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Abstract European call option issued on a bond governed by a modified geometric Ornstein-
Uhlenbeck process, is investigated. Objective price of such option as a function of the mean
and the variance of a geometric Ornstein-Uhlenbeck process is studied. It is proved that the
“Ornstein-Uhlenbeck” market is arbitrage-free and complete. We obtain risk-neutral measure
and calculate the fair price of a call option. We consider also the bond price, governed by a mod-
ified fractional geometric Ornstein-Uhlenbeck process with Hurst index u� ∈ (1/2, 1). Limit
behaviour of the variance of the process as u� → 1/2 and u� → 1 is studied, the monotonicity
of the variance and the objective price of the option as a function of Hurst index is established.

Keywords Objective option price, fair option price, modified geometric Ornstein-Uhlenbeck
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1 Introduction

Modern financial world requires increasingly more accurate and convenient models
for simulation of the dynamics of real financial markets. Classical stochastic models
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for interest rates dynamics are Vasicek, Cox-Ingersoll-Ross and Hull–White models
[1–4, 6, 7, 9, 10]. These models turn out to be convenient for interest rates dynamics
modelling as well as for analysis of dynamics of financial instruments, depending on
interest rates.

Actually any model gives only a certain approximation of the real markets dynam-
ics. In particular, interest rates of real financial markets typically have jumping dynam-
ics at some moments of time. Also, a serious shortcoming of Vasicek and Hull-White
models is the possibility of interest rate under the model to become negative.

To avoid negative values, we consider the geometric Vasicek model (Ornstein-
Uhlenbeck model). For instance, we consider a modified geometric Ornstein-Uhlen-
beck process and modified geometric fractional Ornstein-Uhlenbeck process with the
fractional Brownian motion with Hurst index 𝐻 > 1/2 instead of the Wiener process.
This process has a long memory property and flexibility, necessary for simulation of
specific features of financial markets.

The paper is devoted to the investigation of European call option, issued on a bond,
governed by a geometric or a fractional geometric Ornstein-Uhlenbeck process. The
paper is organized as follows. In Section 2 we obtain the objective price of a call op-
tion, issued on a bond, governed by a modified geometric Ornstein-Uhlenbeck process.
Its behaviour as a function of mean and variance of the modified Ornstein-Uhlenbeck
process is studied in Section 3. Section 4 is devoted to the arbitrage-free property and
completeness of the market generated by a modified Ornstein-Uhlenbeck process. The
call option fair price is obtained in Section 5. In Section 6 we get the objective price
of the call option, governed by a modified fractional geometric Ornstein-Uhlenbeck
process with Hurst index 𝐻 ∈ (1/2, 1). The asymptotic behaviour of a modified frac-
tional geometric Ornstein-Uhlenbeck process variance as 𝐻 → 1/2 and 𝐻 → 1 is
investigated in Section 7. Finally, the monotonicity property of the variance and the
objective price of the option as the Hurst index function is presented in Section 8.

2 The objective price of a European call option issued on a bond governed
by a modified geometric Ornstein-Uhlenbeck process

Let (Ω, ℱ, {ℱ}u�≥0, 𝑃) be the probability space which satisfies standard assumptions.
Let 𝑊 = {𝑊u�, ℱu�, 𝑡 ≥ 0} be the Wiener process defined on this probability space.
The Ornstein-Uhlenbeck process is defined as the solution of the following stochastic
differential equation

𝑑 ̃𝑋u� = −𝑎 ̃𝑋u�𝑑𝑡 + 𝛾𝑑𝑊u�, ̃𝑋|u�=0 = ̃𝑋0,

where 𝑎 > 0 and 𝛾 > 0 are constants. This stochastic differential equation has the
following solution:

̃𝑋u� = ̃𝑋0𝑒−u�u� + 𝛾𝑒−u�u� ∫
u�

0
𝑒u�u� 𝑑𝑊u�.

The process ̃𝑋 is Gaussian and Markov.
In what follows for technical simplicity we consider ̃𝑋0 = 1. The Ornstein-Uhlen-

beck process has the following numerical characteristics: 𝐸 ̃𝑋u� = 𝑒−u�u� → 0, 𝑡 → ∞ and
Var ̃𝑋u� = 𝛾2 1−u�−2u�u�

2u� → u�2

2u� , 𝑡 → ∞. That is mean and variance are asymptotically sta-
ble, so this process is convenient for simulation of interest rates or stock values, but it
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can take negative values. Therefore for interest rate dynamics simulation a geometric
Ornstein-Uhlenbeck process appears to be more acceptable:

̃𝑍u� = exp{ ̃𝑋u�} = exp{𝑒−u�u� + 𝛾𝑒−u�u� ∫
u�

0
𝑒u�u� 𝑑𝑊u�}.

