of the equation corresponding to (5, 6) is given by

r(t, s) = D−1(eMtD(1 − s)) = eMt (1 − s)

1 + (1 − eMt )(1 − s)
/(1 − 
)
,

where



1 − 

= m2

1 − m
= f ′′(1)

−2f ′(1)
.

The transient phenomena when the process X(t) is near critical is introduced by Sev-
astyanov, B. A. in 1959 [19, 18]. It take place when (t → ∞,m → 1) as follows,

R(t, s) = r(t, s)(1 + ε(t, s)), ε(t, s) → 0, (t → ∞,m → 1).

3 Critical geometric branching

Let the reproduction of particles be of mean m = 1, therefore q = 1 and mathematical
expectation E[X(t)] = 1 for any t > 0. Hence, the p.g.f.

h(s) = 1

2 − s
, f (s) = K(1 − s)2

2 − s
,

K

f (s)
= 1

(1 − s)2 + 1

1 − s
. (20)

The backward Kolmogorov equation is the same as (3), but with a new parameter (4),
namely f ′(1) = 0. The analytical deviation (difference) of critical and subcritical
MBP starts with decomposition (7) and hence (8). Now, in the critical case, we have
only similarly (analogously), the following indefinite integral primitive, for x 
= 1,∫

Kdx

f (x)
=

∫ (
1

(1 − x)2 + 1

1 − x

)
dx = log

(
1

|1 − x| exp

(
1

1 − x

))
. (21)

Let us introduce the composite function C(s) = V (G(s)), s 
= 1, such that,

C(s) = 1

1 − s
exp

(
1

1 − s

)
,
C′(s)
C(s)

= K

f (s)
, V (x) = xex,G(s) = 1

1 − s
. (22)

Then obviously, knowing (21), the solution F(t, s) of the backward Kolmogorov
equation in the critical case is expressed by the following relation,

C(F (t, s)) = eKtC(s), |s| < 1.
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The function C(s) (22) has a vertical asymptote at the point s = 1. First of all, we
study its behaviour left and right of the vertical s = 1, especially the domain of
increasing, and then we look for its inverse. The first derivative

C′(s) = 2 − s

(1 − s)3 exp

(
1

1 − s

)
, s 
= 1, C(0) = e, C′(0) = 2e,

shows that C(s) is increasing in the following two intervals −∞ < s < 1 and 2 <

s < ∞. Note that the V (G(s)) is negative right of the point s = 1, decreasing in the
interval 1 < s < 2 and has minimum at the point s = 2. Only the interval −∞ <

s < 1, where C(s) is positive and increasing, is convenient for definition of inverse
function, C−1(x) = s, x > 0, if and only if x = C(s), s < 1. Obviously, the inverse
function C−1(x) has a vertical asymptote at the point x = 0 and limx→∞ C−1(x) = 1.

An important advantage of this composite function C(s) = V (G(s)) is that all
higher order derivatives at zero can be expressed by the Lah numbers [21], as it is
shown in the following lemma.

Lemma 2. Let the composite function C(s) = V (G(s)), s 
= 1 satisfies (22). Then the
Taylor series expansion of the function C(s) in the neighbourhood of zero is expressed
by the Lah numbers as follows,

C(s) = e + C0(s), C0(s) =
∞∑

k=1

cks
k

k! , cn = e

n∑
k=1

(k + 1)L(n, k), (23)

where the Lah numbers L(n, k) are defined by the partial Bell polynomials over the
sequence

(•!) = (n!, n = 1, 2, . . .), L(n, k) = Bn,k(•!) =
n∑

k=1

(
n − 1

k − 1

)
n!
k! .

Proof. At first, directly from the definition we have C(0) = V (1) = e. Now, let us
consider the derivatives of the function

V (x) = xex, V (n)(x) = V (x) + nex.

Then, at the point x = 1 all derivatives are the multiples of the number e, as follows,

V (1) = e, V ′(1) = 2e, . . . , V (n)(1) = (n + 1)e, n = 2, 3, . . . ,

and at the point x = −1 as follows

V (−1) = −e−1, V ′(−1) = 0, . . . , V (n)(−1) = (n − 1)e−1 > 0, n = 2, 3, . . . .

