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Abstract In this paper, we study the stochastic three-dimensional modified Leray-alpha
model arising from the turbulent flows of fluids. We prove the existence of the probabilistic
weak solution under the non-Lipschitz condition for the nonlinear forcing terms. We also dis-
cuss its uniqueness.
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1 Introduction

In this paper, we focus on the study of the probabilistic weak solution to the following
three-dimensional modified Leray-alpha model in the periodic box T = [0, 2πL]3,
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L > 0:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂t (u
α − α2�uα) − ν�(uα − α2�uα) + ((uα − α2�uα) · ∇)uα

= −∇pα + f (t, uα) + g(t, uα)
dW

dt
, in T × [0, T ]

∇ · uα = 0, in T × [0, T ]
uα(x, 0) = u0(x), in T

uα = uα(x, t) is periodic in T ,

∫
T

uαdx = 0,

(1)

where the vector uα = (uα
1 , uα

2 , uα
3 ) is the unknown fluid velocity vector, the scalar

pα is the unknown pressure, the constant ν > 0 is the kinematic viscosity and the real
number α > 0 is a given parameter. The vectors f (t, uα) and g(t, uα) dW

dt
are external

forces, where W is an R
m-valued standard Wiener process. The initial velocity is

given by u0. The time T > 0 is the final time.
Alpha models are known to be a good regularisation of the three-dimensional

Navier-Stokes equations. For a physical motivations, model derivation, and analyti-
cal and numerical aspects of these models, readers can consult [6–8, 21, 24]. Specifi-
cally, the deterministic three-dimensional modified Leray-alpha equations were stud-
ied in [12], where the global well-posedness was shown, and it was explained that this
model can provide a reliable, computationally sound analytical subgrid large eddy
simulation model of turbulence. The study of the stochastic incompressible Navier-
Stokes equations driven by a white noise dates back to the early 1970s with the pio-
neering work [3]. For the stochastic versions of the alpha models, we refer the reader
to [5, 10, 11]. In [5], the authors proved the existence and uniqueness of the varia-
tional solution to the three-dimensional stochastic Navier-Stokes-alpha (NS-α) model
equations in a bounded domain, with Lipschitz assumptions on the nonlinear forcing
terms. In [10], the authors ameliorated the result of [5] by avoiding the Lipschitz
conditions on the nonlinear forcing terms when proving existence. Furthermore, the
authors of [11] obtained the existence of a probabilistic weak solution for the stochas-
tic version of the three-dimensional Bardina model arising from the turbulent flows
of fluids with non-Lipschitz conditions. A stochastic three-dimensional inviscid sim-
plified Bardina turbulence model was recently investigated, in [17], and the existence
of a global strong and pathwise solution was proven in a periodic domain.

In [23], we established the exponential mixing and ergodic theorems for a stochas-
tic damped nonlinear quintic wave equation driven by a localised space-time noise.
Our aim in this paper is to show that the deterministic model in the case of a peri-
odic domain introduced in [12] is reasonable, in the sense that, when some stochastic
terms are present in the model, we can suggest a stochastic version with an accurate
mathematical setting, yielding the existence and uniqueness of weak solutions to the
problem. As is known in the fluid mechanics literature, the challenge is to handle the
nonlinear term. The main difference with the publications cited above is the structure
of the nonlinearity we consider, especially in a stochastic framework. Our nonlinear
term generates new difficulties to be overcome and estimates to be established. To
the best of our knowledge, this paper is the first work dealing with the existence and
uniqueness of solution to a three-dimensional stochastic modified Leray-alpha sub-
grid scale model of fluid turbulence. To prove the existence of a weak solution in a
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periodic domain, in Theorem 2.2, we put the system in an abstract form. Then, using
the Galerkin method, we construct an approximating solution. Next, we establish a
priori estimates on the approximating solution that allow us to prove the compactness
properties of the corresponding probability measures. Thereafter, we use Prokhorov’s
criterion and Skorokhod’s theorem to prove the existence of a subsequence that con-
verges strongly as the approximating parameter goes to infinity. For the proof of the
existence of the pressure, we use a generalisation of Rham’s theorem [15]. Finally, we
will prove the pathwise uniqueness of the weak solution to establish the uniqueness
of the weak solution in Theorem 2.3. Naturally, the uniqueness property needs hold
with the Lipschitz condition of the external nonlinear terms.

The paper is organised as follows. Section 2 is devoted to stating our problem,
the functional settings and the main results. The proofs of our main results are in-
cluded in Section 3. The convergence results of the unique weak solution of the
three-dimensional modified Leray-alpha model as the regularising parameter alpha
vanishes was addressed in [22].

2 Functional setting and main results

2.1 Functional setting

Before presenting our main results, we introduce some functional settings.

• We set V =
{
φ, φ to be a trigonometric polynomial with period 2πL,

such that ∇ · φ = 0 and
∫

T φ(x)dx = 0
}

.

• Let H and V be the closure of the set V in the space (L2(T ))3 and (H 1(T ))3,
respectively. As mentioned in [9], we denote by | · | and (·, ·) the associated
norm and the inner product, respectively, of (L2(T ))3 and by ‖·‖ and ((·, ·)) =
(∇·,∇·) the (H 1(T ))3 associated norm and inner product, respectively. We
note that H is a Hilbert space equipped with the inner product of (L2(T ))3 and
V is a Hilbert space for the scalar product ((·, ·))V = (·, ·) + α2(∇·,∇·). Its
associate norm, denoted by ‖ · ‖V , is equivalent to the usual H 1-norm. Indeed,
we can deduce from the definition of ‖·‖V and Poincaré inequality [16, Chapter
5] that

(L−2 + α2)−1‖v‖V ≤ ‖v‖ ≤ α−2‖v‖V , v ∈ V. (2)

• The orthogonal projection of (L2(T ))3 onto H (called the Helmholtz-Leray
projection) is denoted by P : (L2(T ))3 → H .

• Let the operator A = −P� be the Stokes operator with the domain D(A) =
(H 2(T ))3 ∩ V . In the space-periodic case, for all u ∈ D(A), we have Au =
−P�u = −�u. Throughout, we will denote by Y ′ the dual of any topological
space Y and by 〈·, ·〉Y ′ the duality between Y and Y ′. Moreover, as mentioned in
[9, 26], the operator A is an isomorphism from V to V ′, and it is a self-adjoint,
positive, and compact operator on H . Hence, the space H has an orthonormal
basis {ej }j≥1 of eigenfunctions of A, such that Aej = λj ej , where L−2 =
λ1 ≤ λ2 ≤ · · · λj . . . are the eigenvalues of A, repeated according to their
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multiplicities. Furthermore, from [9, 26], we have D(Aρ)′ = D(A−ρ), for any
ρ > 0 and

‖v‖D(Aρ) = |Aρv|, v ∈ V, ρ ∈ R. (3)

By the Riesz representation, we will identify H with its dual, and we will con-
sider the chain of inclusions

D(A) ⊂ V ⊂ H ≡ H ′ ⊂ V ′ ⊂ D(A)′, (4)

where each space is densely and compactly embedded into the next one. Next,
let I denote the identity operator in H . Recall that (I + α2A)−1 is an isomor-
phism from H onto D(A), and for all φ ∈ H , ϕ ∈ V , we have

(((I + α2A)−1φ, ϕ))V = (φ, ϕ), (5)

‖(I + α2A)−1φ‖V ≤ |φ|. (6)

• It follows from the Poincaré inequality [16] that

|v|2 ≤ λ−1
1 ‖v‖2, v ∈ V. (7)

• Hereafter, C denotes some uniform constant that is independent of the param-
eter α in the equations.