Let us consider a modified geometric Ornstein-Uhlenbeck process 𝑍 with additional
parameter for the variance:

𝑍u� = exp{𝑋u�}, (1)
where 𝑋u� = 𝑒−u�u� + 𝛾𝑒−u�u� ∫u�

0 𝑒u�u�𝑑𝑊u� is the modified Ornstein-Uhlenbeck process,
𝑎 > 0, 𝜇 ∈ 𝑅. Mathematical expectation and variance for 𝑋u� are the following:

𝑚u� ∶= 𝐸𝑋u� = 𝑒−u�u� ,

𝜎2
u� ∶= Var 𝑋u� = 𝛾2𝑒−2u�u� ∫

u�

0
𝑒2u�u� 𝑑𝑠 = 𝛾2𝑒−2u�u� 1

2𝑎
(𝑒2u�u� − 1).

Consider the model of financial market where a bond price is governed by a ge-
ometric Ornstein-Uhlenbeck process (1). Let us calculate the objective price of the
European call option issued on this bond. In what follows in this section we assume
that all values are discounted.

First we prove a simple auxiliary result.

Lemma 2.1. Let the bond price be governed by the stochastic process 𝑒u� , where
𝑌 = {𝑌u�, 𝑡 ∈ [0, 𝑇]} is a Gaussian process. Then the price 𝐶 of the issued on this
bond European call option with the strike price 𝐾 and maturity date 𝑇 equals

𝐶(𝑚, 𝜎2) = 𝑒u�+ 1
2 u�2

Φ(𝑚 + 𝜎2 − ln 𝐾
𝜎

) − 𝐾Φ(𝑚 − ln 𝐾
𝜎

), (2)

where 𝑚 = 𝐸𝑌u� , 𝜎2 = Var 𝑌u� .

Proof. We express the option price in terms of density of the distribution:

𝐶(𝑚, 𝜎2) = 𝐸[𝑒u�u� − 𝐾]+ = ∫
∞

ln u�
(𝑒u� − 𝐾) 1

𝜎√2𝜋
exp{−(𝑥 − 𝑚)2

2𝜎2 } 𝑑𝑥 ∶= 𝐼1 + 𝐼2.

Now we calculate either of the integrals:

𝐼1 = ∫
∞

ln u�
𝑒u� 1

𝜎√2𝜋
exp{−(𝑥 − 𝑚)2

2𝜎2 } 𝑑𝑥

= exp{𝑚 + 𝜎2

2
}(1 − Φ(ln 𝐾 − 𝑚 − 𝜎2

𝜎
))

= exp{𝑚 + 𝜎2

2
}Φ(𝑚 + 𝜎2 − ln 𝐾

𝜎
),

where Φ is the distribution function of the standard normal distribution. Similarly

𝐼2 = −𝐾 ∫
∞

ln u�

1
𝜎√2𝜋

exp{−(𝑥 − 𝑚)2

2𝜎2 } 𝑑𝑥 = −𝐾 ∫
∞
ln u�−u�

u�

1
√2𝜋

𝑒− u�2

2 𝑑𝑦

= −𝐾(1 − Φ(ln 𝐾 − 𝑚
𝜎

)) = −𝐾Φ(𝑚 − ln 𝐾
𝜎

).

Thus the equality (2) holds.
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Corollary 2.1. Using the result of Lemma 2.1 we obtain the objective price 𝐶u� of the
European call option issued on the bond governed by the modified geometric Ornstein-
Uhlenbeck process 𝑍:

𝐶u� = 𝑒u�u�+ 1
2 u�2

u�Φ(
𝑚u� + 𝜎2

u� − ln 𝐾
𝜎u�

) − 𝐾Φ(
𝑚u� − ln 𝐾

𝜎u�
).

3 The behaviour of the option price as a function of mean and variance

We investigate the behaviour of the European call option price (2) as a function of the
mean 𝑚 and the variance 𝜎2.

Lemma 3.1. The option price (2) is increasing in 𝑚 and in 𝜎2.