We remark that, the first derivative V ′(x) < 0 in the interval (−∞,−1) and the
function V (x) is decreasing in this interval. But V (n)(−n) = 0 and the function V (x)

changes the convexity at these points. Moreover,

lim
x→∞ V (n)(x) = +∞, lim

x→−∞ V (n)(x) = 0.
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The linear-fractional function G(s) has the following derivatives for s 
= 1,

G(s) = 1

1 − s
, G(n)(s) = n!

(1 − s)n+1 , G(n)(0) = n!.
We have, left of the point s = 1−, s < 1,

lim
s→1−

G(n)(s) = +∞, n = 0, 1, 2, . . . ,

and right of the point s = 1+, s > 1,

lim
s→1+

G(2n)(s) = −∞, lim
s→1+

G(2n+1)(s) = +∞, n = 0, 1, 2, . . . .

The n − th derivative of the composite function C(s) = V (G(s)) at any point s 
= 1
is given by the Faa Di Bruno formula,

C(n)(s) =
n∑

k=1

V (k)(G(s))Bn,k(G•), (G•) = (G(n)(s), n = 1, 2, . . .). (24)

In particular, at the point s = 0 the corresponding derivatives are

G(0) = 1, V (k)(1) = e(k + 1), G(j)(0) = j !, Bn,k(•!) = L(n, k).

Namely,

C(n)(0) =
n∑

k=1

V (k)(1)Bn,k(g•), (g•) = (gn = G(n)(0), n = 1, 2, . . .).

The Taylor series expansion confirms the representation (23) with cn = C(n)(0).

A direct outcome of from the lemma is the explanation of how the inverse function
C−1(x), x > 0, approaches its horizontal asymptote. The conclusion follows from
(24), implying the asymptotic behaviour of derivatives in the neighbourhood of the
vertical asymptote, left and right,

lim
s→1−

C(n)(s) = +∞, lim
s→1+

C(n)(s) = 0, C(n)(1 + 1/k) = 0, k = 2, 3, . . . .

The purpose of the lemma is that if the coefficients ck in the Taylor series expansion
(23) of the function C(s) are known, we can apply the Lagrange inversion method in
its general setting to obtain the representation

C0(s) =
∞∑

k=1

cks
k

k! , C−1
0 (x) =

∞∑
k=1

dkx
k

k! , C−1(x) = C−1
0 (x − e), x > 0,

where d1c1 = 1 and the coefficients dn, for n = 2, 3, . . ., are given by

(2e)ndn =
n−1∑
k=1

(−1)k[n]k↑Bn−1,k(q•), (q•) = (qn = cn+1/(n + 1)c1). (25)

However, this approach expects applications to perform large iterative computations
in aim to obtain highly precise results. For this reason, we looked for an inversion
based on the composite function V (G(s)) by introducing the Lambert-W function
(considered as inverse of V(x)), to obtain another more effective solution.
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3.1 Lambert-W function and Lagrange inversion

In general, the Lambert-W function is a complex-valued function with branching
point z = −e−1. We consider only its principal branch as the real-valued inversion
function of

V (s) = ses, s ≥ −1, W(x) = V −1(x), x ≥ −e−1.

The inversion of the composite function V (G(s)) is defined as follows,

C(s) = V (G(s)), s < 1, C−1(x) = G−1(V −1(x)) = G−1(W(x)), x > 0. (26)

We consider only interval x > 0 because the function G−1 has a vertical asymptote
at zero, W(0) = 0. Then, the solution F(t, s) of the backward Kolmogorov equation
is given by,

1

1 − F(t, s)
= W

(
eKt

(1 − s)
exp

(
1

1 − s

))
, |s| < 1.

This representation of the p.g.f. F(t, s) is very convenient to realize the polynomial
rate of increasing with time parameter t > 0, based on the logarithmic rate of increas-
ing of the Lambert-W function [4], formula (28). In particular,

F(t, 0) = 1 − 1

W(eKt+1)
< F(t, s) < 1, 0 < s < 1, t > 0. (27)

The family of functions {F(t, s), 0 < s < 1, t > 0, } converges to the constant
function y(s) = 1 uniformly by |s| < 1 and increasing by t > 0 [19].

The expression for the derivatives of Lambert-W function on the domain of dif-
ferentiability, −e−1 < x < ∞ is given in [4, 15] as

dn

dxn
W(x) = (−1)n−1An(W(x)) exp(−nW(x))

(1 + W(x))2n−1 , n = 1, 2, . . . ,

where An(x) is a polynomial of degree (n−1) specified by the recursion, A1(x) = 1,
and for n ≥ 1,

An+1(x) = (3n − 1 + nx)An(x) − (1 + x)A′
n(x).

