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Abstract We consider a mixture with varying concentrations in which each component is de-
scribed by a nonlinear regression model. A modified least squares estimator is used to estimate
the regressions parameters. Asymptotic normality of the derived estimators is demonstrated.
This result is applied to confidence sets construction. Performance of the confidence sets is
assessed by simulations.
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1 Introduction

Nonlinear regression models are widely used in analysis of statistical data [14, 16]. In
many applications the observed data are derived from a mixture of components with
different dependencies between the variables in different components. In this case a
finite mixture model can be used to describe the data [15, 19, 2]. If the concentrations
of components in the mixture are different for different observations then the model
of mixture with varying concentrations (MVC) can be applied [1, 12, 11]. Paramet-
ric models of nonlinear regression mixtures were considered in [5, 4]. Estimation in
linear regression MVC models was studied also in [6, 8].
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In this paper we adopt a semiparametric approach with the use of modified least
squares (mLS) technique. The consistency of mLS estimators in regression MVC
models was demonstrated in [9]. Our aim is to derive conditions of mLS estimators
asymptotic normality and construct confidence sets for the true values of parameters.

The rest of the paper is organized as follows. In Section 2 we introduce the regres-
sion mixture model and the mLS estimator for the regression parameters. Asymptotic
behavior of the estimator is discussed in Section 3. Confidence ellipsoids for the
parameters are constructed in Section 4. Results of simulations are presented in Sec-
tion 5. Conclusive remarks are made in Section 6.

2 The model and estimator

In this paper we consider regression technique application to data, which are de-
scribed by the model of mixture with varying concentrations. It means that each ob-
served subject belongs to one of M different sub-populations (i.e. components of the
mixture). We observe n such subjects O1, . . . , On. The true number of component
which Oj belongs to will be denoted by κj . These numbers are not observed, but one
knows the probabilities

pk
j ;n = P{κj = k}.

These probabilities are called the mixing probabilities or concentrations of the com-
ponents at j -th observation.

For each subject Oj , one observes a set of numerical variables ξ j ;n = ξ j =
(Yj ,X

1
j , . . . , X

m
j ), where Y is the response and Xj = (X1

j , . . . , X
m
j )T is the vector

of independent variables in the regression model

Y = g(X; ϑ) + ε,

where g is a known regression function, ϑ = (ϑ1, . . . , ϑd)T is a vector of unknown
regression coefficients, ε is an unobservable regression error. In fact, the coefficients
of the model can be different for different components: ϑ = ϑ (k) if κj = k. The
distribution of ε can also depend on κj . These dependencies are described in the
following model

Yj = g(Xj ,ϑ
(κj )) + ε

(κj )

j . (1)

Here ϑ (k) ∈ �(k) ⊆ R
d is the vector of unknown regression coefficients correspond-

ing to the k-th mixture component, ε(k)
j , j = 1, . . . , n, k = 1, . . . ,M are independent

random variables with distribution dependent on k but not on j .
We will assume that

E ε
(k)
j = 0, Var ε

(k)
j = σ 2(k) < ∞.

(The values of σ 2(k) are unknown.) The independent variables vectors Xj are consid-
ered as random vectors with distribution possibly dependent on κj . It is assumed that

the error term ε
(κj )

j and Xj are conditionally independent for given κj . The vectors
(ξ j , κj ) are independent for different j .
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In what follows we will frequently use expectations and probabilities connected
with different mixture components. To present them in a compact form, we intro-
duce formal random vectors (Y (m), X(m), ε(m)) which have conditional distribution

of (Yj , Xj , ε
(κj )

j ) given κj = m, i.e., the distribution of the m-th component.
We will also denote by p;n the matrix of all concentrations for all observations

and all components:

p;n =
⎛
⎜⎝

p1
1;n . . . pM

1;n
...

. . .
...

p1
n;n . . . pM

n;n

⎞
⎟⎠ ,

pj ;n = (p1
j ;n, . . . , p

M
j ;n)

T , pm
;n = (pm

1;n, . . . , p
m
n;n)

T .
Similar notation is used for the weights matrix a;n introduced below.
We are interested in estimating the parameters ϑ (k) for different components.