• For any v1, v2 ∈ V , we define the standard bilinear form associated with the
Navier-Stokes equation.

B(v1, v2) = P((v1 · ∇)v2). (8)

In particular, for every v1, v2, v3 ∈ V , the bilinear form B : V × V → V ′ is
continuous and satisfies the following estimates [9, 26].

|〈B(v1, v2), v3〉V ′ | ≤ c|v1|1/2‖v1‖1/2‖v2‖‖v3‖. (9)

Moreover,
〈B(v1, v2), v3〉V ′ = −〈B(v1, v3), v2〉V ′ , (10)

and in particular,
〈B(v1, v2), v2〉V ′ = 0. (11)

For any v1 ∈ H , v2 ∈ V and v3 ∈ D(A), we have

|〈B(v1, v2), v3〉D(A)′ | ≤ c|v1|‖v2‖‖v3‖1/2|Av3|1/2, (12)

and therefore
‖B(v1, v2)‖D(A)′ ≤ c|v1|‖v2‖. (13)

Applying the Helmholtz-Leray orthogonal projection P to equation (1), we obtain
the following equivalent abstract stochastic evolution equation:

⎧⎨
⎩

dvα + [νAvα + B(vα, uα)]dt = f (t, uα)dt + g(t, uα)dW

vα = uα + α2Auα

uα(0) = u0,

(14)
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where ∇ · uα = 0,
∫

T uα dx = 0 and f and g are two nonlinear operators such that

• f : (0, T ) × H → H is measurable, almost every (a.e.) t . Moreover, u �→
f (t, u) is continuous from H to H , and we have a.e.

|f (t, u)| ≤ C(1 + |u|). (15)

• g : (0, T ) × H → (L2(T ))3m is measurable, a.e. t . Moreover, u �→ g(t, u) is
continuous from H to (L2(T ))3m, and we have a.e.

|g(t, u)|(
L2(T )

)3m ≤ C(1 + |u|). (16)

Furthermore, we assume that Pf = f . We always can do so due to the modification
of the pressure p in such a way that it includes the gradient part of f . Using the
Poincaré inequality and the second equation of (14), we have

|vα| ≤ (λ−1
1 + α2)|Auα| = (L2 + α2)|Auα|. (17)

Now, we introduce some probabilistic functional spaces.

• Let (�, F ,P) be a complete probability space and {Ft }0≤t≤T be an increas-
ing and right-continuous family of sub-σ -algebras of F such that F0 con-
tains all the P-null sets of F . Let W be an R

m-valued Wiener process on
(�, F , {Ft }0≤t≤T ,P).

• Let X be a Banach space. For any r, p ≥ 1, we denote by the functional space
Lp(�, F , {Ft }0≤t≤T ,P, Lr((0, T ),X)) the set of functions u = u(x, t, ω)

with values in X defined on T × (0, T ) × �, such that u is measurable with
respect to (t, ω) and for almost all t , u is Ft -measurable. Moreover, we have

‖u‖Lp(�,F ,{Ft }0≤t≤T ,P,Lr ((0,T ),X)) = [
E

( ∫ T

0
‖u‖r

Xdt
)p/r]1/r

< ∞,

where E is the mathematical expectation with respect to the probability mea-
sure P. The space Lp(�, F , {Ft }0≤t≤T ,P, Lr((0, T ),X)) is a Banach space.
If r = ∞, then Lp(�, F , {Ft }0≤t≤T ,P, L∞((0, T ),X)) is endowed with the
norm

‖u‖Lp(�,F ,{Ft }0≤t≤T ,P,L∞((0,T ),X)) = (
E sup ess

0≤t≤T

‖u‖p
X

)1/p
.

Finally, we recall Vitali’s convergence theorem [20], which is crucial in the proof of
our existence result.

Theorem 2.1. Suppose that (ϕk)k≥1 is a sequence of real integrable functions on �.
Let ϕ be a real function on �, such that ϕk −→ ϕ a.e.as k → ∞. Then, the following
insertions are equivalent

(i) (ϕk) is uniformly integrable.

(ii) ϕ ∈ L1(�, F ,P,R) and ϕk −→ ϕ in L1(�, F ,P,R) as k → ∞.
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2.2 Main results

The meaning of a weak solution to (1) is understood as follows.

Definition 2.1. A weak solution to (1) is a system (�, F , {Ft },P,W, uα), where

(i) (�, F , {Ft },P) is a filtered probability space, where {Ft }0≤t≤T is an increasing
and right-continuous family of sub σ -algebra of F .

(ii) W is an m-dimensional Ft -standard Wiener process.

(iii) uα(t) is Ft -adapted for all t ∈ [0, T ], and for all 1 ≤ p < ∞, uα belongs to
Lp(�, F , {Ft },P; L2(0, T ; D(A))) ∩ Lp(�, F , {Ft },P; L∞(0, T ; V )).

(iv) For any t ∈ [0, T ], the following equation holds P-a.s.

((uα(t), ϕ))V − ((uα(0), ϕ))V + ν

∫ t

0
(vα(s), Aϕ)ds

+
∫ t

0
〈B(vα(s), uα(s)), ϕ〉V ′ds

=
∫ t

0
〈f (s, uα(s)), ϕ〉V ′ds +

( ∫ t

0
g(s, uα(s))dW(s), ϕ

)
, (18)

for all ϕ ∈ D(A).

Our first result is the following existence theorem.

Theorem 2.2. Let u0 ∈ V , and suppose that (15) and (16) hold. Then, there exists a
weak solution (�, F , {Ft }0≤t≤T ,P,W, uα) of (1) in the sense of Definition 2.1, and
we have uα ∈ Lp(�, F ,P, C(0, T ; V )).

Our second result is the following uniqueness theorem.

Theorem 2.3. If f and g are Lipschitz with respect to the variable uα , then the
solution given by Theorem 2.2 is a unique weak solution of (1) in the sense of Defini-
tion 2.1.

We note that uniqueness is the main target behind regularisations of three-dimen-
sional stochastic Navier-Stokes equations. As stated by Theorem 2.3, in the case of
the three-dimensional stochastic modified Leray-alpha model, a pathwise uniqueness
holds, in contrast with the case of the original Navier-Stokes equations.

