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Abstract A mixture with varying concentrations is a modification of a finite mixture model
in which the mixing probabilities (concentrations of mixture components) may be different
for different observations. In the paper, we assume that the concentrations are known and the
distributions of components are completely unknown. Nonparametric technique is proposed
for testing hypotheses on functional moments of components.
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1 Introduction

Finite mixture models (FMMs) arise naturally in statistical analysis of biological
and sociological data [11, 13]. The model of mixture with varying concentrations
(MVC) is a modification of the FMM where the mixing probabilities may be differ-
ent for different observations. Namely, we consider a sample of subjects O1, . . . , ON

where each subject belongs to one of subpopulations (mixture components) P1, . . . ,

PM . The true subpopulation to which the subject Oj belongs is unknown, but we
know the probabilities pm

j ;N = P[Oj ∈ Pm] (mixing probabilities, concentrations of
Pm in the mixture at the j th observation, j = 1, . . . , N , m = 1, . . . ,M). For each
subject O, a variable ξ(O) is observed, which is considered as a random element in
a measurable space X equipped by a σ -algebra F. Let

Fm(A) = P
[
ξ(O) ∈ A | O ∈ Pm

]
, A ∈ F,
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be the distribution of ξ(O) for subjects O that belong to the mth component. Then
the unconditional distribution of ξj ;N = ξ(Oj ) is

P[ξj ;N ∈ A] =
M∑

m=1

pm
j ;NFm(A), A ∈ F. (1)

The observations ξj ;N are assumed to be independent for j = 1, . . . , N .
We consider the nonparametric MVC model where the concentrations pm

j ;N are
known but the component distributions Fm are completely unknown. Such models
were applied to analyze gene expression level data [8] and data on sensitive ques-
tions in sociology [12]. An example of sociological data analysis based on MVC is
presented in [9]. In this paper, we consider adherents of different political parties in
Ukraine as subpopulations Pi . Their concentrations are deduced from 2006 parlia-
ment election results in different regions of Ukraine. Individual voters are considered
as subjects; their observed characteristics are taken from the Four-Wave Values Sur-
vey held in Ukraine in 2006. (Note that the political choices of the surveyed individ-
uals were unknown. So, each subject must be considered as selected from mixture of
different Pi .) For example, one of the observed characteristics is the satisfaction of
personal income (in points from 1 to 10).

A natural question in the analysis of such data is homogeneity testing for different
components. For example, if X = R, then we may ask if the means or variances (or
both) of the distributions Fi and Fk are the same for some fixed i and k or if the
variances of all the components are the same.

In [8], a test is proposed for the hypothesis of two-means homogeneity. In this
paper, we generalize the approach from [8] to a much richer class of hypotheses,
including different statements on means, variances, and other generalized functional
moments of component distributions.

Hypotheses of equality of MVC component distributions, that is, Fi ≡ Fk , were
considered in [6] (a Kolmogorov–Smirnov-type test is proposed) and [1] (tests based
on wavelet density estimation). The technique of our paper also allows testing such
hypotheses using the “grouped χ2”-approach.

Parametric tests for different hypotheses on mixture components were also con-
sidered in [4, 5, 13].

The rest of the paper is organized as follows. We describe the considered hypothe-
ses formally and discuss the test construction in Section 2. Section 3 contains auxil-
iary information on the functional moments estimation in MVC models. In Section 4,
the test is described formally. Section 5 contains results of the test performance anal-
ysis by a simulation study and an example of real-life data analysis. Technical proofs
are given in Appendix A.

2 Problem setting

In the rest of the paper, we use the following notation.
The zero vector from R

k is denoted by Ok . The unit k × k-matrix is denoted
by Ik×k , and the k × m-zero matrix by Ok×m. Convergences in probability and in

distribution are denoted
P−→ and

d−→, respectively.
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We consider the set of concentrations p = (pm
j ;N, j = 1, . . . , N; m = 1, . . . , M;

N = 1, . . . ) as an infinite array, p·
·;N = (pm

j ;N, j = 1, . . . , N; m = 1, . . . ,M) as an

(N × m)-matrix, and pm
·;N = (pm

j ;N, j = 1, . . . , N) ∈ R
d and p·

j,N = (pm
j ;N,m =

1, . . . ,M) as column vectors. The same notation is used for arrays of similar struc-
ture, such as the array a introduced further.

Angle brackets with subscript N denote averaging of an array over all the obser-
vations, for example,

〈
am
·;N

〉
N

= 1

N

N∑
j=1

am
j ;N.

