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1 Introduction

The deterministic predator–prey model with modified version of Leslie–Gower term
and Holling-type II functional response is studied in [1]. This model has the form

dx1(t) = x1(t)

(
a − bx1(t) − cx2(t)

m1 + x1(t)

)
dt,

dx2(t) = x2(t)

(
r − f x2(t)

m2 + x1(t)

)
dt, (1)

where x1(t) and x2(t) are the prey and predator population densities at time t , respec-
tively. The positive constants a, b, c, r , f , m1, m2 are defined as follows: a is the
growth rate of prey x1; b measures the strength of competition among individuals of
species x1; c is the maximum value of the per capita reduction rate of x1 due to x2;
m1 and m2 measure the extent to which the environment provides protection to the
prey x1 and to the predator x2, respectively; r is the growth rate of the predator x2,
and f has a similar meaning to c. In [1] the authors study boundedness and global
stability of the positive equilibrium of the model (1).

In the papers [6, 7, 9] the stochastic version of model (1) is considered in the form

dx1(t) = x1(t)

(
a − bx1(t) − cx2(t)

m1 + x1(t)

)
dt + αx1(t)dw1(t),

dx2(t) = x2(t)

(
r − f x2(t)

m2 + x1(t)

)
dt + βx2(t)dw2(t), (2)

where w1(t) and w2(t) are mutually independent Wiener processes in [6, 7], and
processes w1(t), w2(t) are correlated in [9]. In [6] the authors proved that there is
a unique positive solution to the system (2), obtaining the sufficient conditions for
extinction and persistence in the mean of predator and prey. In [7] it is shown that,
under appropriate conditions, there is a stationary distribution of the solution to the
system (2) which is ergodic. In [9] the authors prove that the densities of the distri-
butions of the solution to the system (2) can converge in L1 to an invariant density or
can converge weakly to a singular measure under appropriate conditions.

Population systems may suffer abrupt environmental perturbations, such as epi-
demics, fires, earthquakes, etc. So it is natural to introduce Poisson noises into the
population model for describing such discontinuous systems.

In this paper, we consider the nonautonomous predator–prey model with modi-
fied version of the Leslie–Gower term and Holling-type II functional response, dis-
turbed by white noise and jumps generated by centered and noncentered Poisson
measures. So, we take into account not only “small” jumps, corresponding to the
centered Poisson measure, but also the “large” jumps, corresponding to the noncen-
tered Poisson measure. This model is driven by the system of stochastic differential
equations

dxi(t) = xi(t)

[
ai(t) − bi(t)xi(t) − ci(t)x2(t)

m(t) + x1(t)

]
dt + σi(t)xi(t)dwi(t)
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+
∫
R

γi(t, z)xi(t)ν̃1(dt, dz) +
∫
R

δi(t, z)xi(t)ν2(dt, dz),

xi(0) = xi0 > 0, i = 1, 2, (3)

where x1(t) and x2(t) are the prey and predator population densities at time t , respec-
tively, b2(t) ≡ 0, wi(t), i = 1, 2, are independent standard one-dimensional Wiener
processes, νi(t, A), i = 1, 2, are independent Poisson measures, which are indepen-
dent on wi(t), i = 1, 2, ν̃1(t, A) = ν1(t, A) − t�1(A), E[νi(t, A)] = t�i(A),
i = 1, 2, �i(A), i = 1, 2, are finite measures on the Borel sets A in R.

To the best of our knowledge, there have been no papers devoted to the dynamical
properties of the stochastic predator–prey model (3), even in the case of centered
Poisson noise. It is worth noting that the impact of centered and noncentered Poisson
noises to the stochastic nonautonomous logistic model and to the stochastic two-
species mutualism model is studied in the papers [2–4].

In the following we will use the notations X(t) = (x1(t), x2(t)), X0 = (x10, x20),

|X(t)| =
√

x2
1(t) + x2

2(t), R2+ = {X ∈ R
2 : x1 > 0, x2 > 0},

αi(t) = ai(t) +
∫
R

δi(t, z)�2(dz),

βi(t)= σ 2
i (t)

2
+
∫
R

[γi(t, z)−ln(1+γi(t, z))]�1(dz)−
∫
R

ln(1+δi(t, z))�2(dz),

i = 1, 2. For bounded, continuous functions fi(t), t ∈ [0,+∞), i = 1, 2, let us
denote

fi sup = sup
t≥0

fi(t), fi inf = inf
t≥0

fi(t), i = 1, 2,

fmax = max{f1 sup, f2 sup}, fmin = min{f1 inf, f2 inf}.
We prove that the system (3) has a unique, positive, global (no explosion in a finite

time) solution for any positive initial value, and that this solution is stochastically ulti-
mately bounded. The sufficient conditions for stochastic permanence, nonpersistence
in the mean, weak persistence in the mean and extinction of solution are derived.

The rest of this paper is organized as follows. In Section 2, we prove the existence
of the unique global positive solution to the system (3) and derive some auxiliary re-
sults. In Section 3, we prove the stochastic ultimate boundedness of the solution to
the system (3), obtainig conditions under which the solution is stochastically perma-
nent. The sufficient conditions for nonpersistence in the mean, weak persistence in
the mean and extinction of the solution are derived.

2 Existence of global solution and some auxiliary lemmas

Let (	,F , P) be a probability space, wi(t), i = 1, 2, t ≥ 0, are independent stan-
dard one-dimensional Wiener processes on (	,F , P), and νi(t, A), i = 1, 2, are
independent Poisson measures defined on (	,F , P) independent on wi(t), i = 1, 2.
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Here E[νi(t, A)] = t�i(A), i = 1, 2, ν̃i (t, A) = νi(t, A) − t�i(A), i = 1, 2,
�i(·), i = 1, 2, are finite measures on the Borel sets in R. On the probability space
(	,F , P) we consider an increasing, right continuous family of complete sub-σ -
algebras {Ft }t≥0, where Ft = σ {wi(s), νi(s, A), s ≤ t, i = 1, 2}.

We need the following assumption.

Assumption 1. It is assumed that ai(t), b1(t), ci(t), σi(t), γi(t, z), δi(t, z), i = 1, 2,
m(t) are bounded, continuous on t functions, ai(t) > 0, i = 1, 2, b1 inf > 0, ci inf > 0,
i = 1, 2, minf = inft≥0 m(t) > 0, and ln(1 + γi(t, z)), ln(1 + δi(t, z)), i = 1, 2, are
bounded, �i(R) < ∞, i = 1, 2.