3 Proofs of main results

3.1 Proof of Theorem 2.2

We will perform the proof of Theorem 2.2 in five steps.
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Step 1: Construction of an approximating sequence
Let {ej }j≥1 be an orthonormal basis of H , such that {ej } are eigenfunctions of the
operator A. Denote by HN = span{e1, . . . , eN } and by PN the L2-orthogonal projec-
tion from H onto HN . We look for a sequence {uα

N } in HN that is a solution to the
following system of stochastic differential equations:

dvα
N + νAvα

N + PNB(vα
N, uα

N)dt = PNf (t, uα
N(t))dt

+ PNg(t, uα
N(t))dW̄

vα
N = uα

N + α2Auα
N

uα
N(0) = PNu0, (19)

defined on a fixed stochastic basis (�̄, F̄ , {F̄t }0≤t≤T , P̄, W̄ ). By classical existence
results of solutions to stochastic differential equations, see i.e., [18, Theorem 3.1.1],
there exists a local probabilistic weak solution to (19), denoted by (�N, FN,

{F N
t }0≤t≤TN

,PN,WN, uα
N) and defined on [0, TN ], TN > 0. We denote by EN the

mathematical expectation with respect to (�N, FN,PN). The following a priori esti-
mates will allow us to show that TN = T .

Step 2: Estimates for the approximating sequence
Throughout this step, C, Ci , i = 1, . . . denote positive constants that are independent
of N and α that may need change from line to line.

Lemma 3.1. The approximating sequence uα
N satisfies the a priori estimates:

a. EN sup
0≤t≤T

‖uα
N(t)‖V + 4να2

EN

∫ T

0
‖uα

N(t)‖2
D(A)dt ≤ C1,

b. EN sup
0≤t≤T

‖uα
N(t)‖p

V ≤ C2,p, p ∈ [1,∞),

c. EN

( ∫ T

0
‖uα

N(t)‖2
D(A)dt

)p ≤ C3,p

α2p
, p ∈ [1,∞).

Proof. Applying (I + α2A)−1 to the first equation of (19), it follows that

duα
N +

[
νAuα

N + (I + α2A)−1PNB(vα
N, uα

N)
]
dt

= (I + α2A)−1PNf (t, uα
N)dt + (I + α2A)−1PNg(t, uα

N)dWN. (20)

By Itô’s formula for ‖uα
N‖2

V , we have

d‖uα
N‖2

V + 2
[
ν((Auα

N, uα
N))V + (((I + α2A)−1PNB(vα

N, uα
N), uα

N))V

]
dt

= 2(((I + α2A)−1PNf (t, uα
N), uα

N))V dt + ‖(I + α2A)−1PNg(t, uα
N)‖2

V dt

+2(((I + α2A)−1PNg(t, uα
N(t)), uα

N))V dWN.

From (5) and (11), we obtain that

((Auα
N, uα

N))V = (Auα
N, uα

N) + α2(Auα
N,Auα

N) = ‖uα
N‖2 + α2|Auα

N |2,
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(((I + α2A)−1PNB(vα
N, uα

N), uα
N))V = (PNB(vα

N, uα
N), uα

N) = 0,

(((I + α2A)−1PNf (t, uα
N), uα

N))V = (PNf (t, uα
N), uα

N) = (f (t, uα
N), uα

N),

(((I + α2A)−1PNg(t, uα
N), uα

N))V = (PNg(t, uα
N), uα

N) = (g(t, uα
N), uα

N).

Thus, we infer that

d‖uα
N‖2

V + 2ν(‖uα
N‖2 + α2|Auα

N |2)dt = 2(f (t, uα
N), uα

N)dt

+‖(I + α2A)−1g(t, uα
N)‖2

V dt + 2(g(t, uα
N), uα

N)dWN. (21)

By (6), we have ‖(I + α2A)−1g(t, uα
N)‖2

V ≤ |g(t, uα
N)|2. It follows that

d‖uα
N‖2

V + 2ν(‖uα
N‖2 + α2|Auα

N |2)dt ≤ 2(f (t, uα
N), uα

N)dt

+|g(t, uα
N)|2dt + 2(g(t, uα

N), uα
N)dWN. (22)

Since | · | ≤ ‖ · ‖V , inequalities (15) and (16) imply that

(f (t, uα
N), uα

N) ≤ C(1 + ‖uα
N‖2

V ) and (g(t, uα
N), uα

N) ≤ C(1 + ‖uα
N‖2

V ). (23)

Hence, (22) and (23) yield

d‖uα
N‖2

V + 2ν(‖uα
N‖2

V + α2|Auα
N |2)dt

≤ C(1 + ‖uα
N‖2

V )dt + 2(g(t, uα
N(t)), uα

N)dWN. (24)

Dropping the term 2ν‖uα
N‖2

V and integrating with respect to time, we obtain

‖uα
N(t)‖2

V + 2να2
∫ t

0
‖uα

N(s)‖2
D(A)dt ≤ ‖uα

N(0)‖2
V

+CT + C

∫ t

0
‖uα

N(s)‖2
V dt + 2

∫ t

0
(g(t, uα

N(s)), uα
N(s))dWN(s). (25)

For each integer n > 0, we consider the F N
t -stopping time τn

N defined by

τn
N = inf

{
t ∈ [0, T ], ‖uα

N(t)‖2
V + 2να2

∫ t

0
‖uα

N(s)‖2
D(A)dt ≥ n2

}
∧ T ,

where a ∧ b = min(a, b). This stopping time will be useful later on to apply Burk-
hölder-Davis-Gundy’s inequality. Moreover, the sequence (τn

N)n increases to T when
n goes to ∞. Taking the supremum and the mathematical expectation of (25), we
obtain that

EN sup
0≤s≤t∧τn

N

‖uα
N(s)‖2

V + 2να2
EN

∫ t∧τn
N

0
‖uα

N(s)‖2
D(A)ds

≤ ‖uα
N(0)‖2

V + CT + CEN

∫ t∧τn
N

0
‖uα

N(s)‖2
V ds

+2EN sup
0≤s≤t∧τn

N

∫ s

0
(g(r, uα

N(r)), uα
N(r))dWN(r), (26)
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for all t ∈ [0, T ] and all n,N ≥ 1. Let us estimate the last term of the right-hand side
of (26). Using Burkhölder-Davis Gundy’s inequality [13, Chapter 3, Theorem 3.28],
we have

2EN sup
0≤s≤t∧τn

N

∣∣∣
∫ s

0
(g(r, uα

N(r)), uα
N(r))dWN(r)

∣∣∣

≤ 6CEN

( ∫ t∧τn
N

0
(g(t, uα

N(s)), uα
N(s))2ds

)1/2
.

Using Young’s inequality and (23), we deduce that

2EN sup
0≤s≤t∧τn

N

∣∣∣
∫ s

0
(g(r, uα

N(r)), uα
N(r))WN(r)

∣∣∣

≤ C1EN

( ∫ t∧τn
N

0
(1 + ‖uα

N(s)‖2
V )‖uα

N(s)‖2
V ds

)1/2

≤ 1

2
EN sup

0≤s≤t∧τn
N

‖uα
N(s)‖2

V + C2T + C2EN

∫ t∧τn
N

0
‖uα

N(s)‖2
V ds.