For x 
= 0 it is convenient to write the derivatives as follows,

W(n)(x) = (−1)n−1An(W(x))

(1 + W(x))2n−1

(
W(x)

x

)n

, n = 1, 2, . . . . (28)

Then the consecutive derivatives of the Lambert-W function at the point x = e are
easily calculated as,

W(n)(e) = (−1)n−1An(1)

22n−1

1

en
= (−1)n−1An(1)

2n−1(2e)n
, n = 1, 2, . . . .

The relation between inversion of the composite function V (G(s)) and Lambert-W
function is defined and proved in the following theorem.
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Theorem 4. Let the composite function C(s) = V (G(s)) satisfies

C(s) = 1

1 − s
exp

(
1

1 − s

)
= e + C0(s), C0(s) =

∞∑
k=1

cks
k

k! , s < 1,

then

C−1
0 (x) =

∞∑
k=1

dkx
k

k! , C−1(x) = C−1
0 (x − e), x > 0,

and

dn =
n∑

k=1

(−1)k−1k!Bn,k(w•), (29)

where the sequence (w•) = (wn = W(n)(e), n = 1, 2, . . .) is defined by the deriva-
tives of the Lambert-W function at the point x = e.

Proof. In this case, knowing the representation (26), the coefficients dn can be cal-
culated directly by derivatives of the representation

C−1
0 (x) = C−1(x + e) = 1 − 1

W(x + e)
= G−1(W(x + e)), (30)

at the point x > 0. The function G−1(x) has the following derivatives,

G−1(x) = 1 − 1

x
,

(
1 − 1

x

)(k)

= (−1)k−1k!
xk+1 , (G−1)(k)(1) = (−1)k−1k!.

At the point x = 0 the function W(x + e) take values W(e) = 1. Applying the Faa
Di Bruno formula on the composite function (30) we obtain,

dn =
n∑

k=1

(−1)k−1k!Bn,k(w•), (w•) = (wn = W(n)(e), n = 1, 2, . . .),

We remark the equivalence of (25) obtained by the Lagrange inversion method and
(29) expressing dn by the values of the Lambert-W function.

The assumption for computational simplification is justified during the calcula-
tion of the very important for every branching process extinction probability. It can
be computed from (27) applying any software packages giving the values of the func-
tion W(eKt+1). In our case, we used the function lambertW from package V GAM

(see [22]) in R environment for statistical computing, where the Lambert-W func-
tionality properties are implemented according [5]. The computed results are shown
in Figure 3.

For comparison, the series expansion of F(t, 0) is expressed by the Stirling num-
bers of second kind S(j, n) and coefficients dn as follows,

F(t, 0) =
∞∑

j=1

rj (Kt)j

j ! , rj =
j∑

n=1

S(j, n)endn. (31)
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It is easy to notice that the value F(t, 0) = P(X(t) = 0), representing the extinction
probability to the positive time t > 0, is

F(t, 0) = C−1(eKt+1) = C−1
0 (eKt+1 − e), C(0) = e.

Thus, after applying the Theorem (4) we obtain

C−1
0 (eKt+1 − e) = C−1

0 (e(eKt − 1)) =
∞∑

n=1

endn(e
Kt − 1)n

n! .

The properties of exponential generating function and definition of the partial expo-
nential Bell polynomials, as it is shown in [21], allow writing

(eKt − 1)n

n! = 1

n!

⎛
⎝ ∞∑

j=1

(Kt)j

j !

⎞
⎠

n

=
∞∑

j=n

Bj,n(1•)(Kt)j

j ! ,

where Bj,n(1•) = S(j, n), 1• = (1, 12, 13, . . . .) are the Stirling numbers of the
second kind. In this way the extinction probability is obtained as expansion by double
sum

F(t, 0) =
∞∑

n=1

endn

∞∑
j=n

S(j, n)(Kt)j

j ! .

The change of summation order n ≥ 1, j ≥ n into j ≥ 1, 1 ≤ n ≤ j leads to (31).
For the practical implementation of this result, it is easier to calculate several

terms of the coefficients rj with any computational tool. Then, knowing these coeffi-
cients rn the approximation of the extinction probability is expanded as

F(t, 0) = 1

2
.Kt − 3

23 .
(Kt)2

2! + 11

25
.
(Kt)3

3! − 45

27 .
(Kt)4

4! + 193

29 .
(Kt)5

5! + · · · .