Proof. We calculate the derivatives with respect to 𝑠 ∶= 𝜎2 and 𝑚. The derivative in
𝑠 is equal

𝐶(𝑚, 𝑠)
′

u� = 1
2

exp{𝑚 + 𝑠
2

}Φ(𝑚 + 𝑠 − ln 𝐾
√𝑠

)

+ 𝑠 − 𝑚 + ln 𝐾
2√2𝜋𝑠√𝑠

exp{𝑚 + 𝑠
2

} exp{−1
2

(𝑚 + 𝑠 − ln 𝐾
√𝑠

)
2
}

+ 𝐾(𝑚 − ln 𝐾)
2√2𝜋𝑠√𝑠

exp{−1
2

(𝑚 − ln 𝐾
√𝑠

)
2
}

= 1
2

exp{𝑚 + 𝑠
2

}Φ(𝑚 + 𝑠 − ln 𝐾
√𝑠

) + 𝐾
2√2𝜋𝑠

exp{−1
2

(𝑚 − ln 𝐾
√𝑠

)
2
}. (3)

The derivative in 𝑚 is equal

𝐶(𝑚, 𝑠)
′

u� = exp{𝑚 + 𝑠
2

}Φ(𝑚 + 𝑠 − ln 𝐾
√𝑠

)

+ 1
√2𝜋√𝑠

exp{𝑚 + 𝑠
2

} exp{−1
2

(𝑚 + 𝑠 − ln 𝐾
√𝑠

)
2
}

− 𝐾
√2𝜋√𝑠

exp{−1
2

(𝑚 − ln 𝐾
√𝑠

)
2
}

= exp{𝑚 + 𝑠
2

}Φ(𝑚 + 𝑠 − ln 𝐾
√𝑠

). (4)

From the equalities (3) and (4) it follows, that both derivatives are positive, and
therefore the option price increases in 𝑚 and in 𝜎2.

4 Arbitrage-free property and completeness of the financial market generated
by a modified Ornstein-Uhlenbeck process

We investigate the arbitrage-free property and completeness of the financial market
generated by a modified geometric Ornstein-Uhlenbeck process. Let us recall the nec-
essary definitions.
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Definition 4.1. The probability measure 𝑃∗ ∼ 𝑃 is called the martingale measure if
the discounted price process is 𝑃∗-martingale.

Let the financial market be considered on [0, 𝑇].

Definition 4.2. A financial market is complete, if every ℱu� -measurable integrated
contingent claim is achievable, that is for such claim the generating portfolio exists.

The existence of the martingale measure 𝑃∗ is equivalent to the arbitrage-free prop-
erty of the market, its uniqueness is equivalent to the completeness of the market.

Let us prove the arbitrage-free property and completeness of the financial market.
On the market under consideration we have the risk-free interest rate 𝐵(𝑡) = 𝑒u�u� and the
risk price process governed by a modified geometric Ornstein-Uhlenbeck process 𝑋.
Note that 𝑋 satisfies the following linear stochastic differential equation:

𝑑𝑋u� = −𝜇𝑋u�𝑑𝑡 + 𝛾𝑒(u�−u�)u�𝑑𝑊u�, 𝑋0 = 1.

In order of technical simplification further on we consider the following discounted
price process:

𝑍∗
u� = 𝑍u� exp{−𝑟𝑡 −

𝛾2

2
∫

u�

0
𝑒2(u�−u�)u� 𝑑𝑠} = exp{𝑋∗

u� },

where

𝑋∗
u� ∶= 𝑒−u�u� − 𝑟𝑡 −

𝛾2

2
∫

u�

0
𝑒2(u�−u�)u� 𝑑𝑠 + 𝛾𝑒−u�u� ∫

u�

0
𝑒u�u� 𝑑𝑊u�.

This discounted price process can be represented as follows:

𝑍∗
u� = exp{𝑋u� − 𝑟𝑡 −

𝛾2

2
∫

u�

0
𝑒2(u�−u�)u� 𝑑𝑠}

= exp{1 − 𝜇 ∫
u�

0
𝑋u� 𝑑𝑠 + 𝛾 ∫

u�

0
𝑒(u�−u�)u� 𝑑𝑊u� − 𝑟𝑡 −

𝛾2

2
∫

u�

0
𝑒2(u�−u�)u� 𝑑𝑠}

= exp{𝛾 ∫
u�

0
𝑒(u�−u�)u� 𝑑𝑊u� −

𝛾2

2
∫

u�

0
𝑒2(u�−u�)u� 𝑑𝑠 − ∫

u�

0
(𝜇𝑋u� + 𝑟) 𝑑𝑠 + 1}.