We obtain from (26) that

EN sup
0≤s≤t∧τn

N

‖uα
N(s)‖2

V + 4να2
EN

∫ t∧τn
N

0
‖uα

N(s)‖2
D(A)ds

≤ 2‖uα
N(0)‖2

V + C3T + C3EN

∫ t∧τn
N

0
‖uα

N(s)‖2
V ds. (27)

Dropping the viscous term from the left-hand side of (27), we obtain

EN sup
0≤s≤t∧τn

N

‖uα
N(s)‖2

V ≤ 2‖uα
N(0)‖2

V + C3T + C3EN

∫ t∧τn
N

0
‖uα

N(s)‖2
V ds. (28)

Since τn
N increases to T as n goes to ∞, Gronwall’s lemma implies that

EN sup
0≤s≤T

‖uα
N(s)‖2

V ≤ C.

Thus, it follows from (27) that

EN sup
0≤t≤T

‖uα
N(s)‖2

V + 4να2
EN

∫ T

0
‖uα

N(s)‖2
D(A)ds ≤ C. (29)

By Itô’s formula and (21), it follows, for any p ≥ 4, that

d‖uα
N‖

p
2
V = p

2
‖uα

N‖
p
2 −2
V

(
− ν(‖uα

N‖2
V + α2|Auα

N |2)dt + 2(f (t, uα
N), uα

N)

+p − 4

4

(g(t, uα
N), uα

N)2

‖uα
N‖2

V

)
dt + p

2
‖uα

N‖
p
2 −2
V (g(t, uα

N), uα
N)WN. (30)

Young’s inequality and (23), yield

‖uα
N‖

p
2 −2
V (f (t, uα

N), uα
N) ≤ C(1 + ‖uα

N‖
p
2
V ). (31)
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Thanks to Cauchy-Schwarz’s and Young’s inequalities and (23), we obtain that

(g(t, uα
N), uα

N)2

‖uα
N‖2

V

≤ C(1 + ‖uα
N‖2

V ). (32)

Next, we drop −ν(‖uα
N‖2 + α2|Auα

N |2) from the right-hand side of (30). Using (31)
and (32) and integrating with respect to t ∈ [0, T ], we have

‖uα
N(t)‖

p
2
V ≤ ‖uα

N(0)‖
p
2
V + C

∫ t

0
(1 + ‖uα

N(s)‖
p
2
V )ds

+ p

2

∫ t

0
‖uα

N‖
p
2 −1
V (g(t, uα

N), uα
N)WN. (33)

For each integer n > 0, we consider the F N
t -stopping time τn

N defined by

τ̃ n
N = inf

{
t ∈ [0, T ],

∫ t

0
‖uα

N(s)‖p
V dt ≥ n2

}
∧ T .

Taking the supremum and squaring both sides of (33), Young’s inequality leads to

(
sup

0≤s≤t∧τ̃ n
N

‖uα
N(s)‖

p
2
V

)2 ≤ 2
(
‖uα

N(0)‖
p
2
V + C

∫ t∧τ̃ n
N

0
(1 + ‖uα

N(s)‖
p
2
V )ds

)2

+ p2

2
sup

0≤s≤t∧τ̃ n
N

∣∣ ∫ s

0
‖uα

N‖
p
2 −1
V (g(r, uα

N), uα
N)WN

∣∣2
. (34)

Using Cauchy-Schwarz’s and Young’s inequalities, we deduce that

(
‖uα

N(0)‖
p
2
V + C

∫ t∧τ̃ n
N

0
(1 + ‖uα

N(s)‖
p
2
V )ds

)2

≤ 2‖uα
N(0)‖p

V + 2C(T 2 + T

∫ t∧τ̃ n
N

0
‖uα

N(s)‖p
V ds).

Taking the mathematical expectation in (34), we obtain

EN sup
0≤s≤t∧τ̃ n

N

‖uα
N(s)‖p

V ≤ C
(
‖uα

0,N‖p
V + T + EN

∫ t∧τ̃ n
N

0
‖uα

N(s)‖p
V ds

)

+p2

2
EN sup

0≤s≤t∧τ̃ n
N

∣∣ ∫ s

0
‖uα

N(r)‖
p
2 −1
V g(r, uα

N(r)), uα
N(r))WN(r)

∣∣2
.

The Burkhölder-Davis-Gundy inequality implies that

EN sup
0≤s≤t∧τ̃ n

N

∣∣ ∫ s

0
‖uα

N(r)‖
p
2 −1
V (g(r, uα

N(r)), uα
N(r))WN(r)

∣∣2

≤ CpEN

∫ t∧τ̃ n
N

0
‖uα

N(s)‖p−2
V (g(s, uα

N(s)), uα
N(s))ds
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≤ CpEN

∫ t∧τ̃ n
N

0
‖uα

N(s)‖p−2
V (1 + ‖uα

N(s)‖2
V )ds

≤ Cp + EN

∫ t∧τ̃ n
N

0
‖uα

N(s)‖p
V ds,

where we use Young’s inequality in the last step. Thus, it follows that

EN sup
0≤t≤t∧τ̃ n

N

‖uα
N(s)‖p

V ≤ Cp + CEN

∫ t∧τ̃ n
N

0
‖uα

N(s)‖p
V ds.

Since τn
N increases to T , as n goes to ∞, Gronwall’s inequality implies that

EN sup
0≤t≤T

‖uα
N(t)‖p

V ≤ Cp, p ≥ 4. (35)

As (35) is proven for any p ≥ 4, it is consequently true for any p ∈ [1,∞).
From (26), we obtain

(2να2)p
( ∫ T

0
‖uα

N(t)‖2
D(A)dt

)p ≤ Cp

(
‖uα

N(0)‖2p
V + T p

+ ( ∫ T

0
‖uα

N(t)‖2
V dt

)p
)

+ cp sup
0≤t≤T

∣∣ ∫ t

0
(g(s, uα

N(s)), uα
N(s))WN(s)

∣∣∣p. (36)

To handle the last term on the right-hand side of inequality (36), we take the mathe-
matical expectation. Then, by the stopping time techniques used in the proof of (29),
we apply Burkhölder-Davis-Gundy’s inequality. Finally, we obtain

EN

( ∫ T

0
‖uα

N(t)‖2
D(A)dt

)p ≤ Cp

α2p
, p ∈ [1,∞). (37)

Estimate (38) given in the lemma below is crucial in the proof of the tightness of
the law to the Galerkin solution uα

N .

Lemma 3.2. There exists a positive constant C(α) such that

EN sup
0≤|θ |≤η

∫ T

0
‖uα

N(t + θ) − uα
N(t)‖2

D(A)′dt ≤ C(α)η, (38)

where 0 < η ≤ 1 is a fixed constant.