The considered estimators are based on the modified least squares (mLS) approach.
Namely, we consider the weighted least squares functional

J (k)(t) =
n∑

j=1

ak
j ;n(Yj − g(Xj ; t))2,

where t ∈ �(k) is a formal parameter, ak
j ;n are some weights aimed to single out

the k-th mixture component and suppress influence of all other components on the
functional J (k). In this presentation, we restrict ourselves by the minimax weights
matrix defined as

a;n = �−1
;n p;n, (2)

where
�;n = pT

;np;n.
(It is assumed here that �;n is nonsingular. See [11, 12] for the minimax properties of
these weights.) It is readily seen that

(ak
;n)

T pm
;n = 1{m = k}. (3)

(Here 1{A} is the indicator function of an event A.) So

E J (k)(t) =
n∑

j=1

ak
j ;n

M∑
m=1

pm
j ;n E(Y (m) − g(X(m), t))2 = E(Y (k) − g(X(k), t))2

=̄ E(g(X(k), ϑ(k)) − g(X(k), t))2 + σ 2(k) def= J̄ (t).

The minimum of J̄ (t) is attained at t = ϑ (k). Thus, if ϑ (k) is the unique minimum
point, one expects that under suitable conditions J (k)(t) → J̄ (t) by the law of large
numbers, and argmint∈�(k) J (t) → ϑ (k) as n → ∞. If g is smooth enough, the
argmin can be found as a solution to

J̇(k)(t) = 0,

where J̇(k)(t) denotes the vector of partial derivatives of J (k)(t) by each entry of t.
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In what follows we define the mLS estimator ϑ̂
(k)
;n for ϑ (k) as a statistic which is

a solution to

J̇(k)(t) =
n∑

j=1

ak
j ;n(Yj − g(Xj , t))ġ(Xj , t) = 0, (4)

where

ġ(Xj , t) =
(

∂g(Xj , t)
∂t1 , . . . ,

∂g(Xj , t)
∂td

)T

.

If there are many solutions to (4) then ϑ̂
(k)
;n can be taken any of them, but it must be a

measurable function from the observed data (Yj , Xj ), j = 1, . . . , n.
Note that so defined mLS estimator can be a point of local minimum of J (k)(t).

But we still call it mLS since in was obtained by a modification of the LS technique.

3 Asymptotic behavior of mLS estimators

In this section, we consider asymptotic behavior of ϑ̂
(k)
;n as the sample size n tends to

infinity. Let us start with some general assumptions on the model.
In this paper we make no assumptions on connections between p;n and p;m, when

n �= m and don’t assume that they tend to some limit as n → ∞. Some assumptions
are made only on asymptotic behavior of some averaged characteristics of concentra-
tions.

Note that if a significant fraction of pk
j ;n is bounded away from zero, then entries

of the matrix �;n = pT
;np;n are of order n as n → ∞. In what follows we will assume

that the limit matrix

lim
n→∞

1

n
�;n = � (5)

exists and is nonsingular.
Then the weights ak

j ;n are of order 1/n as n → ∞ and the sums of the form∑n
j=1 ak

j ;na
m
j ;np

l
j ;np

i
j ;n are of order 1/n as well.

We will assume that the limits

lim
n→∞ n

n∑
j=1

ak
j ;na

m
j ;np

l
j ;np

i
j ;n

def= 〈akamplpi〉 (6)

exist, for all k, m, l, i = 1, . . . , M . Then

lim
n→∞ n

n∑
j=1

ak
j ;na

m
j ;np

l
j ;n

def= 〈akampl〉 =
M∑
i=1

〈akamplpi〉,

since
∑M

i=1 pi
j ;n = 1.

We will also denote

h(ξ j , t) = (Yj − g(Xj , t))ġ(Xj , t), (7)
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so ϑ̂
(k)

;n is a solution to
n∑

j=1

ak
j ;nh(ξ j , t) = 0. (8)

Note that (8) is an unbiased generalized estimating equation (GEE, see [17], Section
5.4).

Conditions of the ϑ̂
(k)

;n consistency are presented in the next statement.

Theorem 1. Assume the following.
1. � is nonsingular.
2. �(k) is a compact set in R

d .
3. There exists δ > 0 such that E |ε(m)|δ < ∞, E ‖X(m)‖δ < ∞ and

E sup
t∈�(m)

‖h(ξ (m), t)‖1+δ < ∞,

for all m = 1, . . . ,M .
4. The families of functions g(x, ·), x ∈ R

M and ġ(x, ·), x ∈ R
M are equicontin-

uous on �(k).
5. E h(ξ (k), t) �= 0 if t �= ϑ (k).