We look for the likelihood ratio u�u�∗

u�u� |u� of the form

𝑑𝑃∗

𝑑𝑃
∣
u�

= exp{∫
u�

0
𝛽u� 𝑑𝑊u� − 1

2
∫

u�

0
𝛽2

u� 𝑑𝑠},

where 𝛽u�, 𝑡 ∈ [0, 𝑇], is ℱu�-adapted process and the discounted price process 𝑍∗
u� is the

martingale with respect to the measure 𝑃∗. Consider the product of the price process
and the likelihood ratio:

𝑍∗
u�

𝑑𝑃∗

𝑑𝑃
∣
u�

= exp{∫
u�

0
[𝛾𝑒(u�−u�)u� + 𝛽u�] 𝑑𝑊u�

− 1
2

∫
u�

0
[𝛾2𝑒2(u�−u�)u� + 2(𝜇𝑋u� + 𝑟) + 𝛽2

u� ] 𝑑𝑠 + 1}. (5)
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Since this process must be a martingale with respect to the objective measure 𝑃, it
must have the form:

exp{∫
u�

0
𝛼u� 𝑑𝑊u� − 1

2
∫

u�

0
𝛼2

u� 𝑑𝑠}. (6)

Comparing integrands in (5) and (6), we obtain the following equations for the pro-
cesses 𝛼 and 𝛽:

𝛼u� = 𝛾𝑒(u�−u�)u� + 𝛽u�,

𝛼2
u� = 𝛾2𝑒2(u�−u�)u� + 𝛽2

u� + 2(𝜇𝑋u� + 𝑟).

From these equations we obtain that

𝛽u� =
𝜇
𝛾

𝑒(u�−u�)u�𝑋u� + 𝑟
𝛾

𝑒(u�−u�)u�.

For all that the process u�u�∗

u�u� |u� must be a martingale. According to Theorem 6.1 [5]
the process 𝜑u�(𝑐) = exp{∫u�

0 𝑐u� 𝑑𝑊u� − 1
2 ∫u�

0 𝑐2
u� 𝑑𝑠} is a martingale on [0, 𝑇] with

𝐸𝜑u�(𝑐) = 1, 𝑡 ∈ [0, 𝑇], when 𝑐 is a Gaussian process such that

sup
u�≤u�

E |𝑐u� | < ∞ and sup
u�≤u�

Var 𝑐2
u� < ∞.

In our case 𝛽u�, 𝑡 ∈ [0, 𝑇], is indeed Gaussian and ℱu�-adapted. We also know that

E 𝑋u� = 𝑒−u�u� and Var 𝑋u� =
𝛾2𝑒−2u�u�

2𝑎
(𝑒2u�u� − 1).

Then
E 𝛽u� =

𝜇
𝛾

𝑒−u�u� + 𝑟
𝛾

𝑒(u�−u�)u� and Var 𝛽u� = 1
2𝑎

𝜇2(1 − 𝑒−2u�u�).

So the martingale conditions hold.
Since equations (5) and (6) explicitly define the process 𝛽, then the martingale

measure u�u�∗

u�u� |u� on [0, 𝑇] is also defined uniquely.
Thus the following result holds:

Theorem 4.1. The financial market generated by a modified geometric Ornstein-
Uhlenbeck process is arbitrage-free and complete.

5 The comparison of objective and fair price of the European call option

Our further goal is to calculate the fair price of the European call option issued on the
bond with the discounted price governed by the price process 𝑍∗, and to compare it
with the objective price of the option issued on the specified bond.

Let 𝐾 be the option strike price, the option maturity time is 𝑇 , 𝑟 is the annual
compounded risk-free bank interest rate. The discounted strike price of the option is
equal 𝐾∗ ∶= 𝐾𝑒−u�u� .

Using the results of the previous section we obtain the following representation
for the fair price 𝐶u� of the European call option, issued on the bond with discounted
price, governed by the process 𝑍∗:

𝐶u� = 𝐸∗[𝑍∗
u� − 𝐾∗]+ = 𝐸[𝑒u�∗

u� − 𝐾∗]+,
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where 𝐸∗ is the mean with respect to the risk-neutral measure, 𝑌∗
u� ∶= 𝛾 ∫u�

0 𝑒(u�−u�)u� 𝑑𝑊u�−
u�2

2 ∫u�
0 𝑒2(u�−u�)u� 𝑑𝑠. The process 𝑌∗ is Gaussian, the mean and the variance of 𝑌∗

u� are
the following:

𝑚u� = 𝐸𝑌∗
u� = −1

2
𝛾2 ∫

u�

0
𝑒2(u�−u�)u� 𝑑𝑠 = −1

2
𝛾2𝑏2

u� ,

𝜎2
u� ∶= Var 𝑌∗

u� = 𝛾2 ∫
u�

0
𝑒2(u�−u�)u� 𝑑𝑠 = 𝛾2𝑏2

u� ,

where

𝑏2
u� = ∫

u�

0
𝑒2(u�−u�)u� 𝑑𝑠 =

⎧{
⎨{⎩

1
2(u�−u�) [𝑒2(u�−u�)u� − 1], 𝑎 ≠ 𝜇,
𝑡, 𝑎 = 𝜇.

We apply Lemma 2.1 and obtain the following fair price of the option:

𝐶u� = 𝑒u�u� + 1
2 u�2

u� Φ(
𝑚u� + 𝜎2

u� − ln 𝐾∗

𝜎u�
) − 𝐾∗Φ(

𝑚u� − ln 𝐾∗

𝜎u�
).

