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Abstract The chaos expansion of a random variable with uniform distribution is given. This
decomposition is applied to analyze the behavior of each chaos component of the random
variable log ζ on the so-called critical line, where ζ is the Riemann zeta function. This analysis
gives a better understanding of a famous theorem by Selberg.
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1 Introduction

Let H be a real and separable Hilbert space and let (W(h), h ∈ H) be an isonormal
Gaussian process on a standard probability space (�,F , P ). It is well-known that
any square integrable random variable, measurable with respect to the sigma-algebra
generated by W can be decomposed in chaos, i.e. it can be written as an orthogonal
sum F = ∑

n≥0 Fn where for every n ≥ 0, the random variable Fn is an element of
the nth Wiener chaos. The knowledge of the concrete chaos expansion of F (i.e. the
knowledge the exact form of Fn for every n ≥ 0) gives an important information on
the random variable F . If F is a random variable with a given common probability
distribution, it is in general hard to get its exact chaos expansion, except in some
particular case (Gaussian distribution, Gamma distribution, etc). In this work, our
purpose is to find the chaos expansion of a random variable with uniform distribution
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and to apply this result to a well-known problem in number theory. We will consider
the random variable F given by

F = e− 1
2

(
W(f )2+W(g)2)

(1)

with f, g orthonormal elements of the Hilbert space H . Then F follows the uniform
distribution over the unit interval [0, 1]. By using the tools of Malliavin calculus,
Stroock formula and the properties of the Hermite polynomials, we derive the chaos
decomposition of the random variable defined by (1). Then we will apply our result
to the Selberg theorem, which concerns the behavior of the Riemann zeta fumction
on the critical line. Let us recall the context. The Riemann zeta function ζ is defined,
for �s > 1, by

ζ(s) =
∞∑

n=1

1

ns
(2)

and when �s ≤ 1, the function ζ is defined as an analytic continuation of (2). The
distribution of the zeta zeros is one of the outstanding problems in mathematics. It is
known that ζ(−2n) = 0 for every n ≥ 1. The points −2n are called the trivial zeros
of the Riemann zeta function. The most mysterious facts about the Riemann zeta
function concerns the distribution of its nontrivial zeros. The Riemann hypothesis
claims that all the nontrivial zeros of the Riemann zeta function lie on the critical line
�s = 1

2 . Therefore, the behavior of the function ζ on the critical line and close to this
critical line has been intensively studied.

A famous result by Atle Selberg says that, if T > 0 and t is a random variable
uniformly distributed over the interval [T , 2T ], then the sequence

log ζ
( 1

2 + it
)

√
1
2 log log T

→ X1 + iX2 in distribution as T → ∞ (3)

where X1 + iX2 is a complex-valued standard normal random variable, i.e. X1, X2 ∼
N(0, 1) are independent random variables. There are several versions of this theorem.
In particular, the result (3) holds if t ∼ U[0, T ] or, more generally, if t ∼ U[aT , bT ]
with b > a ≥ 0. We will work with t ∼ U[0, T ] and we will assume throughout in
the sequel t = T U with U ∼ U[0, 1]. As in the literature (e.g., [7, 16]), we will still
call Selberg’s theorem the result concerning the convergence of (3) with t = T U .

Recall that for any z ∈ C, log z = log |z| + i arg z. Then the convergence (3) is
actually equivalent to (4) and (5) below (see [11–13])

log
∣∣ζ ( 1

2 + it
)∣∣√

1
2 log log T

→(d)
T →∞ X1 ∼ N(0, 1) (4)

and
arg ζ

( 1
2 + it

)
√

1
2 log log T

→(d)
T →∞ X2 ∼ N(0, 1) (5)

where ” →(d) ” stands for the convergence in distribution.
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The idea behind the proof of the limit theorems (4) and (5) is (see, among others,
[11–15]) to approximate log ζ