In what follows we will assume that Assumption 1 holds.

Theorem 1. There exists a unique global solution X(t) to the system (3) for any
initial value X(0) = X0 ∈ R

2+, and P{X(t) ∈ R
2+} = 1.

Proof. Let us consider the system of stochastic differential equations

dξi(t) =
[
ai(t) − bi(t) exp{ξi(t)} − ci(t) exp{ξ2(t)}

m(t) + exp{ξ1(t)} − βi(t)

]
dt

+σi(t)dwi(t) +
∫
R

ln(1 + γi(t, z))ν̃1(dt, dz) +
∫
R

ln(1 + δi(t, z))ν̃2(dt, dz),

vi(0) = ln xi0, i = 1, 2. (4)

The coefficients of the system (4) are locally Lipschitz continuous. So, for any ini-
tial value (ξ1(0), ξ2(0)) there exists a unique local solution �(t) = (ξ1(t), ξ2(t)) on
[0, τe), where supt<τe

|�(t)| = +∞ (cf. Theorem 6, p. 246, [5]). Therefore, from the
Itô formula we derive that the process X(t) = (exp{ξ1(t)}, exp{ξ2(t)}) is a unique,
positive local solution to the system (3). To show this solution is global, we need
to show that τe = +∞ a.s. Let n0 ∈ N be sufficiently large for xi0 ∈ [1/n0, n0],
i = 1, 2. For any n ≥ n0 we define the stopping time

τn = inf

{
t ∈ [0, τe) : X(t) /∈

(
1

n
, n

)
×

(
1

n
, n

)}
.

It is easy to see that τn is increasing as n → +∞. Denote τ∞ = limn→∞ τn, whence
τ∞ ≤ τe a.s. If we prove that τ∞ = ∞ a.s., then τe = ∞ a.s. and X(t) ∈ R

2+ a.s.
for all t ∈ [0,+∞). So we need to show that τ∞ = ∞ a.s. If it is not true, there are
constants T > 0 and ε ∈ (0, 1), such that P{τ∞ < T } > ε. Hence, there is n1 ≥ n0
such that

P{τn < T } > ε, ∀n ≥ n1. (5)

For the nonnegative function V (X) =
2∑

i=1
ki(xi − 1 − ln xi), X = (x1, x2), xi > 0,

ki > 0, i = 1, 2, by the Itô formula we obtain

dV (X(t)) =
2∑

i=1

ki

{
(xi(t) − 1)

[
ai(t) − bi(t)xi(t) − ci(t)x2(t)

m(t) + x1(t)

]
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+βi(t) +
∫
R

δi(t, z)xi(t)�2(dz)

}
dt +

2∑
i=1

ki

{
(xi(t) − 1)σi(t)dwi(t)

+
∫
R

[γi(t, z)xi(t) − ln(1 + γi(t, z))]ν̃1(dt, dz)

+
∫
R

[δi(t, z)xi(t) − ln(1 + δi(t, z))]ν̃2(dt, dz)

}
. (6)

Let us consider the function f (t, x1, x2) = φ(t, x1) + ψ(t, x1, x2), x1 > 0, x2 > 0,
where

φ(t, x1) = −k1b1(t)x
2
1 + k1

(
α1(t) + b1(t)

)
x1 + k1β1(t) + k2β2(t)

−k1a1(t) − k2a2(t),

ψ(t, x1, x2) = (m(t) + x1)
−1

[
−k2c2(t)x

2
2+

(
k2α2(t) − k1c1(t)

)
x1x2

+
(
k2α2(t)m(t) + k1c1(t) + k2c2(t)

)
x2

]
.

Under Assumption 1 there is a constant L1(k1, k2) > 0, such that

φ(t, x1) ≤ k1

[
−b1 infx

2
1 + (

α1 sup + b1 sup
)
x1

]
+ βmax(k1 + k2) ≤ L1(k1, k2).

If α2 sup ≤ 0, then for the function ψ(t, x1, x2) we have

ψ(t, x1, x2) ≤ −k2c2 infx
2
2 + (k1 + k2)cmaxx2

m(t) + x1
≤ L2(k1, k2).

If α2 sup > 0, then for k2 = k1
c1 inf
α2 sup

there is a constant L3(k1, k2) > 0, such that

ψ(t, x1, x2) ≤
{
−k2c2 infx

2
2 + (k2α2 sup − k1c1 inf)x1x2 +

[
k2α2 supmsup

+(k1 + k2)cmax

]
x2

}
(m(t) + x1)

−1 = k1

m(t) + x1

{
−c1 infc2 inf

α2 sup
x2

2

+
[
c1 infmsup +

(
1 + c1 inf

α2 sup

)
cmax

]
x2

}
≤ L3(k1, k2).

Therefore, there is a constant L(k1, k2) > 0, such that f (t, x1, x2) ≤ L(k1, k2). So,
from (6) we obtain by integrating

V (X(T ∧ τn)) ≤ V (X0) + L(k1, k2)(T ∧ τn)

+
2∑

i=1

ki

{ T ∧τn∫
0

(xi(t) − 1)σi(t)dwi(t) +
T ∧τn∫
0

∫
R

[
γi(t, z)xi(t) − ln(1
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+γi(t, z))
]
ν̃1(dt, dz) +

T ∧τn∫
0

∫
R

[δi(t, z)xi(t) − ln(1 + δi(t, z))]ν̃2(dt, dz)

}
. (7)

Taking expectations we derive from (7)

E [V (X(T ∧ τn))] ≤ V (X0) + L(k1, k2)T . (8)

Set 	n = {τn ≤ T } for n ≥ n1. Then by (5), P(	n) = P{τn ≤ T } > ε, ∀n ≥ n1.
Note that for every ω ∈ 	n at least one of x1(τn, ω) and x2(τn, ω) equals either n or
1/n. So

V (X(τn)) ≥ min{k1, k2} min{n − 1 − ln n,
1

n
− 1 + ln n}.