Using the same lemma we obtain the following objective price of the option, issued
on the specified bond:

𝐶u�∗ = 𝑒u�u�∗+ 1
2 u�2

u�∗Φ(
𝑚u�∗ + 𝜎2

u�∗ − ln 𝐾∗

𝜎u�∗
) − 𝐾∗Φ(

𝑚u�∗ − ln 𝐾∗

𝜎u�∗
), (7)

where 𝑚u�∗ and 𝜎2
u�∗ are the mean and the variance respectively of the process 𝑋∗

u� :

𝑚u�∗ ∶= 𝐸[𝑋∗
u�] = 𝑒−u�u� − 𝑟𝑇 −

𝛾2

2
∫

u�

0
𝑒2(u�−u�)u� 𝑑𝑠 = 𝑒−u�u� − 𝑟𝑇 − 1

2
𝛾2𝑏2

u� ,

𝜎2
u�∗ ∶= Var 𝑋∗

u� = 𝛾2𝑒−2u�u� ∫
u�

0
𝑒2u�u� 𝑑𝑠 = 𝛾2𝑒−2u�u� 1

2𝑎
(𝑒2u�u� − 1).

Using Lemma 3.1 we obtain that the option price is an increasing function of
the mean and the variance. Therefore comparing the mean and the variance of the
corresponding processes, we can compare the objective and the fair option price.

(1) Suppose that 𝑟 < u�−u�u�

u� . Compare the mean and the variance

𝑚u� = −1
2

𝛾2𝑏2
u� and 𝜎2

u� = 𝛾2𝑏2
u�

for the case of the fair price with the corresponding values

𝑚u�∗ = 𝑒−u�u� − 𝑟𝑇 − 1
2

𝛾2𝑏2
u� and 𝜎2

u�∗ = 𝛾2𝑒−2u�u� 1
2𝑎

(𝑒2u�u� − 1)

for the objective price case.
For the mean of the corresponding processes we have the inequality 𝑚u� < 𝑚u�∗.

Investigate the mutual location of the variances.
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First we consider the case 𝑎 ≠ 𝜇. Then

𝜎2
u� = 𝛾2 1

2(𝑎 − 𝜇)
[𝑒2(u�−u�)u� − 1],

𝜎2
u�∗ = 𝛾2𝑒−2u�u� 1

2𝑎
[𝑒2u�u� − 1].

It is obvious that

𝜎2
u� = 𝛾2 ∫

u�

0
𝑒2(u�−u�)u� 𝑑𝑠 > 𝛾2𝑒−2u�u� ∫

u�

0
𝑒2u�u� 𝑑𝑠 = 𝜎2

u�∗,

when 𝜇 > 0, and the inverse inequality holds when 𝜇 < 0.
Now consider the case 𝑎 = 𝜇. Then 𝜎2

u� = 𝛾2𝑇 > 𝛾2 1−u�−2u�u�

2u� = 𝜎2
u�∗.

(2) Let 𝑟 > u�−u�u�

u� , 𝑎 > 0, 𝜇 > 0. Then 𝑚u� > 𝑚u�∗ and 𝜎2
u� > 𝜎2

u�∗. Thus we have
proved the following result:

Lemma 5.1. (1) Let the interest rate 𝑟 < u�−u�u�

u� , 𝑎 > 0, 𝜇 < 0. Then the fair price is
less than the objective price 𝐶u�∗ > 𝐶u� .

(2) Let 𝑟 > u�−u�u�

u� , 𝑎 > 0, 𝜇 > 0. Then 𝐶u�∗ < 𝐶u� .

6 The price of a bond governed by a fractional geometric Ornstein-Uhlenbeck
process

The standard fractional Brownian motion with Hurst index 𝐻 ∈ (0, 1) is a Gaussian
process 𝐵u� = {𝐵u�

u� , 𝑡 ∈ 𝑅+} on the (Ω, ℱ, 𝑃) with the following properties:
(i) 𝐸𝐵u�

u� = 0, 𝑡 ∈ 𝑅+,
(ii) 𝐸𝐵u�

u� 𝐵u�
u� = 1

2 (𝑡2u� + 𝑠2u� − |𝑡 − 𝑠|2u�), 𝑠, 𝑡 ∈ 𝑅+.
Let us introduce a fractional Ornstein-Uhlenbeck process

𝑋u�
u� = 𝑒−u�u� + 𝛾𝑒−u�u� ∫

u�

0
𝑒u�u�𝑑𝐵u�

u� ,

where 𝐵u�
u� is a fractional Brownian motion with Hurst index 𝐻 > 1/2. The existence

of the integral ∫u�
0 𝑒u�u�𝑑𝐵u�

u� follows from [8]. The process 𝑋u� satisfies the following
stochastic differential equation:

𝑑𝑋u�
u� = −𝜇𝑋u�

u� 𝑑𝑡 + 𝛾𝑒(u�−u�)u�𝑑𝐵u�
u� .