( 1
2 + it

)
by the (renormalized) Dirichlet series

1√
1
2 log log T

∑
p≤T ε

1

p
1
2 +it

= 1√
1
2 log log T

⎛
⎝ ∑

p≤T ε

cos(t log p)√
p

+ i
∑

p≤T ε

sin(t log p)√
p

⎞
⎠ . (6)

with t = T U , U ∼ U[0, 1] and ε small enough. We will work throughout with ε = 1.
This approximation of log ζ

( 1
2 + it

)
by the Dirichlet series (6) is in L2 sense, since

(see [13], see also [7] for a detailed proof)

E

∣∣∣∣∣∣log ζ

(
1

2
+ it

)
−

∑
p≤T

1

p
1
2 +it

∣∣∣∣∣∣
2

≤ C

where C is a strictly positive constant not depending on T . This implies that the
sequence ⎛

⎝ 1√
1
2 log log T

⎛
⎝log ζ

(
1

2
+ it

)
−

∑
p≤T

1

p
1
2 +it

⎞
⎠

⎞
⎠

T >0

converges to zero in L2(�) as T → ∞.

Our purpose is to bring a new contribution to understanding the limit theorems
(4) and (5). More exactly, we will analyze the asymptotic behavior of each chaos
component of 1√

1
2 log log T

log |ζ ( 1
2 + it

) | with t ∼ U[0, T ]. That is, if Jn(T ) denotes

the projection of 1√
1
2 log log T

log
∣∣ζ ( 1

2 + it
)∣∣ on the nth Wiener chaos, we want to

study the limit behavior in distribution of Jn(T ) as T → ∞ for each fixed n ≥ 0.
This will allow to understand which chaos projection Jn(T ) is dominant with respect
to the others and determines the limit behavior of the log ζ .

Many other related works in the old and recent literature treated the distribution
of the zeros of the Riemann zeta function. Some related results, among many others,
are [1–4, 6].

Our analysis will be based on the study of the Dirichlet approximation (6). Using
the chaos expansion of the uniformly distributed random variable U , we will find the
chaos expansion of the random variable cos(T U log p) with U ∼ U[0, 1] via Malli-
avin calculus and we will study the limit in distribution of each chaos component.
We will see that every chaos converges to zero, but their sum tends in distribution to
the Gaussian law. All the chaoses contribute to the limit and there is no term that is
bigger than the others and gives the limit behavior.

Our work has the following structure. Section 2 contains some preliminaries on
Wiener chaos and Malliavin calculus needed throughout the work. Section 3 is de-
voted to the chaos expansion of a uniformly distributed random variable U . In Sec-
tion 4, we obtain the chaos decomposition of the Dirichlet series that approximates
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log ζ
( 1

2 + iT U
)

and we then analyze the asymptotic behavior, as T → ∞, of each
chaos component.

2 Preliminaries: the multiple stochastic integral and the Malliavin derivative

We also present the elements from the Malliavin calculus that will be used in the
paper. We refer to [9] for a more complete exposition. Consider H as a real separable
Hilbert space and (B(ϕ), ϕ ∈ H) an isonormal Gaussian process on a probability
space (�,A,P), that is, a centered Gaussian family of random variables such that
E (B(ϕ)B(ψ)) = 〈ϕ,ψ〉H.

We denote by D the Malliavin derivative operator that acts on smooth functions
of the form F = g(B(ϕ1), . . . , B(ϕn)) (g is a smooth function with compact support
and ϕi ∈ H, i = 1, . . . , n)

DF =
n∑

i=1

∂g

∂xi

(B(ϕ1), . . . , B(ϕn))ϕi .

It can be checked that the operator D is closable from S (the space of smooth
functionals as above) into L2(�;H) and it can be extended to the space D

1,p which
is the closure of S with respect to the norm

‖F‖p
1,p = EFp + E‖DF‖p

H.