Multiplication, summation, and other similar operations inside the angle brackets are
applied to the arrays componentwise, so that

〈
am
·;Npk

·;N
〉
N

= 1

N

N∑
j=1

am
j ;Npk

j ;N,
〈(
am
·;N

)2〉
N

= 1

N

N∑
j=1

(
am
j ;N

)2
,

and so on.
Angle brackets without subscript mean the limit of the corresponding averages as

N → ∞ (assuming that this limit exists):
〈
pmak

〉 = lim
N→∞

〈
pm

·;Nak
·;N

〉
N

.

We introduce formally random elements ηm ∈ X with distributions Fm, m =
1, . . . ,M .

Consider a set of K ≤ M measurable functions gk : X → R
dk , k = 1, . . . , K .

Let ḡm
k be the (vector-valued) functional moment of the mth component with moment

function gk , that is,
ḡm

k := E
[
gk(ηm)

] ∈ R
dk . (2)

Fix a measurable function T : Rd1 ×R
d2 × · · · ×R

dK → R
L. For data described

by the MVC model (1) we consider testing a null-hypothesis of the form

H0 : T
(
ḡ1

1, . . . , ḡK
K

) = OL (3)

against the general alternative T (ḡ1
1, . . . , ḡK

K ) �= OL.

Example 1. Consider a three-component mixture (M = 3) with X = R. We would
like to test the hypothesis Hσ

0 : Var η1 = Var η2 (i.e., the variances of the first and
second components are the same). This hypothesis can be reformulated in the form
(3) by letting g1(x) = g2(x) = (x, x2)T and T ((y11, y12)

T , (y21, y22)
T ) = (y12 −

(y11)
2, y22 − (y21)

2)T .

Example 2. Let X = R. Consider the hypothesis of mean homogeneity H
μ
0 : E η1 =

· · · = E ηM . Then the choice of gm(x) = x, T (y1, . . . , yM) = (y1 − y2, y2 −
y3, . . . , yM−1 − yM)T reduces H

μ
0 to the form (3).

Example 3. Let X be a finite discrete space: X = {x1, . . . , xr}. Consider the distri-
bution homogeneity hypothesis H≡

0 : F1 ≡ F2. To present it in the form (3), we can
use gi(x) = (1{x = xi}, k = 1, . . . , r − 1)T and T (y1, y2) = y1 − y2 (yi ∈ R

r−1
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for i = 1, 2). In the case of continuous distributions, H≡
0 can be discretized by data

grouping.

To test H0 defined by (3), we adopt the following approach. Let there be some
consistent estimators ĝm

k;N for ḡm
k . Assume that T is continuous. Consider the statistic

T̂N = T (ĝ1
1;N, . . . , ĝK

K;N). Then, under H0, T̂N ≈ OL, and a far departure of T̂N from
zero will evidence in favor of the alternative.

To measure this departure, we use a Mahalanobis-type distance. If
√

NT̂N is
asymptotically normal with a nonsingular asymptotic covariance matrix D, then, un-
der H0, NT̂ T

N D−1T̂N is asymptotically χ2-distributed. In fact, D depends on un-
known component distributions Fi , so we replace it by its consistent estimator D̂N .
The resulting statistic ŝN = NT̂ T

N D̂−1
N T̂N is a test statistic. The test rejects H0 if

ŝN > Qχ2
L(1 − α), where α is the significance level, and QG(α) denotes the quantile

of level α for distribution G.
Possible candidates for the role of estimators ĝm

k;N and D̂N are considered in the
next section.

3 Estimation of functional moments

Let us start with the nonparametric estimation of Fm by the weighted empirical dis-
tribution of the form

F̂m;N(A) = 1

N

N∑
j=1

am
j ;N1{ξj ;N ∈ A},

where am
j ;N are some nonrandom weights to be selected “in the best way.” Denote

em = (1{k = m}, k = 1, . . . ,M)T and

ΓN = 1

N

(
p·

·;N
)T

p·
·;N = (〈

pm
·;Npi

·;N
〉
N

)M

m,i=1.

Assume that ΓN is nonsingular. It is shown in [8] that, in this case, the weight array

am
·;N = p·

·;NΓ −1
N em

yields the unbiased estimator with minimal assured quadratic risk.
The simple estimator ĝm

i;N for ḡm
i is defined as

ĝm
i;N =

∫
X

gi(x)F̂m;N(dx) = 1

N

N∑
j=1

am
j ;Ngi(ξj ;N).

We denote Γ = limN→∞ ΓN = (〈pipm〉)Mi,m=1. Let h : X → R
d be any measurable

function.

Theorem 1. ([9], Lemma 1) Assume that:

(i) Γ exists, and det Γ �= 0;

(ii) E[|h(ηm)|] < ∞, m = 1, . . . ,M .