From (8) it follows

V (X0) + L(k1, k2)T ≥ E[1	nV (X(τn))]
≥ ε min{k1, k2} min{n − 1 − ln n,

1

n
− 1 + ln n},

where 1	n is the indicator function of 	n. Letting n → ∞ leads to the contradiction
∞ > V (X0) + L(k1, k2)T = ∞. This completes the proof of the theorem.

Lemma 1. The density of the prey population x1(t) obeys

lim sup
t→∞

ln(m + x1(t))

t
≤ 0, ∀m > 0, a.s. (9)

Proof. By the Itô formula for the process et ln(m + x1(t)) we have

et ln(m + x1(t)) − ln(m + x10) =
∫ t

0
es

{
ln(m + x1(s))

+ x1(s)

m + x1(s)

[
a1(s)−b1(s)x1(s)− c1(s)x2(s)

m(s) + x1(s)

]
− σ 2

1 (s)x2
1(s)

2(m + x1(s))2

+
∫
R

[
ln

(
1 + γ1(s, z)x1(s)

m + x1(s)

)
− γ1(s, z)x1(s)

m + x1(s)

]
�1(dz)

}
ds

+
∫ t

0
es σ1(s)x1(s)

m + x1(s)
dw1(s) +

t∫
0

∫
R

es ln

(
1 + γ1(s, z)x1(s)

m + x1(s)

)
ν̃1(ds, dz)

+
t∫

0

∫
R

es ln

(
1 + δ1(s, z)x1(s)

m + x1(s)

)
ν2(ds, dz). (10)

For 0 < κ ≤ 1, let us denote the process

ζκ(t) =
∫ t

0
es σ1(s)x1(s)

m + x1(s)
dw1(s)+

t∫
0

∫
R

es ln

(
1 + γ1(s, z)x1(s)

m + x1(s)

)
ν̃1(ds, dz)
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+
t∫

0

∫
R

es ln

(
1+ δ1(s, z)x1(s)

m + x1(s)

)
ν2(ds, dz)− κ

2

∫ t

0
e2sσ 2

1 (s)

(
x1(s)

m + x1(s)

)2

ds

− 1

κ

t∫
0

∫
R

[(
1+ γ1(s, z)x1(s)

m + x1(s)

)κes

−1−κes ln

(
1+ γ1(s, z)x1(s)

m + x1(s)

)]
�1(dz)ds

− 1

κ

t∫
0

∫
R

[(
1+ δ1(s, z)x1(s)

m + x1(s)

)κes

− 1

]
�2(dz)ds.

By virtue of the exponential inequality ([3], Lemma 2.2) for any T > 0, 0 < κ ≤ 1,
β > 0, we have

P{ sup
0≤t≤T

ζκ(t) > β} ≤ e−κβ . (11)

Choosing T = kτ , k ∈ N, τ > 0, κ = εe−kτ , β = θekτ ε−1 ln k, 0 < ε < 1, θ > 1,
we get

P{ sup
0≤t≤T

ζκ(t) > θekτ ε−1 ln k} ≤ 1

kθ
.

By the Borel–Cantelli lemma, for almost all ω ∈ 	, there is a random integer k0(ω),
such that, for ∀k ≥ k0(ω) and 0 ≤ t ≤ kτ , we have

∫ t

0
es σ1(s)x1(s)

m + x1(s)
dw1(s)+

t∫
0

∫
R

es ln

(
1 + γ1(s, z)x1(s)

m + x1(s)

)
ν̃1(ds, dz)

+
t∫

0

∫
R

es ln

(
1+ δ1(s, z)x1(s)

m + x1(s)

)
ν2(ds, dz) ≤

ε

2ekτ

∫ t

0
e2s

(
σ1(s)x1(s)

m + x1(s)

)2

ds + ekτ

ε

t∫
0

∫
R

[(
1+ γ1(s, z)x1(s)

m + x1(s)

)εes−kτ

−1 − εes−kτ ln

(
1+ γ1(s, z)x1(s)

m + x1(s)

)]
�1(dz)ds

+ekτ

ε

t∫
0

∫
R

[(
1+ δ1(s, z)x1(s)

m + x1(s)

)εes−kτ

− 1

]
�2(dz)ds + θekτ ln k

ε
. (12)

By using the inequality xr ≤ 1+r(x−1), ∀x ≥ 0, 0 ≤ r ≤ 1, with x = 1+ γ1(s,z)x1(s)
m+x1(s)

,

r = εes−kτ , and then with x = 1 + δ1(s,z)x1(s)
m+x1(s)

, r = εes−kτ , we derive the estimates

ekτ

ε

t∫
0

∫
R

[(
1+ γ1(s, z)x1(s)

m + x1(s)

)εes−kτ

− 1
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−εes−kτ ln

(
1+ γ1(s, z)x1(s)

m + x1(s)

)]
�1(dz)ds

≤
t∫

0

∫
R

es

[
γ1(s, z)x1(s)

m + x1(s)
− ln

(
1+ γ1(s, z)x1(s)

m + x1(s)

)]
�1(dz)ds, (13)

ekτ

ε

t∫
0

∫
R

[(
1+ δ1(s, z)x1(s)

m + x1(s)

)εes−kτ

− 1

]
�2(dz)ds

≤
t∫

0

∫
R

es δ1(s, z)x1(s)

m + x1(s)
�2(dz)ds. (14)

From (10), by using (12)–(14) we get

et ln(m + x1(t)) ≤ ln(m + x10) +
∫ t

0
es

{
ln(m + x1(s))

+ x1(s)

m + x1(s)

[
a1(s)−b1(s)x1(s)− c1(s)x2(s)

m(s) + x1(s)

]
− σ 2

1 (s)x2
1(s)

2(m + x1(s))2

×
(

1 − εes−kτ
)

+
∫
R

δ1(s, z)x1(s)

m + x1(s)
�2(dz)

}
ds + θekτ ln k

ε
, a.s. (15)

It is easy to see that, under Assumption 1, for any x > 0 there exists a constant L > 0
independent on k, s and x, such that

ln(m + x) − x2b1(s)

m + x
+ xα1(s)

m + x
≤ L.

So, from (15) for any (k − 1)τ ≤ t ≤ kτ we have (a.s.)

ln(m + x1(t))

ln t
≤ e−t ln(m + x10)

ln t
+ L

ln t
(1 − e−t ) + θekτ ln k

εe(k−1)τ ln(k − 1)τ
.