On the other side, the series expansion of the Lambert-W function [4], see formula
(28) with the radius of convergence

√
4 + π2, is

W(ez) = 1 + (z − 1)

2
+ (z − 1)2

16
− (z − 1)3

192
− (z − 1)4

3072
+ 13(z − 1)5

61440
....

Applied on (27), it gives the following representation for the extinction probability

1

1 − F(t, 0)
= 1 + (Kt)

2
+ (Kt)2

16
− (Kt)3

192
− (Kt)4

3072
+ 13(Kt)5

61440
........

The division of polynomials in the increasing order confirms the previous approxima-
tion obtained by the coefficients rn from (31) and agreement of two series expansions.

The series expansion obtained by the Lagrange inversion method converges very
slowly with growing t > 0 requiring expansion to larger order number n. This issue
implies the already known computational problem in similar applications, in partic-
ular, for calculation of eigenstates of hydrogen molecular ion H+ [13, 17]. To solve
this computational issue, the representation of F(t, s) and its derivatives at the point
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s = 0 is redefined in terms of the values W(eKt+1), calculated with the corresponding
software packages.

The probability mass function of X(t), t > 0, is defined by the derivatives of the
p.g.f. F(t, s) at zero as follows

P(X(t) = n) = 1

n!F
(n)
s (t, 0), n = 0, 1, 2, . . . .

Obviously, for n = 0 we have the extinction probability. Applying (28) on the deriva-
tives of the Lambert-W function, we give the representation of p.m.f. in terms of the
values W(eKt+1) in the following theorem.

Theorem 5. Let X(t), t > 0, be a critical time-homogeneous MBP with branching
mechanism given by (20). The consecutive derivatives of the p.g.f. F(t, s) at zero are

F (n)
s (t, 0) =

n∑
k=1

(eKt )kBn,k(c•)

⎛
⎝ k∑

j=1

(−1)j−1j !Bk,j (W•)
(W(eKt+1))j+1

⎞
⎠ .

where the sequence (W•) is given by the derivatives of the Lambert-W function at the
point eKt+1.

Proof. We start with the representation

F(t, s) = C−1(eKtC(s)).

Then the n′th derivative by s at the point s = 0 is given by

F (n)
s (t, 0) =

n∑
k=1

(C−1)(k)(eKtC(0))Bn,k(e
Ktc•).

To obtain the derivatives of the inverse function C−1 at the point C(0) = e we apply
the Faa Di Bruno formula on the representation

C−1(x) = G−1(W(x)).

Knowing the derivatives of the linear-fractional function at the point x = eKt+1,

G−1(x) = 1 − 1

x
, (G−1)(k)(x) = (−1)k−1k!

xk+1 ,

we obtain for the derivatives of the composite function the following representation

(C−1)(k)(eKtC(0)) = (C−1)(k)(eKt+1) =
k∑

j=1

(−1)j−1j !Bk,j (W•)
(W(eKt+1))j+1 ,

where the sequence (W•) is defined by derivatives of the Lambert-W function at the
point eKt+1 as follows

(W•) = (W(k)(eKt+1), k = 1, 2, . . .).
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Fig. 3. Probabilities for P(X(t) = n). When process is in extinction, i.e. n = 0, the graphics
is shown in black colour. Otherwise, when n = 1 is shown in brown, n = 2 in red, n = 3 in
green and n = 4 in blue

As a demonstrative example, several derivatives presenting probabilities
P(X(t) = n) are computed and their values are shown in Figure 3.

F ′
s(t, 0) = 2

W(1 + W)
, F ′′

s (t, 0) = (W − 1)(3W + 1)

W(1 + W)3 ,

F (3)(t, 0) = 2(W − 1){4W 3 + 2W 2 + 5W + 1}
W(1 + W)5

,

F (4)(t, 0) = (W − 1)(30W 5 + 28W 4 + 91W 3 + 3W 2 + 35W + 5)

W(1 + W)7 .

4 Conclusions

The infinitesimal geometric branching reproduction describes the models wherein at
any time t > 0 there is a family of particles from all generations (with positive prob-
ability). Similar physical problems are very difficult and time consuming to solve
analytically, leading to the preference of numerical methods. However, with proba-
bilistic methods, we found explicit solutions for subcritical and critical cases.
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