The mean and the variance of the Ornstein-Uhlenbeck process 𝑋u� at the moment 𝑇
equal

𝑚 = 𝑒−u�u� (8)

and
𝜎2 = 𝐻(2𝐻 − 1)𝛾2𝑒−2u�u� ∫

u�

0
∫

u�

0
𝑒u�u�+u�u�|𝑠 − 𝑢|2u�−2 𝑑𝑢 𝑑𝑠, (9)
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correspondingly. Consider a European call option issued on a bond, governed by a
geometric fractional Ornstein-Uhlenbeck process

𝑌u�
u� = exp{𝑋u�

u� }.

We calculate the objective price of this option using formula 𝐸[𝑌u�
u� − 𝐾]+. The

random variable we calculate the mean for has the same structure as in the case of
a modified geometric Ornstein-Uhlenbeck process. This random variable consists of
the non-random and Gaussian component. Therefore, according to the formula (2),
the price of such option is equal:

𝐸[𝑌u�
u� − 𝐾]+ = exp{𝑚 + 𝜎2

2
}Φ(𝑚 + 𝜎2 − ln 𝐾

𝜎
) − 𝐾Φ(𝑚 − ln 𝐾

𝜎
),

where the mean 𝑚 is determined by the formula (8), and the variance 𝜎2 is determined
by the formula (9).

7 The behaviour of a fractional geometric Ornstein-Uhlenbeck process
variance as a function of Hurst index

At first, we investigate the behaviour of a fractional geometric Ornstein-Uhlenbeck
process variance as a function of Hurst index when 𝐻 approaches its bounds 1/2 and 1.
In this order, rewrite the variance in the following way.

Lemma 7.1. The fractional geometric Ornstein-Uhlenbeck process variance can be
represented as follows:

𝜎2 = 𝐻(2𝐻 − 1)𝛾2𝑒−2u�u� 1
𝑎

(𝑒2u�u� ∫
u�

0
𝑒−u�u�𝑧2u�−2 𝑑𝑧 − ∫

u�

0
𝑒u�u�𝑧2u�−2 𝑑𝑧).

Proof. We consider the integral ∫u�
0 ∫u�

0 𝑒u�u�+u�u�|𝑠 − 𝑢|2u�−2 𝑑𝑢 𝑑𝑠. Replace the double
integral with the repeated integral:

∫
u�

0
∫

u�

0
𝑒u�u�+u�u�|𝑠 − 𝑢|2u�−2 𝑑𝑢 𝑑𝑠 = 2 ∫

u�

0
𝑒u�u� ∫

u�

0
𝑒u�u�(𝑠 − 𝑢)2u�−2 𝑑𝑢 𝑑𝑠.

Then it is easy to obtain the following representation for the variance:

𝜎2 = 𝐻(2𝐻 − 1)𝛾2𝑒−2u�u� 1
𝑎

(𝑒2u�u� ∫
u�

0
𝑒−u�u�𝑧2u�−2 𝑑𝑧 − ∫

u�

0
𝑒u�u�𝑧2u�−2 𝑑𝑧).

Lemma 7.2.

lim
u�→ 1

2

𝜎2 =
𝛾2𝑒−2u�u�

2𝑎
(𝑒2u�u� − 1);

lim
u�→1

𝜎2 =
𝛾2𝑒−2u�u�

𝑎2 (1 − 𝑒u�u�)2.

Proof. We consider two integrals from the previous lemma, multiplied by (2𝐻 − 1),
and use the formula of integration by parts for the first and second integrals respec-
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tively:

𝑢 = 𝑒−u�u�; 𝑑𝑢 = −𝑎𝑒−u�u�𝑑𝑧; 𝑑𝑣 = (2𝐻 − 1)𝑧2u�−2; 𝑣 = 𝑧2u�−1,

𝑢 = 𝑒u�u�; 𝑑𝑢 = 𝑎𝑒u�u�𝑑𝑧; 𝑑𝑣 = (2𝐻 − 1)𝑧2u�−2; 𝑣 = 𝑧2u�−1.