Therefore,

lim sup
t→∞

ln(m + x1(t))

ln t
≤ θeτ

ε
, ∀θ > 1, τ > 0, ε ∈ (0, 1), a.s.

If θ ↓ 1, τ ↓ 0, ε ↑ 1, we obtain

lim sup
t→∞

ln(m + x1(t))

ln t
≤ 1, a.s.

So,

lim sup
t→∞

ln(m + x1(t))

t
≤ 0, a.s.
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Corollary 1. The density of the prey population x1(t) obeys

lim sup
t→∞

ln x1(t)

t
≤ 0, a.s.

Lemma 2. The density of the predator population x2(t) has the property that

lim sup
t→∞

ln x2(t)

t
≤ 0, a.s.

Proof. Making use of the Itô formula we get

et ln x2(t) − ln x20 =
∫ t

0
es

{
ln x2(s) + a2(s)− c2(s)x2(s)

m(s) + x1(s)
− σ 2

2 (s)

2

+
∫
R

[
ln

(
1 + γ2(s, z)

)
− γ2(s, z)

]
�1(dz)

}
ds + ψ(t), (16)

where

ψ(t) =
∫ t

0
esσ2(s)dw2(s) +

t∫
0

∫
R

es ln
(

1 + γ2(s, z)
)
ν̃1(ds, dz)

+
t∫

0

∫
R

es ln
(

1 + δ2(s, z)
)
ν2(ds, dz).

By virtue of the exponential inequality (11) we have

P{ sup
0≤t≤T

ζκ(t) > β} ≤ e−κβ,∀0 < κ ≤ 1, β > 0,

where

ζκ(t) = ψ(t) − κ

2

t∫
0

e2sσ 2
2 (s)ds − 1

κ

t∫
0

∫
R

[
(1 + γ2(s, z))

κes − 1

−κes ln(1 + γ2(s, z))
]
�1(dz)ds − 1

κ

t∫
0

∫
R

[
(1 + δ2(s, z))

κes − 1
]
�2(dz)ds.

Choosing T = kτ , k ∈ N, τ > 0, κ = e−kτ , β = θekτ ln k, θ > 1, we get

P{ sup
0≤t≤T

ζκ(t) > θekτ ln k} ≤ 1

kθ
.

By the same arguments as in the proof of Lemma 1, using the Borel–Cantelli lemma,
we derive from (16)

et ln x2(t) ≤ ln x20 +
∫ t

0
es

{
ln x2(s) + a2(s)− c2(s)x2(s)

m(s) + x1(s)



26 Olg. Borysenko, O. Borysenko

−σ 2
2 (s)

2

(
1 − es−kτ

)
+

∫
R

δ2(s, z)�2(dz)

}
ds + θekτ ln k, a.s., (17)

for all sufficiently large k ≥ k0(ω) and 0 ≤ t ≤ kτ .
Using inequality ln x − cx ≤ − ln c − 1, ∀x ≥ 0, c > 0, with x = x2(s),

c = c2(s)
m(s)+x1(s)

, we derive from (17) the estimate

et ln x2(t) ≤ ln x20 +
t∫

0

es ln
(
msup + x1(s)

)
ds + L(et − 1) + θekτ ln k,

for some constant L > 0.
So, for (k − 1)τ ≤ t ≤ kτ , k ≥ k0(ω), we have

lim sup
t→∞

ln x2(t)

t
≤ lim sup

t→∞
1

t

t∫
0

es−t ln
(
msup + x1(s)

)
ds ≤ 0,

by virtue of Lemma 1.

Lemma 3. Let p > 0. Then for any initial value x10 > 0, the pth-moment of the prey
population density x1(t) obeys

lim sup
t→∞

E
[
x

p
1 (t)

] ≤ K1(p), (18)

where K1(p) > 0 is independent of x10.
For any initial value x20 > 0, the expectation of the predator population density

x2(t) obeys

lim sup
t→∞

E [x2(t)] ≤ K2, (19)

where K2 > 0 is independent of x20.

Proof. Let τn be the stopping time defined in Theorem 1. Applying the Itô formula
to the process V (t, x1(t)) = etx

p
1 (t), p > 0, we obtain

V (t ∧ τn, x1(t ∧ τn)) = x
p

10 +
t∧τn∫
0

esx
p

1 (s)

{
1 + p

[
a1(s) − b1(s)x1(s)

− c1(s)x2(s)

m(s) + x1(s)

]
+p(p − 1)σ 2

1 (s)

2
+

∫
R

[
(1 + γ1(s, z))

p−1−pγ1(s, z)
]
�1(dz)

+
∫
R

[
(1 + δ1(s, z))

p−1
]
�2(dz)

}
ds +

t∧τn∫
0

pesx
p

1 (s)σ1(s)dw1(s)
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+
t∧τn∫
0

∫
R

esx
p

1 (s)
[
(1 + γ1(s, z))

p − 1
]
ν̃1(ds, dz)

+
t∧τn∫
0

∫
R

esx
p

1 (s)
[
(1 + δ1(s, z))

p − 1
]
ν̃2(ds, dz).

(20)

Under Assumption 1 there is a constant K1(p) > 0, such that

esx
p
1

{
1 + p

[
a1(s) − b1(s)x1 − c1(s)x2

m(s) + x1

]
+ p(p − 1)σ 2

1 (s)

2
+

+
∫
R

[
(1+γ1(s, z))

p−1−pγ1(s, z)
]
�1(dz)+

∫
R

[
(1 + δ1(s, z))

p−1
]
�2(dz)

}

≤ K1(p)es. (21)

From (20) and (21), taking expectations, we obtain

E[V (t ∧ τn, x1(t ∧ τn))] ≤ x
p
10 + K1(p)et .