Then ĥm
N

P−→ E[h(ηm)] as N → ∞ for all m = 1, . . . ,M .
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To formulate the asymptotic normality result for the simple moment estimators,
we need some additional notation.

We consider the set of all moments ḡk
k , k = 1, . . . , K , as one long vector belong-

ing to R
d , d := d1 + · · · + dK :

ḡ := ((
ḡ1

1

)T
, . . . ,

(
ḡK

K

)T )T ∈ R
d . (4a)

The corresponding estimators also form a long vector

ĝN := ((
ĝ1

1;N
)T

, . . . ,
(
ĝK

K;N
)T )T ∈ R

d . (4b)

We denote the matrices of mixed second moments of gk(x), k = 1, . . . , K , and the
corresponding estimators as

ḡm
k,l := E

[
gk(ηm)gl(ηm)T

] ∈ R
dk×dl , k, l = 1, . . . , K, m = 1, . . . ,M; (5a)

ĝm
k,l;N := 1

N

N∑
j=1

am
j ;Ngk(ξj ;N)gl(ξj ;N)T ∈ R

dk×dl , k, l = 1, . . . , K. (5b)

We consider the function T as a function of d-dimensional argument, that is,
T (y) := T (y1, . . . , yK). Then T̂N := T (ĝN ) = T (ĝ1

1;N, . . . , ĝK
K;N).

Let us define the following matrices (assuming that the limits exist):

αr,s;N := (
α

k,l
r,s;N

)
k,l=1,...,K

:= (〈
ak
·;Nal

·;Npr
·;Nps

·;N
〉
N

)
k,l=1,...,K

∈ R
K×K ; (6a)

αr,s := (
αk,l

r,s

)
k,l=1,...,K

:=
(

lim
N→∞ α

k,l
r,s;N

)
k,l=1,...,K

∈ R
K×K, r, s = 1, . . . ,M;

(6b)

βm;N := (
β

k,l
m;N

)
k,l=1,...,K

:= (〈
ak
·;Nal

·;Npm
·;N

〉
N

)
k,l=1,K

∈ R
K×K ; (7a)

βm := (
βk,l

m

)
k,l=1,...,K

:=
(

lim
N→∞ β

k,l
m;N

)
k,l=1,...,K

∈ R
K×K, m = 1, . . . M.

(7b)

Then the asymptotic covariance matrix of the normalized estimate
√

N(ĝN − ḡ)

is Σ , where Σ consists of the blocks Σ(k,l):

Σ(k,l) :=
M∑

m=1

βk,l
m ḡm

k,l −
M∑

r,s=1

αk,l
r,s ḡ

r
k

(
ḡs

l

)T ∈ R
dk×dl ; (8a)

Σ := (
Σ(k,l)

)
k,l=1,...,K

∈ R
d×d . (8b)

Theorem 2. Assume that:

(i) The functional moments ḡm
k , ḡm

k,l exist and are finite for k, l = 1, . . . , K , m =
1, . . . ,M .

(ii) There exists δ > 0 such that E[|gk(ηm)|2+δ] < ∞, k = 1, . . . , K , m =
1, . . . ,M .

(iii) There exist finite matrices Γ , Γ −1, αr,s , and βm for r, s,m = 1, . . . ,M .

Then
√

N(ĝN − ḡ)
d−→ ζ � N (Od ,Σ), N → ∞.
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Thus, to construct a test for H0, we need a consistent estimator for Σ . The matri-
ces αr,s;N and βm;N are natural estimators for αr,s and βm. It is also natural to estimate
ḡm

k,l by ĝm
k,l;N defined in (5b). In view of Theorem 1, these estimators are consistent

under the assumptions of Theorem 2. But they can possess undesirable properties for
moderate sample size. Indeed, note that F̂m;N is not a probability distribution itself
since the weights am

j ;N are negative for some j . Therefore, for example, the simple es-
timator of the second moment of some component can be negative, estimator (5b) for
the positive semidefinite matrix ḡm

k,k can be not positive semidefinite matrix, and so
on. Due to the asymptotic normality result, this is not too troublesome for estimation
of ḡ. But it causes serious difficulties when one uses an estimator of the asymptotic
covariance matrix D based on ĝm

k,l;N in order to calculate ŝN .

In [10], a technique is developed of F̂m;N and ĥm
N improvement that allows one to

derive estimators with more adequate finite sample properties if X = R.
So, assume that ξ(O) ∈ R and consider the weighted empirical CDF

F̂m;N(x) = 1

N

N∑
j=1

am
j ;N1{ξj ;N < x}.