We obtain

(2𝐻 − 1) ∫
u�

0
𝑒−u�u�𝑧2u�−2 𝑑𝑧 = 𝑒−u�u�𝑡2u�−1 + 𝑎 ∫

u�

0
𝑒−u�u�𝑧2u�−1 𝑑𝑧,

(2𝐻 − 1) ∫
u�

0
𝑒u�u�𝑧2u�−2 𝑑𝑧 = 𝑒u�u�𝑡2u�−1 − 𝑎 ∫

u�

0
𝑒u�u�𝑧2u�−1 𝑑𝑧.

When 𝐻 → 1
2 , it is obvious that 𝑡2u�−1 → 1, 𝑧2u�−1 → 1. So

lim
u�→ 1

2

(2𝐻 − 1) ∫
u�

0
𝑒−u�u�𝑧2u�−2 𝑑𝑧 = 𝑒−u�u�𝑡2u�−1 + 𝑎 ∫

u�

0
𝑒−u�u�𝑧2u�−1 𝑑𝑧 = 1,

lim
u�→ 1

2

(2𝐻 − 1) ∫
u�

0
𝑒u�u�𝑧2u�−2 𝑑𝑧 = 𝑒u�u�𝑡2u�−1 − 𝑎 ∫

u�

0
𝑒u�u�𝑧2u�−1 𝑑𝑧 = 1.

Now we investigate the asymptotic behaviour of the variance when 𝐻 → 1
2 .

lim
u�→ 1

2

𝜎2 =
𝛾2𝑒−2u�u�

2𝑎
(𝑒2u�u� − 1).

When 𝐻 → 1 we have

lim
u�→1

𝜎2 =
𝛾2𝑒−2u�u�

𝑎
(𝑒2u�u� ∫

u�

0
𝑒−u�u� 𝑑𝑧 − ∫

u�

0
𝑒u�u� 𝑑𝑧),

lim
u�→1

𝜎2 =
𝛾2𝑒−2u�u�

𝑎2 (1 − 𝑒u�u�)2.

Therefore the variance of the geometric fractional Ornstein-Uhlenbeck process
when 𝐻 → 1

2 converges to the variance of the geometric Ornstein-Uhlenbeck process
with a Wiener process.

8 Variance and the objective price of the option monotonicity as a function
of the Hurst index

Now we investigate the monotonicity of variance as a function of the Hurst index.
Consider

𝐻(2𝐻 − 1)(𝑒2u�u� ∫
u�

0
𝑒−u�u�𝑧2u�−2 𝑑𝑧 − ∫

u�

0
𝑒u�u�𝑧2u�−2 𝑑𝑧)

= 2𝑒u�u�𝐻(2𝐻 − 1) ∫
u�

0

𝑒u�(u�−u�) − 𝑒u�(u�−u�)

2
𝑧2u�−2 𝑑𝑧

= 2𝑒u�u�𝐻(2𝐻 − 1) ∫
u�

0
sinh(𝑎(𝑇 − 𝑧))𝑧2u�−2 𝑑𝑧.
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The multiplier 2𝑒u�u� does not depend on 𝐻, so it is omitted. Use integration by parts:

𝑢 = sinh(𝑎(𝑇 − 𝑧)); 𝑑𝑢 = −𝑎 ⋅ cosh(𝑎(𝑇 − 𝑧));

𝑑𝑣 = (2𝐻 − 1)𝑧2u�−2𝑑𝑧; 𝑣 = 𝑧2u�−1.

We obtain

𝐻(2𝐻 − 1) ∫
u�

0
sinh(𝑎(𝑇 − 𝑧))𝑧2u�−2 𝑑𝑧 = 𝐻𝑎 ∫

u�

0
𝑧2u�−1 cosh(𝑎(𝑇 − 𝑧)) 𝑑𝑧.

Using integration by parts again

𝑢 = cosh(𝑎(𝑇 − 𝑧)); 𝑑𝑢 = −𝑎 ⋅ sinh(𝑎(𝑇 − 𝑧));

𝑑𝑣 = 𝐻𝑧2u�−1𝑑𝑧; 𝑣 = 1
2

𝑧2u� ,

we get

𝐻𝑎 ∫
u�

0
𝑧2u�−1 cosh(𝑎(𝑇 − 𝑧)) 𝑑𝑧 = 𝑎

2
(𝑇2u� + 𝑎 ∫

u�

0
𝑧2u� sinh(𝑎(𝑇 − 𝑧)) 𝑑𝑧).

Now we consider the term

𝑅(𝐻) = 𝑇2u� + 𝑎 ∫
u�

0
𝑧2u� sinh(𝑎(𝑇 − 𝑧)) 𝑑𝑧.

Using the following transformation u�
u� = 𝑥; 𝑑𝑧 = 𝑇𝑑𝑥; 𝑧 ∈ [0; 𝑇]; 𝑥 ∈ [0; 1], we

obtain
𝑅(𝐻) = 𝑇2u� + 𝑎𝑇2u�+1 ∫

1

0
𝑥2u� sinh(𝑎𝑇(1 − 𝑥)) 𝑑𝑥.