Letting n → ∞ leads to the estimate

etE[xp

1 (t)] ≤ x
p

10 + etK1(p). (22)

So from (22) we derive (18).
Let us prove the estimate (19). Applying the Itô formula to the process

U(t,X(t)) = et [k1x1(t) + k2x2(t)], ki > 0, i = 1, 2, we obtain

dU(t,X(t)) = et

{
k1x1(t) + k2x2(t) + k1

[
a1(t)x1(t) − b1(t)x

2
1(t)

−c1(t)x1(t)x2(t)

m(t) + x1(t)

]
+ k2

[
a2(t)x2(t) − c2(t)x

2
2(t)

m(t) + x1(t)

]

+
2∑

i=1

ki

∫
R

xi(t)δi(t, z)�2(dz)

}
dt + et

{ 2∑
i=1

ki

[
xi(t)σi(t)dwi(t)

+
∫
R

xi(t)γi(t, z)ν̃1(dt, dz) +
∫
R

xi(t)δi(t, z)ν̃2(dt, dz)

]}
. (23)

For the function

f (t, x1, x2)= 1

m(t) + x1

{
k1

[
−b1(t)x

3
1 +

(
1+a1(t)+δ̄1(t)−b1(t)m(t)

)
x2

1
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+m(t)
(

1+a1(t)+δ̄1(t)
)
x1

]
+

[
k2

(
1 + a2(t) + δ̄2(t)

)
− k1c1(t)

]
x1x2

+k2

[
−c2(t)x

2
2 + m(t)

(
1 + a2(t) + δ̄2(t)

)
x2

]}
,

where δ̄i (t) =
∫
R

δi(t, z)�2(dz), i = 1, 2,

we have

f (t, x1, x2) ≤ φ1(x1, x2) + φ2(x2)

m(t) + x1
,

where

φ1(x1, x2) = k1

[
−b1 infx

3
1 +

(
d1 −b1 infminf

)
x2

1 + msupd1x1

]
+

[
k2d2 − k1c1 inf

]
x1x2,

φ2(x2) = k2

[
−c2 infx

2
2 + msupd2x2

]
, di = 1+ai sup + |δ̄i |sup, i = 1, 2.

For k2 = k1c1 inf/d2 there is a constant L′ > 0, such that φ1(x1, x2) ≤ L′k1 and
φ2(x2) ≤ L′k1. So, there is a constant L > 0, such that

f (t, x1, x2) ≤ Lk1. (24)

From (23) and (24) by integrating and taking expectation, we derive

E[U(t ∧ τn,X(t ∧ τn))] ≤ k1

[
x10 + c1 inf

d2
x20 + Let

]
.

Letting n → ∞ leads to the estimate

etE

[
x1(t) + c1 inf

d2
x2(t)

]
≤ x10 + c1 inf

d2
x20 + Let .

So,

E[x2(t)] ≤
(

d2

c1 inf
x10 + x20

)
e−t + d2

c1 inf
L. (25)

From (25) we have (19).

Lemma 4. If p2 inf > 0, where p2(t) = a2(t) − β2(t), then for any initial value
x20 > 0, the predator population density x2(t) satisfies

lim sup
t→∞

E

[(
1

x2(t)

)θ
]

≤ K(θ), 0 < θ < 1, (26)
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Proof. For the process U(t) = 1/x2(t) by the Itô formula we derive

U(t) = U(0) +
t∫

0

U(s)

[
c2(s)x2(s)

m(s) + x1(s)
− a2(s) + σ 2

2 (s)

+
∫
R

γ 2
2 (s, z)

1 + γ2(s, z)
�1(dz)

]
ds −

t∫
0

U(s)σ2(s)dw2(s)

−
t∫

0

∫
R

U(s)
γ2(s, z)

1 + γ2(s, z)
ν̃1(ds, dz) −

t∫
0

∫
R

U(s)
δ2(s, z)

1 + δ2(s, z)
ν2(ds, dz).

Then, by applying the Itô formula, we derive, for 0 < θ < 1,

(1 + U(t))θ = (1 + U(0))θ +
t∫

0

θ(1 + U(s))θ−2
{
(1 + U(s))U(s)

×
[

c2(s)x2(s)

m(s) + x1(s)
− a2(s) + σ 2

2 (s)+
∫
R

γ 2
2 (s, z)

1 + γ2(s, z)
�1(dz)

]

+θ − 1

2
U2(s)σ 2

2 (s)

+1

θ

∫
R

[
(1 + U(s))2

((
1 + U(s) + γ2(s, z)

(1 + γ2(s, z))(1 + U(s))

)θ

− 1

)

+θ(1 + U(s))
U(s)γ2(s, z)

1 + γ2(s, z)

]
�1(dz)

+1

θ

∫
R

(1 + U(s))2
[(

1 + U(s) + δ2(s, z)

(1 + δ2(s, z))(1 + U(s))

)θ

− 1

]
�2(dz)

}
ds

−
t∫

0

θ(1 + U(s))θ−1U(s)σ2(s)dw2(s)

+
t∫

0

∫
R

[(
1 + U(s)

1 + γ2(s, z)

)θ

− (1 + U(s))θ
]
ν̃1(ds, dz)

+
t∫

0

∫
R

[(
1 + U(s)

1 + δ2(s, z)

)θ

− (1 + U(s))θ
]
ν̃2(ds, dz)

= (1 + U(0))θ +
t∫

0

θ(1 + U(s))θ−2J (s)ds

−I1,stoch(t) + I2,stoch(t) + I3,stoch(t), (27)
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where Ij,stoch(t), j = 1, 3, are the corresponding stochastic integrals in (27). Under
Assumption 1 there exist constants |K1(θ)| < ∞, |K2(θ)| < ∞, such that for the
process J (t) we have the estimate

J (t) ≤ (1 + U(t))U(t)

[
−a2(t) + c2 supU

−1(t)

minf

+ σ 2
2 (t)

+
∫
R

γ 2
2 (s, z)

1 + γ2(s, z)
�1(dz)

]
+ θ − 1

2
U2(s)σ 2

2 (s)

+1

θ

∫
R

[
(1 + U(s))2

((
1

1 + γ2(s, z)
+ 1

1 + U(s)

)θ

− 1

)

+θ(1 + U(s))
U(s)γ2(s, z)

1 + γ2(s, z)

]
�1(dz)

+1

θ

∫
R

(1 + U(s))2
[(

1

1 + δ2(s, z)
+ 1

1 + U(s)

)θ

− 1

]
�2(dz)

≤ U2(t)

[
−a2(t) + σ 2

2 (t)

2
+

∫
R

γ2(t, z)�1(dz) + θ

2
σ 2

2 (t)

+1

θ

∫
R

[(1 + γ2(t, z))
−θ − 1]�1(dz) + 1

θ

∫
R

[(1 + δ2(t, z))
−θ − 1]�2(dz)

]