Then ϑ̂
(k)

;n → ϑ (k) in probability as n → ∞.

Proof. See [9].

Now consider the asymptotic normality of ϑ̂
(k)

;n . We will start with a result formu-
lated in more general terms of GEE estimation.

Assume that 
;n = (ξ j ;n, j = 1, . . . , n) are random observations in a measurable
space X described by the model of mixture with varying concentrations (MVC), i.e.,

P{ξ j ;n ∈ A} =
M∑

m=1

pm
j ;nF

(m)(A), (9)

where F (m)(A) = P{ξ (m) ∈ A} is the distribution of the observed variable ξ for
subjects from the m-th mixture component. Let ϑ = ϑ(F ) ∈ R

d be a functional on
a set of possible components’ distributions. To estimate ϑ (k) = ϑ(F (k)), we consider
an estimating equation of the form (8), where h = (h1, . . . , hd)T is some estimating
function h : X × R

d → R
d such that

E h(ξ (k),ϑ (k)) = 0.

(I.e., h is an unbiased estimating function.) Any statistic ϑ̂
(k)

;n is called a GEE-estimator
for ϑ (k) if it is an a.s. solution to (8), i.e.,

H(k)(ϑ̂
(k)

;n )
def=

n∑
j=1

ak
j ;nh(ξ j , ϑ̂

(k)

;n ) = 0 a.s. (10)
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We consider the joint parameters vector ϑ = ((ϑ (1))T , . . . , (ϑ (M))T )T and the cor-

responding estimator ϑ̂ ;n = ((ϑ̂
(1)

;n )T , . . . , (ϑ̂
(M)

;n )T )T and derive conditions, under
which √

n(ϑ̂ ;n − ϑ)
W−→ N(0, S), (11)

where S is some matrix which we now will describe. Denote

V(m) def= E ḣ(ξ (m),ϑ (m)), (12)

where

ḣ(ξ (m), t) =

⎛
⎜⎜⎝

∂h1(ξ (m),ϑ (m))

∂t1 . . .
∂h1(ξ (m),ϑ (m))

∂td

...
. . .

...
∂hd (ξ (m),ϑ (m))

∂t1 . . .
∂hd (ξ (m),ϑ (m))

∂td

⎞
⎟⎟⎠ .

Then

Z(m,l) =
M∑
i=1

〈amalpi〉 E h(ξ (i),ϑ (m))hT (ξ (i),ϑ (l))

−
M∑
i=1

M∑
k=1

〈amalpipk〉 E h(ξ (i),ϑ (m)) E hT (ξ (k),ϑ (l)),

S =
⎛
⎜⎝

S(1,1) . . . S(1,M)

...
. . .

...

S(M,1) . . . S(M,M)

⎞
⎟⎠ ,

where
S(m,l) = (V(m))−1Z(m,l)(V(m))−T . (13)

(Here and below V−T def= (V−1)T .)

Theorem 2. Let the following assumptions hold.
1. ϑ is an inner point of � = �(1) × · · · × �(M).
2. h(x, t) is continuousely differentiable by t, for almost all x ( mod F (m)) for all

m = 1, . . . M .
3. For some δ > 0 and some open ball B, such that ϑ ∈ B ⊆ �

E sup
t∈B

∥∥∥ḣ(ξ (m), t)
∥∥∥1+δ

< ∞,

for all m = 1, . . . ,M .
4. E ‖h(ξ (m),ϑ)‖2 < ∞, for all m = 1, . . . , M .
5. The matrices V(m) are finite and nonsingular, for all m = 1, . . . ,M .
6. The limits 〈akamplpi〉 defined in (6) exist, for all k,m, l, i = 1, . . . , M .
7. The matrix � defined in (5) exists and is nonsingular.
8. ϑ̂ ;n is a consistent estimator of ϑ .
Then (11) holds with the matrix S defined in (13).