It is not a nondecreasing function, and it can attain values outside [0, 1] since some
am
j ;N are negative. The transform

F̃+
m;N(x) = sup

y<x
F̂m;N(y)

yields a monotone function F̃m;N(x), but it still can be greater than 1 at some x. So,
define

F̂+
m;N(x) = min

{
1, F̃+

m;N(x)
}

as the improved estimator for Fm(x). Note that this is an “improvement upward,”
since F̃+

m;N(x) ≥ F̂m;N(x). Similarly, a downward improved estimator can be defined
as

F̃−
m;N(x) = inf

y≥x
F̂m;N(y),

F̂−
m;N(x) = max

{
0, F̃−

m;N(x)
}
.

Any CDF that lies between F̂−
m;N(x) and F̂+

m;N(x) can be considered as an improved

version of F̂m;N(x). We will use only one such improvement, which combines
F̂−

m;N(x) and F̂+
m;N(x):

F̂±
m;N(x) =

⎧⎪⎨
⎪⎩

F̂+
m;N(x) if F̂+

m;N(x, a) ≤ 1/2,

F̂−
m;N(x) if F̂−

m;N(x, a) ≥ 1/2,

1/2 otherwise.

(9)

Note that all the three considered estimators F̂ ∗
m;N (∗ means any symbol from +,

−, or ±) are piecewise constants on intervals between successive order statistics of
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the data. Thus, they can be represented as

F̂ ∗
m;N(x) = 1

N

N∑
j=1

bm∗
j ;N1{ξj ;N < x},

where bm∗
j ;N are some random weights that depend on the data.

The corresponding improved estimator for ḡm
i is

ĝm∗
i;N =

∫ +∞

−∞
gi(x)F̂ ∗

m;N(dx) = 1

N

N∑
j=1

b∗
j ;Ngi(ξj ;N).

Let h : R → R be a measurable function.

Theorem 3. Assume that Γ exists and det Γ �= 0.

(I) If for some c− < c+, c− ≤ ηm ≤ c+ for all m = 1, . . . ,M and h has bounded
variation on (c−, c+), then ĥm∗

N → h̄m a.s. as N → ∞ for all m = 1, . . . ,M

and ∗ ∈ {+,−,±}.
(II) Assume that:

(i) For some γ > 0, E[|h(ηm)|2+γ ] < ∞.
(ii) h is a continuous function of bounded variation on some interval [c−, c+]

and monotone on (−∞, c−] and [c+,+∞).

Then ĥm±
N → h̄m in probability.

4 Construction of the test

We first state an asymptotic normality result for T̂N . Denote

T ′(y) :=
(

∂

∂y1
T (y), . . . ,

∂

∂yd

T (y)

)
∈ R

L×d .

Theorem 4. Assume that:

(i) T ′(ḡ) exist.

(ii) The assumptions of Theorem 2 hold.

(iii) The matrix D = T ′(ḡ)Σ(T ′(ḡ))T is nonsingular.

Then, under H0,
√

NT̂N
d−→ N(OL,D).

For the proof, see Appendix. Note that (iii) implies the nonsingularity of Σ .
Now, to estimate D, we can use

D̂N = T ′(g̃N )Σ̃N

(
T ′(g̃N )

)T
,

where g̃N is any consistent estimator for ḡ,

Σ̃
(k,l)
N :=

M∑
m=1

β
k,l
m;N g̃m

k,l;N −
M∑

r,s=1

α
k,l
r,s;N g̃r

k;N
(
g̃s

l;N
)T ∈ R

dk×dl ; (10a)

Σ̃N := (
Σ̃

(k,l)
N

)
k,l=1,...,K

∈ R
d×d, (10b)

where g̃m
k,l;N is any consistent estimator for ḡm

k,l;N . For example, we can use
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g̃m
k,l;N = ĝm±

k,l;N = 1

N

N∑
j=1

bm±
j ;Ngk(ξj ;N)gl(ξj ;N)T

if X = R and the assumptions of Theorem 3 hold for all h(x) = gi
l (x)gn

k (x), i, k =
1, . . . , K , i = 1, . . . , dl , n = 1, . . . , dk , gl(x) = (g1

l (x), . . . , g
dl

l (x))T .
Now let the test statistic be ŝN = N(T̂N)T D̂−1

N T̂N . For a given significance
level α, the test πN,α accepts H0 if ŝN ≤ QξL(1 − α) and rejects H0 otherwise.

The p-level of the test (i.e., the attained significance level) can be calculated as
p = 1 − G(ŝN ), where G means the CDF of χ2

L-distribution.