Proof. For θ > 0, we obtain from (19)

‖vα
N(t + θ) − vα

N(t)‖2
D(A)′ ≤ 2

∥∥∥
∫ t+θ

t

PN

(
νAvα

N(s) + B(vα
N(s), uα

N(s))

−f (s, uα
N(s))

)
ds

∥∥∥2

D(A)′
+ 2

∣∣∣
∫ t+θ

t

g(s, uα
N(s))WN(s)

∣∣∣2
.
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This implies that

‖vα
N(t + θ) − vα

N(t)‖2
D(A)′ ≤ 6θ

[
ν2

∫ t+θ

t

‖Avα
N(s)‖2

D(A)′ds

+
∫ t+θ

t

‖PNB(vα
N(s), uα

N(s))‖2
D(A)′ds +

∫ t+θ

t

|f (s, uα
N(s))|2ds

]

+2
∣∣∣
∫ t+θ

t

g(s, uα
N(s))WN(s)

∣∣∣2
.

Since
‖Avα

N‖D(A)′ = |vN | ≤ |uN | + α2|AuN |
and

‖PNB(vα
N(s), uα

N(s))‖2
D(A)′ ≤ c|vα

N(s)|2‖uα
N(t)‖2,

Lemma 3.1 implies that

EN sup
0≤θ≤η

∫ T

0

∫ t+θ

t

‖Avα
N(s)‖2

D(A)′dsdt ≤ EN

∫ T

0

∫ t+η

t

|vα
N(s)|dsdt

≤ EN

∫ T

0

∫ t+η

t

sup
0≤t≤T

‖uα
N(t)‖2

V dsdt + α4
EN

∫ T

0

∫ t+η

t

‖uα
N(s)‖2

D(A)dsdt

≤ CT η + α2C.

Moreover, we have

EN sup
0≤θ≤η

∫ T

0

∫ t+θ

t

‖PNB(vα
N(s), uα

N(s))‖2
D(A)′dsdt

≤ cEN

∫ T

0

∫ t+η

t

|vα
N(s)|2‖uα

N(t)‖2dsdt

≤ Cα−4ηEN sup
0≤t≤T

‖uα
N(t)‖4

V + CηEN

( ∫ T

0

(|uN |2 + α4|AuN |2)dt
)2

dt

≤ Cα−4η + CηEN sup
0≤t≤T

‖uα
N(t)‖4

V + Cα4ηEN

(
α2

∫ T

0
‖uα

N(s)‖D(A)dt
)2

dt

≤ Cα−4η + Cη + Cα4η.

It follows from (15) that

EN sup
0≤θ≤η

∫ T

0

∫ t+θ

t

|f (s, uα
N(s))|2ds ≤ CEN

∫ T

0

∫ t+η

t

(1 + ‖uα
N(t)‖2

V )dsdt

≤ Cη + EN

∫ T

0

∫ t+η

t

sup
0≤t≤T

‖uα
N(t)‖2

V

≤ Cη.



Existence and uniqueness of weak solution to 3D stochastic modified-Leray-alpha model 127

As previously, using Burkhölder-Davis-Gundy’s inequality and (16), we obtain

EN

∫ T

0
sup

0≤θ≤η

∣∣∣
∫ t+θ

t

g(s, uα
N(s))WN(s)

∣∣∣2
dt ≤ EN

∫ T

0

∫ t+η

t

∣∣∣g(s, uα
N(s))

∣∣∣2
dsdt

≤ Cη.

Collecting the estimates above, we obtain that

EN sup
0≤θ≤η

∫ T

0
‖vα

N(t + θ) − vα
N(t)‖2

D(A)′dt ≤ C(α2η + 1 + α−4 + α4)η2

≤ C(α)η. (39)

In fact, as 0 ≤ η ≤ 1, we have η2 ≤ η. Therefore, from (4) and the fact that

α4|uα
N(t + θ) − uα

N(t)|2 ≤ |A−1(vα
N(t + θ) − vα

N(t))|2
≤ ‖vα

N(t + θ) − vα
N(t)‖2

D(A)′ ,

estimate (39) implies that

EN sup
0≤θ≤η

∫ T

0
‖uα

N(t + θ) − uα
N(t)‖2

D(A)′dt ≤ C(α)η.

To achieve the proof of (38), we can use similar discussions to prove a similar estimate
for the case θ < 0.

Step 3: Tightness Property
First, we introduce the concept of tightness of probability measure (see, e.g., [13]).
Let X be a separable Banach space, equipped with the Borel σ -algebra B(X).

Definition 3.3. A set � of probability measures defined on (X, B(X)) is called tight
if, for each ε > 0, there is a compact set A such that P(A) > 1 − ε, for all P ∈ �.

Next, we will prove the tightness property of the Galerkin solution. Similar to the
proof in [2, Section 4.3.3], we have the following lemma.

Lemma 3.4. For any sequences of positive real numbers μn, νn that tend to 0 as
n → ∞, the injection of

χμn,νn =
{
z ∈ L2(0, T ; D(A) ∩ L∞(0, T ; V ),

sup
n

1

νn

sup
|τ |≤μn

( ∫ T

0
‖z(t + τ) − z(t)‖2

D(A)′dt
)1/2

< ∞
}
,

in L2(0, T ; V ) is compact.

The space χμn,νn is a Banach space with the norm

‖z‖χμn,νn
= sup

0≤t≤T

‖z(t)‖V + ( ∫ T

0
‖z(t)‖2

D(A)dt
)1/2
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+ sup
n

1

νn

sup
|τ |≤μn

( ∫ T

0
‖z(t + τ) − z(t)‖2

D(A)′dt
)1/2

.

We consider a Banach space Bp,μn,νn (1 ≤ p ≤ ∞) of random variables z defined on
some probability space. If we denote the expectation on Bp,μn,νn by Ê, then we have

Ê sup
0≤t≤T

‖z(t)‖p
V < ∞, Ê

( ∫ T

0
‖z(t)‖2

D(A)dt
)p/2

< ∞

and

Ê sup
n

1

νn

sup
|τ |≤μn

∫ T

0
‖z(t + τ) − z(t)‖2

D(A)′dt < ∞.

The space Bp,μ,ν is endowed with the norm

‖z‖Bp,μn,νn
=

(
Ê sup

0≤t≤T

‖z(t)‖p
V

)1/p +
(
Ê

α
( ∫ T

0
‖z(t)‖2

D(A)dt
)p/2

)2/p

+Ê sup
n

1

νn

(
sup

|τ |≤μn

∫ T

0
‖z(t + τ) − z(t)‖2

D(A)′dt
)1/2

.

According to a priori estimates in Lemmas 3.1 and 3.2, we deduce that for every

μn, νn such that the series
∞∑

n=1

√
μn

νn
converges, the approximate solutions {uα

N }N∈N
remain bounded in Bp,μn,νn , for any 1 ≤ p < ∞.

Now, we consider the set S = C((0, T ),Rm) × L2((0, T ), V ), equipped with
its Borel σ -algebra B(S). We denote by ψ the measurable S-valued map defined on
(�N, FN,PN) by ψ(ω) = WN(ω), uα

N(ω)). For each N , we introduce a probability
measure �N defined on (S, B(S)) by �N(�) = PN(ψ−1(�)), for � ∈ B(S).