Asymptotic normality of modified LS estimator for mixture of nonlinear regressions 441

Proof. The proof of the theorem is quite standard. Applying the Taylor expansion
to the LHS of (10) one obtains

√
n(ϑ̂

(k)

;n − ϑ (k)) = −[Ḣ(k)(ζ )]−1(
√

nH(k)(ϑ (k))),

where ζ is an intermediate point between ϑ̂
(k)

;n and ϑ (k). In view of Assumptions 2–5
and 7 of the theorem, by the same way as in [17], Theorem 5.14 and Lemma 5.3., it
can be shown that as n → ∞,

Ḣ(k)(ζ ) → E Ḣ(k)(ϑ (k)).

Then a straightforward calculation with (3) in mind yields

E Ḣ(k)(ϑ (k)) = V(k).

Note that by (3)
E H(k)(ϑ (k)) = 0.

Hence

Cov(H(m)(ϑ (m)), H(l)(ϑ (l))) =
n∑

j=1

am
j ;na

l
j ;n Cov(h(ξ j ,ϑ

(m)), h(ξ j ,ϑ
(l))),

Cov(h(ξ j ,ϑ
(m)), h(ξ j ,ϑ

(l))) = E h(ξ j ,ϑ
(m))hT (ξ j ,ϑ

(l))

− E h(ξ j ,ϑ
(m))

(
E h(ξ j ,ϑ

(l))
)T

=
M∑
i=1

pi
j E h(ξ (i),ϑ (m))hT (ξ j ,ϑ

(l)) −
M∑

i,k=1

E pi
jp

k
j h(ξ (i),ϑ (m))

(
E h(ξ (k),ϑ (l))

)T
.

So,
lim

n→∞ n Cov(H(m)(ϑ (m)), H(l)(ϑ (l))) = Z(m,l). (14)

Then, applying the central limit theorem with the Lindeberg’s condition as in the
proof of Theorem 3.1.1 in [11] one shows that the system of vectors (

√
nH(k)(ϑ (k)),

k = 1, . . . ,M) converge weakly to the Gaussian system of vectors (u(k), k = 1,

. . . ,M), such that
E u(k) = 0, E u(k)(u(m))T = Z(k,m).

This implies that the system of vectors (
√

n(ϑ̂
(k)

;n − ϑ (k)), k = 1, . . . ,M) converges
weakly to the system ((V(k))−1u(k), k = 1, . . . ,M).

This result is just the statement of the theorem.

Return to the regression mixture model (1). Obviously it is a partial case of the
MVC model (9). How the matrices V(m) and Z(m,l) can be represented for the regres-
sion mixture model?

Assume that h is defined by (7) and the function g(x, t) has second derivatives
by t:

g̈(Xj , t) =

⎛
⎜⎜⎝

∂2g(Xj ,t)
∂t1∂t1 . . .

∂2g(Xj ,t)
∂t1∂td

...
. . .

...
∂2g(Xj ,t)

∂td∂t1 . . .
∂2g(Xj ,t)
∂td∂td

⎞
⎟⎟⎠ .
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Then

V(m) = E
∂

∂t
[(g(X(m),ϑ (m)) + ε(m) − g(X(m), t))ġ(X(m), t)]

∣∣∣∣
t=ϑ (m)

= − E ġ(X(m),ϑ (m))(ġ(X(m),ϑ (m)))T + E ε(m)g̈(X(m),ϑ (m)).

The second term is zero since ε(m) is independent from X(m) and E ε(m) = 0. So

V(m) = − E ġ(X(m),ϑ (m))(ġ(X(m),ϑ (m)))T . (15)

A similar algebra yields

Z(m,k) =
M∑
l=1

〈amakpl〉[σ 2(l)A(l, k,m) + B(l, k,m)]

−
M∑

i,l=1

〈amakplpi〉(G(i, i, k) − G(i, k, k))(G(l, l, m) − G(l,m,m)),

where

A(l, k,m) = E ġ(X(l),ϑ (k))ġT (X(l),ϑ (m)),

B(l, k,m) = E(g(X(l),ϑ (l)) − g(X(l),ϑ (k)))

×(g(X(l),ϑ (l)) − g(X(l),ϑ (m)))ġ(X(l),ϑ (k))ġT (X(l),ϑ (m)),

G(l,m, k) = E g(X(l),ϑ (m))ġ(X(l),ϑ (k)).