Theorem 5. Let the assumptions of Theorem 4 hold. Moreover, assume the following:

(i) g̃N and g̃m
k,l;N (k, l = 1, . . . , K , m = 1, . . . , M) are consistent estimators for

ḡ and ḡm
k,l;N , respectively.

(ii) T ′ is continuous in some neighborhood of ḡ.

Then limN→∞ PH0{πN,α rejects H0} = α.

Example 2 (Continued). Consider testing H
μ
0 by the test πN,α with gi(x) = x and

T (y1, . . . , yM) = (y1 − y2, y2 − y3, . . . , yM−1 − yM)T . It is obvious that T ′(y) is
a constant matrix of full rank. Assume that Var[ηm] > 0 for all m = 1, . . . ,M and
det Γ �= 0. Then Σ is nonsingular, and so is D. Thus, in this case, assumptions (i)
and (iv) of Theorem 2, (i) and (iii) of Theorem 4, and (ii) of Theorem 5 hold.

To ensure assumption (ii) of Theorem 2, we need E[|ηm|2+δ] < ∞ for some
δ > 0 and all m = 1, . . . ,M . In view of Theorem 1, this assumption also implies the
consistency of ĝN and ĝm

kl;N . If one uses ĝ±
N and ĝm±

kl;N as estimators g̃N and g̃m
kl;N in

D̂N , then a more restrictive assumption E[|ηm|4+δ] < ∞ is needed to ensure their
consistency by Theorem 3.

5 Numerical results

5.1 Simulation study

To access the proposed test performance on samples of moderate size, we conducted
a small simulation study. Three-component mixtures were analyzed (M = 3) with
Gaussian components Fm ∼ N(μm, σ 2

m). The concentrations were generated as
pm

j,N = ζm
j ;N/sj ;N , where ζm

j ;N are independent, uniformly distributed on [0, 1] ran-

dom variables, and sj ;N = ∑M
m=1 ζm

j ;N . In all the experiments, 1000 samples were
generated for each sample size N = 50, 100, 250, 500, 750, 1000, 2000, and 5000.
Three modifications of πN;α test were applied to each sample. In the first modifica-
tion, (ss), simple estimators were used to calculate both T̂N and D̂N . In the second
modification, (si), simple estimators were used in T̂N , and the improved ones were
used in D̂N . In the last modification (ii), improved estimators were used in T̂N and
D̂N . Note that the modification (ii) has no theoretical justification since, as far as we
know, there are no results on the limit distribution of

√
N(ĝ±

N − ḡ).
All tests were used with the nominal significance level α = 0.05.
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Fig. 1. Testing homogeneity of means (Hμ
0 )

In the figures, frequencies of errors of the tests are presented. In the plots, �
corresponds to (ss), � to (si), and ◦ to (ii) modification.

Experiment A1. In this experiment, we consider testing the mean homogeneity hy-
pothesis H

μ
0 . The means were taken μm = 0, m = 1, 2, 3, so H

μ
0 holds. To shadow

the equality of means, different variances of components were taken, namely σ 2
1 = 1,

σ 2
2 = 4, and σ 2

3 = 9. The resulting first-type error frequencies are presented on the
left panel of Fig. 1. For the (ss) test, for small N , there were 1.4% cases of incorrect
covariance matrix estimates (D̂N was not positive definite). Incorrect estimates were
absent for large N .

Experiment A2. Here we also tested H
μ
0 for components with the same variances as

in A1. But μ1 = 2 and μ2 = μ3 = 0, so H
μ
0 does not hold. The frequencies of the

second-type error are presented on the right panel of Fig. 1. The percent of incorrect
estimates D̂N is 1.6% for (ss) and small N .

Experiment B1. In this and the next experiment, we tested Hσ
0 : σ 2

1 = σ 2
2 . The data

were generated with μ1 = 0, μ2 = 3, μ3 = −2, σ 2
1 = σ 2

2 = 1, and σ 2
2 = 4, so Hσ

0
holds. The frequencies of the first -type error are presented on the left panel of Fig. 2.
The percent of incorrect D̂N in (ss) varies from 19.4% for small N to 0% for large N .

Experiment B2. Now μm and σ 2
3 are the same as in B1, but σ 2

1 = 1 and σ 2
2 = 4,

so Hσ
0 does not hold. The frequencies of the second-type error are presented on the

left panel of Fig. 2. The percent of incorrect D̂N in (ss) was 15.5% for small N and
decreases to 0% for large N .

The presented results show reasonable agreement of the observed significance
levels of the tests to their nominal level 0.05 when the sample sizes were larger then
500. The power of the tests increases to 1 as the sample sizes grow. It is interesting to
note that the (ii) modification, although theoretically not justified, demonstrates the
least first-type error and rather good power. From these results the (si) modification
of the test seems the most prudent one.