Proposition 3.5. The family of probability measures {�N ; N ∈ N} is tight.

Proof. For any ε > 0, we shall find two compact subsets

�ε ⊂ C(0, T ;Rm), Zε ⊂ L2(0, T ; V ),

such that

PN(ω : WN(ω, .) /∈ �ε) ≤ ε

2
(40)

PN(ω : uα
N(ω, .) /∈ Zε) ≤ ε

2
. (41)

For �ε, we use the following classical results about the Wiener process

EN

∣∣∣WN(t2) − WN(t1)

∣∣∣2j = (2j − 1)!(t2 − t1)
j , j ∈ N.

For a constant �ε to be chosen depending on ε, we consider the set

�ε =
{
WN(.) ∈ C(0, T ;Rm) : sup

t1,t2∈[0,T ],|t2−t1|≤1/n6
n|WN(t2) − WN(t1)| ≤ �ε

}
.
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Using an extended version for monotonically increasing functions of Markov’s in-
equality [4, Chapter 1] (for a nonnegative random variable ζ , β > 0 and k ∈ N, we

have P(|ζ | ≥ β) ≤ E(|ζ |k)
βk ), we obtain that

PN(ω : WN(ω, .) /∈ �ε) ≤ c

∞∑
n=1

( n

�ε

)4
(T n−6)2n6 = c

�4
ε

∞∑
n=1

1

n2 .

To obtain (40), we take �4
ε = 2Cε

ε

∞∑
n=1

1
n2 . Next, we choose Zε as a ball in χμn,νn of

radius Mε centred at zero, where μn and νn are independent of ε, the series
∞∑

n=1

√
μn

νn

converges and μn, νn −→ 0 as n −→ ∞. From Lemma 3.4, we know that Zε is a
compact subset of L2(0, T ; V ), and

PN

(
ω : uα

N(ω, .) /∈ Zε

) ≤ PN

(
ω : ‖uα

N‖χμn,νn
> Mε

)

≤ 1

Mε

EN‖uα
N‖χμn,νn

≤ c

Mε

.

Choosing Mε = 2c

ε
, (41) holds. Finally, using (40) and (41), we obtain that

PN

(
ω : WN(ω, .) ∈ �ε, u

α
N(ω, .) ∈ Zε

) ≥ 1 − ε.

This completes the proof of Proposition 3.5.

Step 4: Applications of Prokhorov’s and Skorokhod’s Theorems
In this step, we recall two lemmas due to Prokhorov [19] and Skorokhod [25], which
will be crucial in the following.

Lemma 3.6 (Prokhorov’s theorem [19]). If a set � of probability measures on
(X, B(X)) is tight, then for each sequence �n ⊂ �, there exists a subsequence {�nk

}
that converges weakly to a probability measure �:

∫
φ d�nk

−→
∫

φ d�, as nk −→ ∞,

for all bounded continuous integrands φ.

Lemma 3.7 (Skorokhod’s theorem [25]). For an arbitrary sequence of probability
measures {�k} on (X, B(X)) weakly convergent to a probability measure �, there
exists a probability space (�, F ,P) and random variables ξn, n ∈ N, and ξ with
values in X, such that the probability law of ξn is �n, the probability law of ξ is �

and lim
n→∞ ξn = ξ,P-a.s.

Using the tightness property of {�N }N and Prokhorov’s theorem, we obtain the
existence of a subsequence {�Nk

} and a probability measure � such that �Nk
con-

verges weakly to �. Hence, by Skorokhod’s theorem, there exist a probability space
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(�, F ,P) and random variables (WNk
, uα

Nk
), (W, uα) with values in S, such that the

law of (WNk
, uα

Nk
) is �Nk

and the law of (W, uα) is �. Moreover, we have

(WNk
, uα

Nk
) −→ (W, uα) strongly, in S P − a.s., (42)

where (WNk
) is a sequence of an m-dimensional standard Wiener process. Let Ft =

σ {(W(s), uα(s)), 0 ≤ s ≤ t}. As in [1], we can show that W(t) is an m-dimensional
Ft standard Wiener process. Using the same arguments as in [2], we can prove that
the pair (WNk

, uα
Nk

) satisfies the following equation, dP ⊗ dt-almost everywhere:

vα
Nk

(t) +
∫ t

0
PNk

(νAvα
Nk

(s) + B(vα
Nk

(s), uα
Nk

(s)) − f (s, uα
Nk

(s)))ds

= vα
Nk

(0) +
∫ t

0
PNk

g(s, uα
Nk

(s))dWNk
(s), (43)

where vα
Nk

(t) = uα
Nk

(t) + α2Auα
Nk

(t).

Step 5: Convergence
By (43), uα

Nk
satisfies the same estimates of uα

N , that is

EN sup
0≤t≤T

‖uα
Nk

(t)‖p
V ≤ Cp, p ∈ [1,∞) (44)

EN

( ∫ T

0
‖uα

Nk
(t)‖2

D(A)dt
)p ≤ Cp, p ∈ [1,∞) (45)

EN sup
0≤|θ |≤η

∫ T

0
‖uα

Nk
(t + θ) − uα

Nk
(t)‖2

D(A)′dt ≤ C(α)η, (46)

where 0 < η ≤ 1. Thus, we can extract a subsequence, denoted again by uα
Nk

, such
that

uα
Nk

⇀ uα weakly*, in Lp(�, F ,P; L∞(0, T ; V )) (47)

uα
Nk

⇀ uα weakly, in Lp(�, F ,P; L2(0, T ; D(A))). (48)

Using (42), it follows that

uα
Nk

−→ uα strongly, in L2(0, T ; V ),P − a.s.

Then, estimates (44)–(46) and Vitali’s theorem yield

uα
Nk

−→ uα strongly, in L2(�, F ,P; L2(0, T ; V )). (49)

Thus, we can extract from (uα
Nk

) a subsequence denoted again by uα
Nk

, such that

uα
Nk

−→ uα in V, (50)

for almost all (ω, t) with respect to the measure dP ⊗ dt .
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Using (48), we obtain, for p = 2, that

uα
Nk

⇀ uα weakly, in L2(�, F ,P, L2(0, T ; D(A))).

Hence, we deduce that

vα
Nk

⇀ vα weakly, in L2(�, F ,P, L2(0, T ; H)), (51)

for almost all (ω, t) with respect to the measure dP⊗ dt . Since A is a linear bounded
operator, it follows that

∫ t

0
PNk

Avα
Nk

(s)ds ⇀

∫ t

0
Avα(s)ds weakly, in L2(�, F ,P, L2(0, T ; D(A)′)).

The strong convergence (49) and the weak convergence (51) allow us to pass to the
limit in the nonlinear terms of (43).