4 Confidence ellipsoids for regression parameters

Apply the results of Section 3 to the construction of asymptotic confidence sets for
ϑ (k). For any t ∈ R

d and any nonsingular S ∈ R
d×d , define

T (k)(t, S) = n(ϑ̂
(k)

;n − t)T S−1(ϑ̂
(k)

;n − t).

It is obvious that if Theorem 2 holds and S(k,k) is nonsingular, then

T (k)(ϑ (k), S(k,k))
W−→ χ2

d , (16)

where χ2
d is the χ2-distribution with d degrees of freedom. Note that (16) holds also

if S(k,k) is replaced by a consistent estimator Ŝ(k,k)
;n . Let χα be the α-upper quantile of

χ2
d . Then the set

Bk
;n(α) = {t ∈ R

d : T (k)(ϑ (k), Ŝ(k,k)) < χα}
is an asymptotic α-level confidence set for ϑ (k) in the sense that

P{ϑ (k) ∈ Bk
;n(α)} → 1 − α

as n → ∞.
To accomplish the confidence set construction, we need convenient conditions for

the S(k,k) nonsingularity and a consistent estimator of this matrix.
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4.1 Nonsingularity of S(k,k)

Since
S(k,k) = (V(k))−1Z(k,k)(V(k))−T ,

we need conditions for the nonsingularity of V(k) and Z(k,k).

Assumption Ilk. For all c ∈ R
d such that c �= 0,

P{cT ġ(X(l),ϑ (k)) �= 0} > 0.

This assumption means that the functions

ġi (·) = ∂

∂t i
g(·, t)

∣∣∣∣
t=ϑ (k)

, i = 1, . . . , d

are linearly independent a.s. with respect to the distribution of X for the l-th compo-
nent.

Lemma 1. Assume that the matrix

Al,k = E ġ(X(l),ϑ (k))(ġ(X(l),ϑ (k)))T

exists, is finite and assumption Ilk holds. Then A is nonsingular.

Proof. Observe that Al,k is the Gram matrix of the set of functions G = (ġ1, . . . , ġd )

in the L2 space of functions on R
d with inner product

(f, g) = E f (X(l))g(X(l)).

Assumption Ilk implies that the functions in G are linearly independent in this space.
So, their Gram matrix is nonsingular.

Theorem 3. Assume that the matrix Z(k,k) exists, is finite, assumption Ikk holds and
σ 2(k) > 0. Then S(k,k) exists and is nonsingular.

Proof. From V(k) = −Ak,k one readily obtains the nonsingularity of V(k,k). Show
nonsingularity of Z(k,k).

In what follows ≥ means the Loewner order for matrices, i.e., A ≥ Z means that
A − Z is a positive semidefinite matrix.

Observe that

Cov[h(ξj ,ϑ
(k))] = E

[
Cov[h(ξj ,ϑ

(k)) |κj ]
]

+ Cov
[
E[h(ξj ,ϑ

(k)) |κj ]
]

≥ E
[
Cov[h(ξj ,ϑ

(k)) |κj ]
]

=
M∑
l=1

pl
j ;n Cov[h(ξ (l),ϑ (k))]

≥ pk
j ;n Cov[h(ξ (k),ϑ (k))] = pk

j ;nσ
2(k)Ak,k.

So, by (14)
Z(k,k) ≥ 〈(a(k))2pk〉σ 2(k)Ak,k.

Since Ak,k ≥ 0 and det Ak,k �= 0, to prove the theorem, it is enough to show that
〈(a(k))2pk〉 > 0.
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To do this, observe that by (3)

n∑
j=1

ak
j ;np

k
j ;n = 1.

Then

n∑
j=1

ak
j ;np

k
j ;n1{ak

j ;n > 1/(2n)} = 1 −
n∑

j=1

ak
j ;np

k
j ;n1{ak

j ;n ≤ 1/(2n)} ≥ 1/2,

since 0 ≤ pk
j ;n ≤ 1, and

n

n∑
j=1

(ak
j ;n)

2pk
j ;n ≥ n

n∑
j=1

(ak
j ;np

k
j ;n)(a

k
j ;n1{ak

j ;n > 1/(2n)}) ≥ 1/4.

Therefore,

〈(a(k))2pk〉 = lim
n→∞ n

n∑
j=1

(ak
j ;n)

2pk
j ;n ≥ 1/4.