+K1(θ)U(t) + K2(θ) = −K0(t, θ)U2(t) + K1(θ)U(t) + K2(θ),

where we used the inequality (x + y)θ ≤ xθ + θxθ−1y, 0 < θ < 1, x, y > 0. Due to

lim
θ→0+

[
θ

2
σ 2

2 (t) + 1

θ

∫
R

[(1 + γ2(t, z))
−θ − 1]�1(dz)

+1

θ

∫
R

[(1 + δ2(t, z))
−θ − 1]�2(dz) +

∫
R

ln(1 + γ2(t, z))�1(dz)

+
∫
R

ln(1 + δ2(t, z))�2(dz)

]
= lim

θ→0+ �(θ) = 0,

and the condition p2 inf > 0 we can choose a sufficiently small 0 < θ < 1 so that

K0(θ) = inf
t≥0

K0(t, θ) = inf
t≥0

[p2(t) − �(θ)] = p2 inf − �(θ) > 0

is satisfied. So, from (27) and the estimate for J (t) we derive

d
[
(1 + U(t))θ

] ≤ θ(1 + U(t))θ−2[−K0(θ)U2(t) + K1(θ)U(t) + K2(θ)]dt
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−θ(1 + U(t))θ−1U(t)σ2(t)dw2(t) +
∫
R

[(
1 + U(t)

1 + γ2(t, z)

)θ

−(1+U(t))θ
]
ν̃1(dt, dz)+

∫
R

[(
1+ U(t)

1 + δ2(t, z)

)θ

−(1+U(t))θ
]
ν̃2(dt, dz). (28)

By the Itô formula and (28) we have

d
[
eλt (1 + U(t))θ

] = λeλt (1 + U(t))θdt + eλtd
[
(1 + U(t))θ

]
≤ eλt θ(1 + U(t))θ−2

[
−

(
K0(θ) − λ

θ

)
U2(t) +

(
K1(θ) + 2λ

θ

)
U(t)

+K2(θ) + λ

θ

]
dt − θeλt (1 + U(t))θ−1U(t)σ2(t)dw2(t)

+eλt

∫
R

[(
1 + U(t)

1 + γ2(t, z)

)θ

− (1 + U(t))θ
]
ν̃1(dt, dz)

+eλt

∫
R

[(
1 + U(t)

1 + δ2(t, z)

)θ

− (1 + U(t))θ
]
ν̃2(dt, dz). (29)

Let us choose λ = λ(θ) > 0, such that K0(θ)−λ/θ > 0. Then there is a constant
K > 0, such that

(1 + U(t))θ−2
[
−

(
K0(θ) − λ

θ

)
U2(t)

+
(

K1(θ) + 2λ

θ

)
U(t) + K2(θ) + λ

θ

]
≤ K. (30)

Let τn be the stopping time defined in Theorem 1. Then by integrating (29), using
(30) and taking the expectation we obtain

E
[
eλ(t∧τn)(1 + U(t ∧ τn))

θ
]

≤
(

1 + 1

x20

)θ

+ θ

λ
K

(
eλt − 1

)
.

Letting n → ∞ leads to the estimate

etE
[
(1 + U(t))θ

] ≤
(

1 + 1

x20

)θ

+ θ

λ
K

(
eλt − 1

)
. (31)

From (31) we obtain

lim sup
t→∞

E

[(
1

x2(t)

)θ
]

= lim sup
t→∞

E
[
Uθ(t)

]

≤ lim sup
t→∞

E
[
(1 + U(t))θ

] ≤ θ

λ(θ)
K,

this implies (26).
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3 The long-time behaviour

Definition 1 ([8]). The solution X(t) to the system (3) is said to be stochastically
ultimately bounded, if for any ε ∈ (0, 1), there is a positive constant χ = χ(ε) > 0,
such that for any initial value X0 ∈ R

2+, the solution to the system (3) has the property
that

lim sup
t→∞

P {|X(t)| > χ} < ε.

In what follows in this section we will assume that Assumption 1 holds.

Theorem 2. The solution X(t) to the system (3) with the initial value X0 ∈ R
2+ is

stochastically ultimately bounded.

Proof. From Lemma 3 we have the estimate

lim sup
t→∞

E[xi(t)] ≤ Ki, i = 1, 2. (32)

For X = (x1, x2) ∈ R
2+ we have |X| ≤ x1 + x2, therefore, from (32)

lim supt→∞ E[|X(t)|] ≤ L = K1 + K2. Let χ > L/ε, ∀ε ∈ (0, 1). Then apply-
ing the Chebyshev inequality yields

lim sup
t→∞

P{|X(t)| > χ} ≤ 1

χ
lim sup

t→∞
E[|X(t)|] ≤ L

χ
< ε.

The property of stochastic permanence is important since it means the long-time
survival in a population dynamics.

Definition 2. The population density x(t) is said to be stochastically permanent if for
any ε > 0, there are positive constants H = H(ε), h = h(ε) such that

lim inf
t→∞ P{x(t) ≤ H } ≥ 1 − ε, lim inf

t→∞ P{x(t) ≥ h} ≥ 1 − ε,

for any inial value x0 > 0.

Theorem 3. If p2 inf > 0, where p2(t) = a2(t) − β2(t), then for any initial value
x20 > 0, the predator population density x2(t) is stochastically permanent.

Proof. From Lemma 3 we have estimate

lim sup
t→∞

E[x2(t)] ≤ K.

Thus for any given ε > 0, let H = K/ε, by virtue of Chebyshev’s inequality, we can
derive that

lim sup
t→∞

P{x2(t) ≥ H } ≤ 1

H
lim sup
t→∞

E[x2(t)] ≤ ε.

Consequently, lim inf
t→∞ P{x2(t) ≤ H } ≥ 1 − ε.
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From Lemma 4 we have the estimate

lim sup
t→∞

E

[(
1

x2(t)

)θ
]

≤ K(θ), 0 < θ < 1.

For any given ε > 0, let h = (ε/K(θ))1/θ , then by Chebyshev’s inequality, we have

lim sup
t→∞

P{x2(t) < h} ≤ lim sup
t→∞

P

{(
1

x2(t)

)θ

> h−θ

}

≤ hθ lim sup
t→∞

E

[(
1

x2(t)

)θ
]

≤ ε.

Consequently, lim inf
t→∞ P{x2(t) ≥ h} ≥ 1 − ε.