Thanks to (50), the continuity of f and g and Vitali’s theorem, we obtain

PNk
f (s, uα

Nk
(s)) −→ f (s, uα(s)) strongly, in L2(�, F ,P, L2(0, T ; H)) (52)

PNk
g(s, uα

Nk
(s)) −→ g(s, uα(s)) strongly, in L2(�, F ,P, L2(0, T ; H)). (53)

In view of (53), we use the same arguments, as in [2] to prove that

∫ t

0
PNk

g(s, uα
Nk

(s))dWNk
(s) ⇀

∫ t

0
g(s, uα(s))dW(s)

weakly in L2(�, F ,P, L2(0, T ; H)).
Now, it remains to prove that

∫ t

0
PNk

B(vα
Nk

(s), uα
Nk

(s))ds ⇀

∫ t

0
B(vα(s), uα(s))ds

weakly in L2(�, F ,P, L2(0, T ; D(A)′)). Then, we introduce M ∞
Ft

(0, T ,D(A)) the
space of all processes w ∈ L∞(�, (0, T ), dP ⊗ dt,D(A)) that are Ft -progressively
measurable. The space M ∞

Ft
(0, T ,D(A)) is a Banach subspace of L∞(�, (0, T ),

dP ⊗ dt,D(A)). For any w ∈ M ∞
Ft

(0, T ,D(A)), we have

∣∣∣E
∫ t

0
〈PNk

B(vα
Nk

(s), uα
Nk

(s)) − B(vα(s), uα(s)), w〉D(A)′ds

∣∣∣ ≤ I
(1)
Nk

+ I
(2)
Nk

+ I
(3)
Nk

,

where

I
(1)
Nk

=
∣∣∣E

∫ t

0
〈B(vα

Nk
(s), uα

Nk
(s)), PNk

w − w〉D(A)′ds

∣∣∣
I

(2)
Nk

=
∣∣∣E

∫ t

0
〈B(vα

Nk
(s) − vα(s), uα

Nk
(s)), w〉D(A)′ds

∣∣∣
I

(3)
Nk

=
∣∣∣E

∫ t

0
〈B(v, uα

Nk
(s) − uα(s)), w〉D(A)′ds

∣∣∣.
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Recall that for any ϕ ∈ H , we have |PNk
ϕ − ϕ| −→ 0, as Nk → ∞. Additionally,

we obtain from (4) that

‖PNk
ϕ − ϕ‖D(A) −→ 0, as Nk → ∞. (54)

Using (12), (4) and Young’s inequality, we have

I
(1)
Nk

≤ cE

∫ t

0
|vα

Nk
|‖uα

Nk
‖‖PNk

w − w‖1/2|A(PNk
w − w)|1/2ds

≤ CE

∫ t

0
|A(PNk

w − w)||vα
Nk

|‖uα
Nk

‖ds

≤ C‖PNk
w − w‖M ∞

Ft

[
E sup

0≤t≤T

‖uNk
‖2
V + E

∫ T

0
|vα

Nk
|2ds

]
.

Since

E

∫ T

0
|vα

Nk
|2ds ≤ α−2

E sup
0≤t≤T

‖uNk
‖2
V + α4

E

∫ T

0
|Auα

Nk
|2ds < ∞, (55)

(54), (44) and (45) imply that I
(1)
Nk

−→ 0, as Nk → ∞.

Next, we investigate I
(2)
Nk

. For any χ ∈ L2(�, F ,P, L2(0, T ; H)), we define the

function L(χ) = E
∫ t

0 〈B(χ(s), uα
Nk

(s)), w〉D(A)′ds. By (12) and (4), we have

|L(χ)| ≤ cE

∫ t

0
|χ |‖uα

Nk
‖‖w‖1/2|Aw|1/2ds

≤ CE

∫ t

0
|Aw||χ |‖uα

Nk
‖ds.

Using (2) and Cauchy-Schwarz’s inequality, we infer that

|L(χ)| ≤ C‖w‖M ∞
Ft

(
E

∫ T

0
‖uNk

‖2
V ds

)1/2(
E

∫ T

0
|χ |2ds

)1/2
. (56)

Therefore, (44) and (56) imply that L is a linear continuous form. By (51), we deduce
that L(vα

Nk
) −→ L(vα), as Nk → ∞. As I

(2)
Nk

= L(vα
Nk

− vα), we obtain that

I
(2)
Nk

−→ 0, as Nk → ∞.

Finally, we turn to I
(3)
Nk

. Using (12), (4) and Cauchy-Schwarz’s inequality, it fol-
lows that

I
(3)
Nk

≤ cE

∫ t

0
|vα

Nk
|‖uα

Nk
− uα‖‖w‖1/2|Aw|1/2ds

≤ C‖w‖M ∞
Ft

(
E

∫ T

0
|vα

Nk
|2ds

)1/2(
E

∫ T

0
‖uα

Nk
− uα‖2ds

)1/2
.

As a consequence of (2), (49) and (55), we deduce that I
(3)
Nk

−→ 0, as Nk → ∞.
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Gathering all convergence results, we obtain that

vα(t) +
∫ t

0
Avα(s)ds +

∫ t

0
B(vα(s), uα(s))ds

= vα(0) +
∫ t

0
f (s, uα(s))ds +

∫ t

0
g(s, uα(s))dW(s), (57)

P -a. s. for a. e. t . Moreover, we note that Avα ∈ L2(�, F ,P; L2(0, T ; D(A)′)),
B(vα, uα) ∈ L2(�, F ,P; L2(0, T ; V ′)), f (t, uα) ∈ L2(�, F ,P; L2(0, T ; H)) and
g(t, uα) ∈ L2(�, F ,P; L2(0, T ; (L2(T ))3m)).

To prove the continuity of uα with respect to time, we note that (57) allows us
to apply [14, Theorem 3.2, Chapter I]. By this theorem, we deduce that there exists
�̃ ∈ F , such that P(�̃) = 1 and vα is continuous in H , P-a.s. with respect to t , for
any ω ∈ �̃. Therefore, uα is P-a. s. continuous with values in V . This concludes the
proof of Theorem 2.2.
Remark 3.8. To prove the existence and the uniqueness of the pressure, we may use
a generalisation of Rham’s theorem for processes [15, Theorem 4.1, Remark 4.3].

3.2 Proof of Theorem 2.3

In the following, we will prove the pathwise uniqueness to (1). Let uα
1 and uα

2 be two
weak solutions of (1) that have in D(A) almost surely continuous trajectories with
the same initial data u0 and are defined on the same probability space with the same
standard Wiener process. Since f and g are Lipschitz with respect to uα , there exist
Lf > 0 and Lg > 0, such that

|f (t, uα
1 ) − f (t, uα

2 )| ≤ Lf |uα
1 − uα

2 | (58)

and
|g(t, uα

1 ) − g(t, uα
2 )|(

L2(T )
)3m ≤ Lg|uα

1 − uα
2 |. (59)

We denote by vα
1 = uα

1 + α2Auα
1 and vα

2 = uα
2 + α2Auα

2 . Let δuα = uα
1 − uα

2 and
δvα = vα

1 − vα
2 . It follows from (14) that

dδvα + [νAδvα+B(vα
1 , uα

1 ) − B(vα
2 , uα

2 )]dt

= (f (t, uα
1 ) − f (t, uα

2 ))dt + (g(t, uα
1 ) − g(t, uα

2 ))dW.