4.2 Estimation of S(k,k)

There are at least two ways to estimate S(k,k). The first is based on the plug-in tech-
nique. Namely, we construct empirical counterparts to V(k) and Z(k,k) and substitute
them into (13) to obtain an estimator for S(k,k). Formula (15) suggests the following
estimator of V(k):

V̂k
;n = −

n∑
j=1

ak
j ;nġ(Xj , ϑ̂

(m)

;n )(ġ(Xj , ϑ̂
(m)

;n ))T .

Estimation of Z(k,k) is more complicated. We can estimate M(i,k) = E h(ξ (i),ϑ (k))

by

M̂(i,k)
;n =

n∑
j=1

ai
j ;nh(ξ j :n, ϑ̂

(k)

;n ),

and
D(i,k) = E h(ξ (i),ϑ (k))hT (ξ (i),ϑ (k))

by

D̂(i,k)
;n =

n∑
j=1

ai
j ;nh(ξ j ;n, ϑ̂ (k)

;n )hT (ξ j ;n, ϑ̂ (k)

;n ).

We also replace the limits 〈(a(i))2pl〉 and 〈(a(i))2plpm〉 with their approximations

α(i, l) =
n∑

j=1

(ai
j ;n)

2pl
j ;n, α(k, i, l) =

n∑
j=1

(ak
j ;n)

2pi
j ;np

l
j ;n.
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Then the estimator of Z(k,k) is

Ẑ(k,k)
;n =

M∑
i=1

α(k, i)D̂(i,k)
;n −

M∑
i,l=1

α(k, i, l)M̂(i,k)
;n (M̂(l,k)

;n )T .

Now, the resulting plug-in estimator for S(k,k) is

plugŜ(k,k)
;n = (V̂k

;n)
−1Ẑ(k,k)

;n (V̂k
;n)

−T .

By the same methods as in Theorem 5.15 in [17] it can be shown that under assump-
tions of Theorem 2, this estimator is consistent.

The second approach to estimation of S(k,k) is based on the jackknife technique.
Consider the dataset 
;−i,n = (ξ1;n, . . . , ξ i−1;n, ξ i+1;n, . . . , ξn;n), which consists of
all observations from 
;n without the i-th one. Similarly, the matrix p;−i,n contains
all rows of p;n except the ith one, �;−i,n = p;−i,npT

;−i,n
and a;−i,n = �−1

;−i,n
p;−i,n.

Then ϑ̂
(k)

;−i,n is the GEE estimator ϑ̂
(k)

constructed by the data 
;−i,n with the weights
a;−i,n, i.e., it is a solution to the estimating equation

∑
j �=i

a
(k)
j ;−i,n

(Yj − g(Xj ; t))2 = 0.

The jackknife estimator of S(k,k) is defined as

jnŜ(k,k)
;n = n

n∑
i=1

(ϑ̂
(k)

;−i,n − ϑ̂
(k)

;n )(ϑ̂
(k)

;−i,n − ϑ̂
(k)

;n )T .

Jackknife estimators for i.i.d. sample are considered in [18]. Consistency of jack-
knife is demonstrated in [8] for samples from mixtures with varying concentrations in
which the components are described by linear erroros-in-variables regression models.
We do not state the consistency conditions for jnŜ(k,k)

;n , but analyze its applicability
to the confidence ellipsoids construction in a small simulation study.

5 Simulations results

In the simulation study, the performance of confidence ellipsoids constructed in Sec-
tion 4 is tested on N = 1000 simulated samples in each experiment. In all the ex-
periments, we constructed confidence ellipsoids for the regression parameters with
nominal covering probability 95% and calculated the obtained covering frequencies,
i.e., the percent of ellipsoids which cover the true parameter vector.