Theorem 4. If the predator is absent, i.e. x2(t) = 0 a.s., and p1 inf > 0, where
p1(t) = a1(t) − β1(t), then for any initial value x10 > 0, the prey population density
x1(t) is stochastically permanent.

Proof. From Lemma 3 we have the estimate

lim sup
t→∞

E[x1(t)] ≤ K.

Thus for any given ε > 0, let H = K/ε, by virtue of Chebyshev’s inequality, we can
derive that

lim sup
t→∞

P{x1(t) ≥ H } ≤ 1

H
lim sup
t→∞

E[x1(t)] ≤ ε.

Consequently, lim inf
t→∞ P{x1(t) ≤ H } ≥ 1 − ε.

For the process U(t) = 1/x1(t), by the Itô formula we have

U(t) = U(0) +
t∫

0

U(s)

[
b1(s)x1(s) − a1(s) + σ 2

1 (s)

+
∫
R

γ 2
1 (s, z)

1 + γ1(s, z)
�1(dz)

]
ds −

t∫
0

U(s)σ1(s)dw1(s)

−
t∫

0

∫
R

U(s)
γ1(s, z)

1 + γ1(s, z)
ν̃1(ds, dz) −

t∫
0

∫
R

U(s)
δ1(s, z)

1 + δ1(s, z)
ν2(ds, dz).

Then, using the same arguments as in the proof of Lemma 4 we can derive the esti-
mate

lim sup
t→∞

E

[(
1

x1(t)

)θ
]

≤ K(θ), 0 < θ < 1.
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For any given ε > 0, let h = (ε/K(θ))1/θ . Then by Chebyshev’s inequality, we have

lim sup
t→∞

P{x1(t) < h} = lim sup
t→∞

P

{(
1

x1(t)

)θ

> h−θ

}

≤ hθ lim sup
t→∞

E

[(
1

x1(t)

)θ
]

≤ ε.

Consequently, lim inf
t→∞ P{x1(t) ≥ h} ≥ 1 − ε.

Remark 1. If the predator is absent, i.e. x2(t) = 0 a.s., then the equation for the
prey x1(t) has the logistic form. So, Theorem 4 gives us the sufficient conditions for
the stochastic permanence of the solution to the stochastic nonautonomous logistic
equation disturbed by white noise, centered and noncentered Poisson noises.

Definition 3. The solution X(t) = (x1(t), x2(t)), t ≥ 0, to equation (3) will be said
extinct if for every initial data X0 ∈ R

2+, we have limt→∞ xi(t) = 0 almost surely
(a.s.), i = 1, 2.

Theorem 5. If

p̄∗
i = lim sup

t→∞
1

t

t∫
0

pi(s)ds < 0, where pi(t) = ai(t) − βi(t), i = 1, 2,

then the solution X(t) to equation (3) with the initial condition X0 ∈ R
2+ will be

extinct.

Proof. By the Itô formula, we have

d ln xi(t) =
[
ai(t) − bi(t)xi(t) − ci(t)x2(t)

m(t) + x1(t)
− βi(t)

]
dt + dMi(t)

≤ [ai(t) − βi(t)]dt + dMi(t), i = 1, 2, (33)

where the martingale

Mi(t) =
t∫

0

σi(s)dwi(s) +
t∫

0

∫
R

ln(1 + γi(s, z))ν̃1(ds, dz)

+
t∫

0

∫
R

ln(1 + δi(s, z))ν̃2(ds, dz), i = 1, 2, (34)

has quadratic variation

〈Mi,Mi〉(t) =
t∫

0

σ 2
i (s)ds +

t∫
0

∫
R

ln2(1 + γi(s, z))�1(dz)ds
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+
t∫

0

∫
R

ln2(1 + δi(s, z))�2(dz)ds ≤ Kt, i = 1, 2.

Then the strong law of large numbers for local martingales ([10]) yields
limt→∞ Mi(t)/t = 0, i = 1, 2, a.s. Therefore, from (33) we obtain

lim sup
t→∞

ln xi(t)

t
≤ lim sup

t→∞
1

t

t∫
0

pi(s)ds < 0, a.s.

So, limt→∞ xi(t) = 0, i = 1, 2, a.s.

Definition 4 ([11]). The population density x(t) will be said nonpersistent in the
mean if

lim
t→∞

1

t

∫ t

0
x(s)ds = 0 a.s.

Theorem 6. If p̄∗
1 = 0, then the prey population density x1(t) with the initial condi-

tion x10 > 0 will be nonpersistent in the mean.

Proof. From the first equality in (33) for i = 1 we have

ln x1(t) ≤ ln x10 +
t∫

0

p1(s)ds − b1 inf

t∫
0

x1(s)ds + M1(t), (35)

where the martingale M1(t) is defined in (34). From the definition of p̄∗
1 and the strong

law of large numbers for M1(t) it follows, that ∀ε > 0, ∃t0 ≥ 0, and ∃	ε ⊂ 	, with
P(	ε) ≥ 1 − ε, such that

1

t

t∫
0

p1(s)ds ≤ p̄∗
1 + ε

2
,

M1(t)

t
≤ ε

2
, ∀t ≥ t0, ω ∈ 	ε.

So, from (35) we derive

ln x1(t) − ln x10 ≤ t (p̄∗
1 + ε) − b1 inf

t∫
0

x1(s)ds

= tε − b1 inf

t∫
0

x1(s)ds,∀t ≥ t0, ω ∈ 	ε. (36)

Let y1(t) = ∫ t

0 x1(s)ds, then from (36) we have

ln

(
dy1(t)

dt

)
≤ εt − b1 infy1(t) + ln x10
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⇒ eb1 infy1(t)
dy1(t)

dt
≤ x10e

εt ,∀t ≥ t0, ω ∈ 	ε.

By integrating the last inequality from t0 to t we obtain

eb1 infy1(t) ≤ b1 infx10

ε

(
eεt − eεt0

) + eb1 infy1(t0), ∀t ≥ t0, ω ∈ 	ε.

So,

y1(t) ≤ 1

b1 inf
ln

[
eb1 infy1(t0) + b1 infx10

ε

(
eεt − eεt0

)]
, ∀t ≥ t0, ω ∈ 	ε,

and therefore

lim sup
t→∞

1

t

t∫
0

x1(s)ds ≤ ε

b1 inf
, ∀ω ∈ 	ε.