5.2 Example of a sociological data analysis

Consider the data discussed in [9]. It consists of two parts. The first part is the data
from the Four-Wave World Values Survey (FWWVS) held in Ukraine by the Euro-
pean Values Study Foundation (www.europeanvalues.nl) and World Values Survey

www.europeanvalues.nl
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Fig. 2. Testing equality of variances (Hσ
0 )

Table 1. Means (μ) and variances (σ 2) for the subjective income distribution on different
political populations

PR OC Other
μ 2.31733 2.65091 4.44504
μ+ 2.45799 2.64187 4.44504
σ 2 0.772514 4.85172 4.93788
σ 2+ 2.09235 4.7639 4.93788

Association (www.worldvaluessurvey.org) in 2006. They contain answers of N =
4006 Ukrainian respondents on different questions about their social status and atti-
tudes to different human values. We consider here the level of satisfaction of personal
income (subjective income) as our variable of interest ξ , so ξj ;N is the subjective
income of the j th respondent.

Our aim is to analyze differences in the distribution of ξ on populations of ad-
herents of different political parties. Namely, we use the data on results of Ukrainian
Parliament elections held in 2006. 46 parties took part in the elections. The voters
could also vote against all or not to take part in the voting. We divided all the popula-
tion of Ukrainian voters into three large groups (political subpopulations): P1 which
contains adherents of the Party of Regions (PR, 32.14% of votes), P2 of Orange
Coalition supporters (OC which consisted of “BJUT” and “NU” parties, 36.24%),
and P3 of all others, including the persons who voted against all or did not take part
in the pool (Other).

Political preferences of respondents are not available in the FWWVS data, so we
used official results of the elections by 27 regions of Ukraine (see the site of Ukrainian
Central Elections Commission www.cvk.gov.ua) to estimate the concentrations pm

j ;N
of the considered political subpopulations in the region where the j th respondent
voted.

Means and variances of ξ over different subpopulations were estimated by the
data (see Table 1). Different tests were performed to test their differences. The re-
sults are presented in the Table 2. Here μm means the expectation, and σ 2

m means
the variance of ξ over the mth subpopulation. Degrees of freedom for the limit χ2

distribution are placed in the “df” column.
These results show that the hypothesis of homogeneity of all variances must be

definitely rejected. The variances of ξ for PR and OC adherents are different, but the

www.worldvaluessurvey.org
www.cvk.gov.ua
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Table 2. Test statistics and p-values for hypotheses on subjective income distribution

Hypotheses ss si ii df
μ1 = μ2 = μ3 11.776 10.8658 8.83978 2
p-value 0.00277252 0.0043704 0.0120356

μ1 = μ2 2.15176 2.04539 0.621483 1
p-value 0.142407 0.152668 0.430497

μ1 = μ3 10.7076 10.0351 8.75216 1
p-value 0.00106696 0.00153585 0.00309236

μ2 = μ3 7.40835 7.10653 7.17837 1
p-value 0.00649218 0.00768036 0.00737877

σ 2
1 = σ 2

2 = σ 2
3 15.8317 14.786 6.40963 2

p-value 0.000364914 0.000615547 0.0405664

σ 2
1 = σ 2

2 14.7209 13.8844 5.95528 1
p-level 0.000124657 0.000194405 0.0146733

σ 2
1 = σ 2

3 1.92166 1.77162 0.826778 1
p-level 0.165674 0.183182 0.363206

σ 2
2 = σ 2

3 0.000741088 0.00072198 0.00294353 1
p-level 0.978282 0.978564 0.956733

tests failed to observe significant differences in the pairs of variances PR-Other and
OC-Other. For the means, all the tests agree that PR and OC has the same mean ξ ,
whereas the mean of Other is different from the common mean of PR and OC.

6 Concluding remarks

We developed a technique that allows one to construct testing procedures for differ-
ent hypotheses on functional moments of mixtures with varying concentrations. This
technique can be applied to test the homogeneity of means or variances (or both) of
some components of the mixture. Performance of different modifications of the test
procedure is compared in a small simulation study. The (ss) modification showed the
worst first-type error and the highest power. The (ii) test has the best first-type error
and the worst power. It seems that the (si) modification can be recommended as a
golden mean.
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A Appendix

Proof of Theorem 2. Note that SN = √
N(ĝN − ḡ) = ∑N

j=1 ζj ;N , where

ζj ;N = 1√
N

(
ai
j ;N

(
g1(ξj ;N) − M

[
gi(ξj ;N)

])T
, i = 1, . . . , K

)T
.