The data were generated from a mixture of two components (i.e., M = 2) with
mixing probabilities which also were obtained by random generation:

pk
j ;n = uk

j

u1
j + u2

j

, k = 1, 2,

where ui
j , i = 1, 2, j = 1, . . . , n are independent uniformly distributed on [0, 1].
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Table 1. True parameters values for the regression model

m 1 2
μ(m) 0.0 1.0
�(m) 2.0 2.0

ϑ
(m)
0 0.5 0.5

ϑ
(m)
1 2 −1/3

Table 2. Covering frequencies for normal regression errors

first component second component
n oracle plug-in jk oracle plug-in jk

100 0.668 0.942 0.955 0.729 0.939 0.953
500 0.929 0.931 0.956 0.948 0.934 0.939

1 000 0.954 0.951 0.95 0.944 0.937 0.939
5 000 0.959 0.951 0.943 0.952 0.940 0.931
7 500 0.961 0.942 0.933 0.951 0.938 0.957
1 000 0.954 0.949 0.944 0.944 0.947 0.954

Each observation contains two variables (Y,X), and their distribution for the mth
component follows the logistic regression model with continuous response:

Y (m) = g(X(m),ϑ (m)) + ε(m), X(m) ∼ N(μ(m),�(m)),

g(X,ϑ) = 1

1 + exp(ϑ0 + ϑ1X)
.

Here ϑ (m) = (ϑ
(m)
0 , ϑ

(m)
1 )T is the vector of unknown regression parameters for the

mth component to be estimated. The true values of parameters with which the data
were generated are presented in Table 1. ε(m) are zero mean regression errors inde-
pendent of X(m), and their distributions were different in different experiments.

In each experiment, we calculated
(i) oracle 95% covering sets at which the true value of S is used;
(ii) plug-in 95% confidence ellipsoids based on plugŜ(k,k)

;n ;

(iii) jackknife ellipsoids based on jkŜ(k,k)
;n .

The ellipsoids were constructed by 1000 simulated samples and covering frequen-
cies were calculated. These frequencies are presented in the tables, for each experi-
ment.

Experiment 1. Here the error terms were zero mean normal with the variance σ 2(k) =
0.25 for k = 1, 2. The resulting covering frequencies are presented in Table 2. It
seems that the accuracy of the plug-in confidence ellipsoids in this experiment is not
high, but enough for the practical purposes for sample sizes larger then 1000. The
plug-in ellipsoids accuracy is nearly the same as for the oracle covering sets, so the
observed deviations of the covering frequencies from the nominal confidence prob-
ability can not be explained by errors in S estimation. The jackknife ellipsoids are
almost as accurate as the plug-in ones.

Experiment 2. Here we consider bounded regression errors, namely ε(k) are uni-
form on [−0.25, 0.25]. The resulting covering frequencies are presented in Table 3.
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Table 3. Covering frequencies for uniform regression errors

first component second component
n oracle plug-in jk oracle plug-in jk

100 0.593 0.952 0.909 0.684 0.964 0.939
500 0.907 0.929 0.938 0.924 0.929 0.934

1 000 0.917 0.959 0.946 0.951 0.944 0.939
5 000 0.938 0.941 0.934 0.947 0.959 0.933
7 500 0.934 0.948 0.948 0.958 0.956 0.944
1 000 0.937 0.947 0.943 0.955 0.945 0.950

Table 4. Covering frequencies for uniform regression errors

first component second component
n oracle plug-in jk oracle plug-in jk

100 0.568 0.942 0.903 0.701 0.932 0.931
500 0.900 0.938 0.944 0.917 0.929 0.956

1 000 0.936 0.932 0.926 0.944 0.931 0.919
5 000 0.930 0.949 0.945 0.942 0.936 0.948
7 500 0.946 0.939 0.953 0.941 0.953 0.926
1 000 0.955 0.947 0.935 0.925 0.944 0.936

It seems that the accuracy of plug-in and jackknife ellipsoids is nearly the same as in
Experiment 1. Paradoxically, the oracle ellipsoids perform somewhat worse than the
ones in Experiment 1.

Experiment 3. Here we compare the ellipsoids accuracy on the regression with
heavy-tailed errors. The errors are taken with distribution of η/10, where η has Stu-
dent’s t distribution with four degrees of freedom. The results are presented in the
Table 4. In this case, the accuracy of jackknife ellipsoids seems significantly worse
then in the Experiments 1 and 2. The plug-in ellipsoids show nearly the same perfor-
mance as in the previous experiments.

6 Conclusion

We presented theoretical results on the asymptotic normality of the modified least
squares estimators for mixtures of nonlinear regressions. These results were applied
to construction of confidence ellipsoids for the regression coefficients. Simulation
results show that the proposed ellipsoids can be used for large enough samples.
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