Use the change of variables 𝑎𝑇 = 𝑝:

𝑅(𝐻) = 𝑇2u�(1 + 𝑝 ∫
1

0
𝑥2u� sinh(𝑝(1 − 𝑥)) 𝑑𝑥).

Let us calculate the derivative

𝑅′(𝐻) = 2𝑇2u� ln 𝑇(1 + 𝑝 ∫
1

0
𝑥2u� sinh(𝑝(1 − 𝑥)) 𝑑𝑥)

+ 2𝑇2u�𝑝 ∫
1

0
𝑥2u� sinh(𝑝(1 − 𝑥)) ln 𝑥 𝑑𝑥.

Up to some constant multiplier

𝑅′(𝐻)
𝑅(𝐻)

= ln 𝑇 +
𝑝 ∫1

0 𝑥2u� sinh(𝑝(1 − 𝑥)) ln 𝑥 𝑑𝑥

1 + 𝑝 ∫1
0 𝑥2u� sinh(𝑝(1 − 𝑥)) 𝑑𝑥

.

𝑅′(𝐻) has the same sign as u�′(u�)
u�(u�) . Therefore we investigate the sign of the right part.

The numerator is negative, and due to the negative logarithm it increases in 𝐻. The de-
nominator is positive and is decreasing in 𝐻. Thus the fraction is increasing in 𝐻.
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We obtain three possible cases:
1. If 𝑇 and 𝑝 are such that under 𝐻 = 1

2

ln 𝑇 +
𝑝 ∫1

0 𝑥 sinh(𝑝(1 − 𝑥)) ln 𝑥 𝑑𝑥

1 + 𝑝 ∫1
0 𝑥 sinh(𝑝(1 − 𝑥)) 𝑑𝑥

> 0, (10)

then the variance increases in 𝐻. This situation is presented on the graph

2. If 𝑇 and 𝑝 are such that

ln 𝑇 +
𝑝 ∫1

0 𝑥 sinh(𝑝(1 − 𝑥)) ln 𝑥 𝑑𝑥

1 + 𝑝 ∫1
0 𝑥 sinh(𝑝(1 − 𝑥)) 𝑑𝑥

< 0, (11)

and at the same time

ln 𝑇 +
𝑝 ∫1

0 𝑥2 sinh(𝑝(1 − 𝑥)) ln 𝑥 𝑑𝑥

1 + 𝑝 ∫1
0 𝑥2 sinh(𝑝(1 − 𝑥)) 𝑑𝑥

> 0, (12)

then the variance first decreases to the minimum and then increases.
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3. If

ln 𝑇 +
𝑝 ∫1

0 𝑥2 sinh(𝑝(1 − 𝑥)) ln 𝑥 𝑑𝑥

1 + 𝑝 ∫1
0 𝑥2 sinh(𝑝(1 − 𝑥)) 𝑑𝑥

< 0, (13)

then the variance decreases.

In turn we can conclude on the monotonicity of the objective price of the option
issued on the bond driven by the fractional geometric Ornstein-Uhlenbeck process, as
a function of the Hurst index. Since the objective price increases in 𝜎2, for the price
as a function of Hurst index there are also three cases:

1. The objective price increases in 𝐻. This case corresponds to the first case of the
variance monotonicity, i.e. for 𝑇 and 𝑝 such that under 𝐻 = 1

2 inequality (10)
holds true.

2. The variance first decreases to the minimum and then increases. This case cor-
responds to the second case of the variance monotonicity, i.e. when for 𝑇 and 𝑝
we have (11) and (12).

3. The price decreases in 𝐻. This case corresponds to the third case of the variance
monotonicity, i.e. when (13) holds true.

9 Conclusions

We calculate the objective price of the European call option issued on a bond governed
by a modified geometric Ornstein-Uhlenbeck process. The behaviour of the objective
option price as a function of 𝑚 and 𝜎2 (the mean and the variance of the correspond-
ing modified Ornstein-Uhlenbeck process) is investigated. We show the arbitrage-free
property and completeness of the financial market generated by the modified Ornstein-
Uhlenbeck process. The risk-neutral measure and the fair price for the specified op-
tion are obtained. We compare the fair and objective price of the indicated option.
Then we consider the model of the bond governed by a modified fractional Ornstein-
Uhlenbeck process. The objective price of the option issued on such bond is calcu-
lated. The asymptotic behaviour and the monotonicity of the variance of a modified
fractional geometric Ornstein-Uhlenbeck process as a function of the Hurst index are
investigated. In particular, the cases of the monotonicity of variance are obtained.
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