We will apply the CLT with the Lyapunov condition (see Theorem 11 from Chapter 8
and Remark 4 in Section 4.8 in [2]) to SN . It is readily seen that ζj :N , j = 1, . . . , N ,
are independent for fixed N and E[ζj ;N ] = 0.
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Let Σj ;N = Cov(ζj ;N). Then Σj ;N consists of the blocks

Σ
(k,l)
j ;N = 1

N
ak
j ;Nal

j ;N
(
E

[
gk(ξj ;N)

(
gl(ξj ;N)

)T ] − E
[
gk(ξj ;N)

]
E

[
gl(ξj ;N)

]T )

= 1

N
ak
j ;Nal

j ;N
( M∑

m=1

pj ;N ḡm
k,l −

( M∑
m=1

pj ;N ḡm
k

)( M∑
m=1

pj ;N ḡm
l

)T )
.

It is readily seen that
∑N

j=1 Σ
(k,l)
j ;N → Σ(k,l) as N → ∞. So

Cov SN → Σ as N → ∞. (11)

To apply the CLT, we only need to verify the Lyapunov condition

N∑
j=1

E
[∣∣ζj ;N

∣∣2+δ] → 0 for some δ > 0. (12)

Note that assumption (iii) implies

sup
1≤j≤N,1<≤m≤M,N>N0

∣∣am
j ;N

∣∣ < C1

for some N0 and C1 < ∞; thus,

N∑
j=1

E
[∣∣ξj ;N

∣∣2+δ] ≤
N∑

j=1

C2+δ
1

N1+δ/2
E

[∣∣g(ξj ;N)
∣∣2+δ]

, (13)

where g(x) = (g1(x)T , . . . , gk(x)T ). Since |g(ξj ;N)|2 = ∑K
k=1 |gk(ξj ;N)|2 and, by

the Hölder inequality,

∣∣g(ξj ;N)
∣∣2+δ ≤ Kδ/2

K∑
k=1

∣∣gk(ξj ;N)
∣∣2+δ

,

we obtain

E
[∣∣g(ξj ;N)

∣∣2+δ] ≤ Kδ/2
K∑

k=1

E
[∣∣g(ξj ;N)

∣∣2+δ]

= Kδ/2
K∑

k=1

M∑
m=1

pm
j ;N E

∣∣g(ηm)
∣∣2+δ

< C2 < ∞,

where the constant C2 does not depend on j and N . This, together with (13), yields

(12). By the CLT we obtain SN
d−→ N(O,Σ).

Proof of Theorem 3. Part (I). Since F̂+
m;N(x) is piecewise constant and Fm(x) is

nondecreasing, the supx of |F̂+
m;N(x) − Fm(x)| can be achieved only at jump points

of F̂+
m;N(x). But F̂+

m;N(x) ≥ F̂m;N(x) for all x, and if x is a jump point, then

F̂m;N(x−) ≤ F̂+
m;N(x−) ≤ F̂+

m;N(x) ≤ F̂m;N(x).



Testing hypotheses on moments by observations from a mixture with varying concentrations 207

Therefore,
sup
x∈R

∣∣F̂+
m;N(x) − Fm(x)

∣∣ ≤ sup
x∈R

∣∣F̂m;N(x) − Fm(x)
∣∣.

Similarly,
sup
x∈R

∣∣F̂ ∗
m;N(x) − Fm(x)

∣∣ ≤ sup
x∈R

∣∣F̂m;N(x) − Fm(x)
∣∣.

By the Glivenko–Cantelli-type theorem for weighted empirical distributions (which
can be derived, e.g., as a corollary of Theorem 2.4.2 in [7])

sup
x∈R

∣∣F̂m;N(x) − Fm(x)
∣∣ → 0 a.s. as N → ∞

if supj=1...,N;N>N0
|am

j ;N | < ∞. The latter condition is fulfilled since det Γ �= 0.
Thus,

sup
x∈R

∣∣F̂ ∗
m;N(x) − Fm(x)

∣∣ → 0 a.s. as N → ∞. (14)

For any h : R → R and any interval A ⊆ R, let VA(h) be the variation of h on A.
Take A = (c−, c+). Then, under the assumptions of the theorem,

∣∣ĥm∗
N − h̄m

∣∣ =
∣∣∣∣
∫

A

h(x)d
(
F̂ ∗

m;N(x) − Fm(x)
)∣∣∣∣

≤ sup
x∈A

∣∣F̂m;N(x) − Fm(x)
∣∣ ·VA(h) → 0 a.s. as N → ∞.

Part (II). Note that if the assumptions of this part hold for some A = (c−, c+),
then they will also hold for any new c−, c+ such that A ⊂ (c−, c+). Thus, we may
assume that Fm(c−) < 1/4 and Fm(c+) > 3/4.