Applying (I + α2A)−1 and using Itô’s formula, we obtain that

d‖δuα(t)‖2
V + 2ν((Aδuα, δuα))V + 2(((I + α2A)−1(B(vα

1 , uα
1 )

−B(vα
2 , uα

2 )
)
, δuα))V = 2(((I + α2A)−1(f (s, uα

1 ) − f (s, uα
2 )

)
, δuα))V

+‖(I + α2A)−1(g(s, uα
1 ) − g(s, uα

2 ))‖2
V

+2(((I + α2A)−1(g(s, uα
1 ) − g(s, uα

2 )
)
, δuα))V dW,

for any t ∈ [0, T ]. Integrating with respect to t and using (5), we obtain

‖δuα(t)‖2
V + 2ν

∫ t

0
((Aδuα(s), δuα(s)))V ds
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+2
∫ t

0
〈B(vα

1 (s), uα
1 (s)) − B(vα

2 (s), uα
2 (s)), δuα(s)〉D(A)′ds

= 2
∫ t

0

(
f (s, uα

1 (s)) − f (s, uα
2 (s)), δuα(s)

)
ds

+
∫ t

0
‖(I + α2A)−1(g(s, uα

1 (s)) − g(s, uα
2 (s)))‖2

V ds

+2
∫ t

0

(
g(s, uα

1 (s)) − g(s, uα
2 (s)), δuα(s)

)
dW(s). (60)

Next, we define ϑα(t) = exp
(

− ∫ t

0 γ (s)‖uα
1 (s)‖2ds

)
, 0 ≤ t ≤ T , where γ is a real-

valued function that will be fixed below. Applying Itô’s formula for the real process
ϑα(t)‖δuα(t)‖2

V , we deduce from (60) that

ϑα(t)‖δuα(t)‖2
V + 2ν

∫ t

0
ϑα(s)

(‖δuα(s)‖ + α2|Aδuα(s)|)ds

≤ 2
∫ t

0
ϑα(s)|〈B(vα

1 (s), uα
1 (s)) − B(vα

2 (s), uα
2 (s)), δuα(s)〉D(A)′ |ds

+2
∫ t

0
ϑα(s)|(f (s, uα

1 (s)) − f (s, uα
2 (s)), δuα(s))|ds

+
∫ t

0
ϑα(s)

∣∣∣g(s, uα
1 (s)) − g(s, uα

2 (s))

∣∣∣2(
L2(T )

)3mds

+2
∫ t

0
ϑα(s)|(g(s, uα

1 (s)) − g(s, uα
2 (s)), δuα(s))|dW(s)

−
∫ t

0
ϑα(s)|γ (s)|‖uα

1 (s)‖2
V ‖δuα(s)‖2

V ds. (61)

From (11) and (4), we have

|〈B(vα
1 , uα

1 ) − B(vα
2 , uα

2 ), δuα〉D(A)′ |
= |〈B(δvα, uα

1 ), δuα〉D(A)′ + 〈B(vα
2 , δuα), δuα〉D(A)′ |

= |〈B(δvα, uα
1 ), δuα〉D(A)′ |.

Using (12), (17), Young’s inequality, (7) and (2), we infer that

|〈B(δvα, uα
1 ), δuα〉D(A)′ | ≤ c|δvα|‖uα

1 ‖‖δuα‖1/2|Aδuα(s)|1/2

≤ c(λ−2
1 + α2)|Aδuα|3/2‖uα

1 ‖‖δuα‖1/2

≤ c(λ−2
1 + α2)

2
|δuα|‖uα

1 ‖2 + c

2
|Aδuα|3

≤ c

2

( (λ−2
1 + α2)

α4 + |Aδuα|3
)
‖uα

1 ‖2‖δuα‖2
V .

Since | · | ≤ ‖ · ‖V , (58) and (59) imply that

|(f (s, uα
1 (s)) − f (s, uα

2 (s)), δuα(s))| ≤ Lf |δuα(s)|2 ≤ c2λ−2
1

α4 ‖δuα(s)‖2
V
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and

|g(s, uα
1 (s)) − g(s, uα

2 (s))|(L2(T ))3m ≤ Lg|δuα(s)| ≤ cλ−1
1

α2 ‖δuα(s)‖2
V .

It follows from (61) that

ϑα(t)‖δuα(s)‖2
V + 2ν

∫ t

0
ϑα(s)

(‖δuα(s)‖ + α2|Aδuα(s)|)ds

≤ c

∫ t

0
ϑα(s)

( (λ−1
1 + α2)

α4 + |Aδuα(s)|3
)
‖uα

1 (s)‖2‖δuα(s)‖2
V ds

+c2λ−2
1

α4 (2Lf + L2
g)

∫ t

0
ϑα(s)‖δuα(s)‖2

V ds

+2
∫ t

0
ϑα(s)|(g(s, uα

1 (s)) − g(s, uα
2 (s)), δuα(s))|dW(s)

−
∫ t

0
γ (s)ϑα(s)‖uα

1 (s)‖2‖δuα(s)‖2
V ds, (62)

for any t ∈ [0, T ]. Taking γ (s) = c
(

(λ−1
1 +α2)

α4 + |Aδuα(s)|3
)

in (62), we obtain that

ϑα(t)‖δuα(s)‖2
V + 2ν

∫ t

0
ϑα(s)

(‖δuα(s)‖ + α2|Aδuα(s)|)ds

≤ c2λ−2
1

α4 (2Lf + L2
g)

∫ t

0
ϑα(s)‖δuα(s)‖2

V ds

+2
∫ t

0
ϑα(s)|(g(s, uα

1 (s)) − g(s, uα
2 (s)), δuα(s))|dW(s). (63)

Since 0 < ϑα(t) ≤ 1, t ∈ [0, T ], we have

E

∫ t

0
ϑα(s)|(g(s, uα

1 (s))−g(s, uα
2 (s)), δuα(s))|dW(s)

≤E

∫ t

0
|(g(s, uα

1 (s)) − g(s, uα
2 (s)), δuα(s))|dW(s).

Then, using the property of the stochastic integral, the expectation of the stochastic
integral in (63) vanishes. Dropping the viscous term from the left-hand side of (63),
we deduce that for all t ∈ [0, T ]

E(ϑα(t)‖δuα(s)‖2
V ) ≤ c2λ−2

1

α4 (2Lf + L2
g)E

( ∫ t

0
ϑα(s)‖δuα(s)‖2

V ds
)
.

By Gronwall’s lemma, we obtain that ‖δuα(s)‖V = 0, P-a.s. for all t ∈ [0, T ]. Hence,
we deduce that uα

1 (t) = uα
2 (t) P-a.s. for all t ∈ [0, T ]. This concludes the proof of

Theorem 2.3.
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