Since ε > 0 is arbitrary and x1(t) > 0 a.s., we have

lim
t→∞

1

t

t∫
0

x1(s)ds = 0 a.s.

Theorem 7. If p̄∗
2 = 0 and p̄∗

1 < 0, then the predator population density x2(t) with
the initial condition x20 > 0 will be nonpersistent in the mean.

Proof. From the first equality in (33) with i = 2 we have, for c = c2 inf/msup,

ln x2(t) ≤ ln x20 +
t∫

0

p2(s)ds − c2 inf

t∫
0

x2(s)

m(s) + x1(s)
ds + M2(t)

= ln x20+
t∫

0

p2(s)ds−c2 inf

t∫
0

1

m(s)

[
x2(s)− x1(s)x2(s)

m(s) + x1(s)

]
ds+M2(t)

≤ ln x20 +
t∫

0

p2(s)ds − c

t∫
0

x2(s)ds + c

t∫
0

x1(s)x2(s)

msup + x1(s)
ds + M2(t), (37)

where the martingale M2(t) is defined in (34). From Theorem 5, the definition of p̄∗
2

and the strong law of large numbers for M2(t) it follows, that ∀ε > 0, ∃t0 ≥ 0, and
∃	ε ⊂ 	 with P(	ε) ≥ 1 − ε, such that

1

t

t∫
0

p2(s)ds ≤ p̄∗
2 + ε

2
,

M2(t)

t
≤ ε

2
,

x1(t)

msup + x1(t)
≤ ε, ∀t ≥ t0, ω ∈ 	ε.
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So, from (37) we derive

ln x2(t) − ln x20 ≤ t (p̄∗
2 + ε) − c(1 − ε)

t∫
t0

x2(s)ds

= tε − c(1 − ε)

t∫
t0

x2(s)ds,∀t ≥ t0, ω ∈ 	ε. (38)

Let y2(t) = ∫ t

t0
x2(s)ds. Then from (38) we have

ln

(
dy2(t)

dt

)
≤ εt − c(1 − ε)y2(t) + ln x20

⇒ ec(1−ε)y2(t)
dy2(t)

dt
≤ x20e

εt ,∀t ≥ t0, ω ∈ 	ε.

By integrating the last inequality from t0 to t we obtain

ec(1−ε)y2(t) ≤ c(1 − ε)x20

ε

(
eεt − eεt0

) + 1, ∀t ≥ t0, ω ∈ 	ε.

So,

y2(t) ≤ 1

c(1 − ε)
ln

[
1 + c(1 − ε)x20

ε

(
eεt − eεt0

)]
, ∀t ≥ t0, ω ∈ 	ε,

and therefore

lim sup
t→∞

1

t

t∫
0

x2(s)ds ≤ ε

c(1 − ε)
, ∀ω ∈ 	ε.

Since ε > 0 is arbitrary and x2(t) > 0 a.s., we have

lim
t→∞

1

t

t∫
0

x2(s)ds = 0 a.s.

Definition 5 ([11]). The population density x(t) will be said weakly persistent in the
mean if

x̄∗ = lim sup
t→∞

1

t

∫ t

0
x(s)ds > 0 a.s.

Theorem 8. If p̄∗
2 > 0, then the predator population density x2(t) with the initial

condition x20 > 0 will be weakly persistent in the mean.
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Proof. If the assertion of theorem is not true, then P{x̄∗
2 = 0} > 0. From the first

equality in (33) we get

1

t
(ln x2(t) − ln x20) = 1

t

∫ t

0
p2(s)ds − 1

t

∫ t

0

c2(s)x2(s)

m(s) + x1(s)
ds + M2(t)

t

≥ 1

t

∫ t

0
p2(s)ds − c2 sup

minft

∫ t

0
x2(s)ds + M2(t)

t
,

where the martingale M2(t) is defined in (34). For ∀ω ∈ {ω ∈ 	| x̄∗
2 = 0} in virtue

of the strong law of large numbers for the martingale M2(t) we have

lim sup
t→∞

ln x2(t)

t
≥ p̄∗

2 > 0.

Therefore,

P

{
ω ∈ 	| lim sup

t→∞
ln x2(t)

t
> 0

}
> 0.

But from Lemma 2 we have

P

{
ω ∈ 	| lim sup

t→∞
ln x2(t)

t
≤ 0

}
= 1.

This is a contradiction.

Theorem 9. If p̄∗
1 > 0 and p̄∗

2 < 0, then the prey population density x1(t) with the
initial condition x10 > 0 will be weakly persistent in the mean.

Proof. Let P{x̄∗
1 = 0} > 0. From the first equality in (33) with i = 1 we get

1

t
(ln x1(t) − ln x10) = 1

t

∫ t

0
p1(s)ds − 1

t

∫ t

0
b1(s)x1(s)ds

−1

t

∫ t

0

c1(s)x2(s)

m(s) + x1(s)
ds + M1(t)

t

≥ 1

t

∫ t

0
p1(s)ds − b1 sup

t

∫ t

0
x1(s)ds − c1 sup

minft

∫ t

0
x2(s)ds + M1(t)

t
(39)

where the martingale M1(t) is defined in (34). From the definition of p̄∗
1 , the strong

law of large numbers for the martingale M1(t) and Theorem 2 for x2(t), we have
∀ε > 0, ∃t0 ≥ 0, ∃	ε ⊂ 	 with P(	ε) ≥ 1 − ε, such that

1

t

t∫
0

p1(s)ds ≥ p̄∗
1 − ε

3
,

M1(t)

t
≥ −ε

3
,

1

t

∫ t

0
x2(s)ds ≤ εminf

3c1 sup
,∀t ≥ t0, ω ∈ 	ε.

So, from (39) we get for ω ∈ {ω ∈ 	|x̄∗
1 = 0} ∩ 	ε

lim sup
t→∞

ln x1(t)

t
≥ p̄∗

1 − ε > 0
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for a sufficiently small ε > 0. Therefore,

P

{
ω ∈ 	| lim sup

t→∞
ln x1(t)

t
> 0

}
> 0.

But from Corollary 1

P

{
ω ∈ 	| lim sup

t→∞
ln x1(t)

t
≤ 0

}
= 1.

Therefore we have a contradiction.
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