Consider the random event B1
N = {F̂±

m;N(x) = F̃+
m;N(x) for all x ≤ c−}. Then

(14) implies P{B1
N } → 1 as N → ∞.

We bound ∣∣ĥm±
N − h̄m

∣∣ ≤ J1 + J2 + J3, (15)

where

J1 =
∣∣∣∣
∫ c−

−∞
h(x)d

(
F̂±

m;N(x) − Fm(x)
)∣∣∣∣,

J2 =
∣∣∣∣
∫ c+

c−
h(x)d

(
F̂±

m;N(x) − Fm(x)
)∣∣∣∣,

J3 =
∣∣∣∣
∫ +∞

c+
h(x)d

(
F̂±

m;N(x) − Fm(x)
)∣∣∣∣.

Then J2
P−→ 0 as in Part (I).

Let us assume that the event B1
N occurred and bound

J1 ≤
∣∣∣∣
∫ c−

−∞
h(x)d

(
F̃+

m;N(x) − Fm(x)
)∣∣∣∣. (16)
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If h(x) is bounded as x → −∞, then we can take c− = −∞ and obtain J1 = 0.
Consider the case of unbounded h. Since h is monotone, we have h(x) → +∞ or
h(x) → +∞ as x → −∞. We will consider the first case; the reasoning for the
second one is analogous. Thus, h(x) → +∞ as x → −∞, and we can take h(x) > 0
for x < c−.

By the inequality (16) in [10],

P
[
sup
t<x

∣∣F̃+
m;N(t) − Fm(t)

∣∣ > ε
]

≤ C1
(
F̄ 2(x)ε−4N−2 + F̄ (x)ε−2N−1), (17)

where F̄ (x) = ∑M
m=1 Fm(x), C1 < ∞.

Let us take x0, . . . , xn, . . . such that h(xj ) = 2j h(c−). By assumption (ii) and
the Chebyshev inequality,

F̄ (x) =
M∑

m=1

P[ηm < x] ≤
M∑

m=1

h−2−γ (x) E
[∣∣h(ηm)

∣∣2+γ ]
,

and
F̄ (xj ) ≤ D2−(2+γ )j

for some D < ∞.
Let εj = 2−(1+γ /4)jN−1/4. Then by (17)

P
[

sup
t<xj

∣∣F̃+
m;N(t) − Fm(t)

∣∣ > εj

]
≤ C2

(
2−γjN−1 + 2−γj/2N−1/2)

for some C2 < ∞. Denote B2
N = ∩j {supt<xj

|F̃+
m;N(t) − Fm(t)| ≤ εj }. Then

P
[
B2

N

] ≥ 1 −
∑
j=1

C2
(
2−γjN−1 + 2−γj/2N−1/2) ≥ 1 − C3N

−1 − C4N
−1/2 → 1

as N → ∞. Now, J1 = | ∫ c−
−∞ h(x)d(F̃+

m;N(x) − Fm(x))|. If B1
N and B2

N occur, then

J1 ≤
∣∣∣∣

N∑
j=0

∫ xj

xj+1

∣∣F̃+
m;N(x) − Fm(x)

∣∣h(dx)

∣∣∣∣

≤
N∑

j=0

h(c−)2−(1+γ /4)jN−1/4(2j+1 − 2j
) ≤ C5N

−1/4.

Thus, P[J1 ≤ C5N
−1/4] ≥ P[B1

N ∩ B2
N ] → 1 and J1

P−→ 0.

Similarly, J3
P−→ 0.

Combining these bounds with (15), we accomplish the proof.

Proof of Theorem 4. This theorem is a simple corollary of Theorem 2 and the con-
tinuity theorem for weak convergence (Theorem 3B in Chapter 1 of [3]).
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Proof of Theorem 5. Since g̃N and g̃m
kl;N are consistent, Σ̃N

P−→ Σ . Similarly,

the continuity of T ′ and consistency of g̃N imply T ′(g̃N )
P−→ T ′(ḡ). Then, with

det D �= 0 in mind, we obtain D̂−1
N

P−→ D−1.
Denote s̃N = NT̂ T

N D−1T̂N . By Theorem 4 and the continuity theorem,

s̃N
d−→ χ2

L. By Theorem 4
√

NT̂N is stochastically bounded. Thus,

∣∣s̃N − ŝN
∣∣ = ∣∣√NT̂ T

N

(
D−1 − D̂−1

N

)
(
√

NT̂N)
∣∣ P−→ 0.

Therefore, ŝN converges in distribution to the same limit as s̃N , that is, to χ2
L.
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