We denote by D
k,∞ := ∩p≥Dk,p for every k ≥ 1. In this paper, H will be the

standard Hilbert space L2([0, T ]).
We will make use of the chain rule for the Malliavin derivative (see Proposition

1.2.4 in [9]). That is, if ϕ : R → R is a continuously differentiable function and
F ∈ D1,2, then ϕ(F ) ∈ D1,2 and

Dϕ(F) = ϕ′(F )DF. (7)

Denote by In the multiple stochastic integral with respect to B (see [9]). This In

is actually an isometry between the Hilbert space H�n (symmetric tensor product)
equipped with the scaled norm

√
n!‖ · ‖H⊗n and the Wiener chaos of order n which

is defined as the closed linear span of the random variables Hn(B(ϕ)) where ϕ ∈ H,
‖ϕ‖H = 1 and Hn is the Hermite polynomial of degree n ≥ 1

Hn(x) = (−1)n exp

(
x2

2

)
dn

dxn

(
exp

(
−x2

2

))
, x ∈ R. (8)

The isometry of multiple integrals can be written as: for m, n positive integers,

E (In(f )Im(g)) = n!〈f̃ , g̃〉H⊗n if m = n,

E (In(f )Im(g)) = 0 if m �= n. (9)

The Malliavin derivative D acts on the Wiener chaos as an annilihilation operator: if
F = In(f ) with symmetric f ∈ L2([0, T ]n), then DtF = nIn−1(f (·, t)) where “·”
stands for n − 1 variables in [0, T ].
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3 Chaos expansion of uniformly distributed random variables

The uniformly distributed random variable U will be chosen of a particular form that
allows to use the techniques of the Malliavin calculus. Actually, in the sequel we will
assume

U = e− 1
2 (W(f )2+W(g)2) (10)

with the following conditions fixed throughout our work: f, g ∈ H , ‖f ‖ = ‖g‖ = 1
and 〈f, g〉 = 0 (all the scalar products and norms in the paper will be considered in H

if no further specification is made). In (10), (W(h), h ∈ H = L2([0, 1])) stands for a
Gaussian isonormal process as described in Section 2. In particular, this implies that
W(f ) and W(g) are independent standard normal random variables. The fact that
the random variable (10) is uniformly distributed over [0, 1] follows from the simple
computations: with F : R → R an arbitrary function such that EF(U) < ∞,

EF(U) = 1

2π

∫
R2

F

(
e− x2+y2

2

)
e− x2+y2

2 dxdy

=
∫ ∞

0
dρF

(
e− ρ2

2

)
e− ρ2

2 ρ =
∫ 1

0
F(u)du

where we used the change of variables with polar coordinates.
We analyze the chaos expansion of

U2k = e−k(W(f )2+W(g)2) (11)

for every k > 0. This will be done by using the techniques of the Malliavin calculus.
We will also need some properties of the Hermite polynomials. Let Hn denote the nth
Hermite polynomial, see (8). Recall that, if Y ∼ N(0, σ 2), then

EH2m(Y ) = (σ 2 − 1)m(2m)!
2mm! (12)

and EHn(Y ) = 0 if n is odd.
We will use the following two auxiliary lemmas that concern the Hermite poly-

nomials.

Lemma 1. For every s ≥ 0 and for every k > 0,

E
[
e−kW(f )2

H2s(
√

2kW(f ))
]

= (−1)s(2s)!
2ss! (2k + 1)−s− 1

2 . (13)

Proof. With the notation σ 2 = 2k
2k+1 , we have

E
[
e−kW(f )2

H2s(
√

2kW(f ))
]

= 1√
2π

∫
R

e− x2(2k+1)
2 H2s(

√
2kx)dx

= 1√
2k + 1

1√
2πσ 2

∫
R

e
− x2

2σ2 H2s(x)dx

= 1√
2k + 1

EH2s(Y )

where Y ∼ N(0, σ 2). The conclusion comes from (12).
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Recall that D(s)(s ≥ 1) denotes the sth iterated Malliavin derivative. If s = 0
then by convention f ⊗s = 1.

Lemma 2. For any k > 0, consider the random variable F = e−kW(f )2
. Then for

every s ≥ 0,

D(s)F = (2k)
s
2 (−1)se−kW(f )2

Hs

(√
2kW(f )

)
f ⊗s . (14)

Moreover, we have

ED(s)F = 0 if s is odd (15)

and

ED(2s)F = (−1)s(2s)!ks

s! (2k + 1)−s− 1
2 f ⊗2s , (16)

for every s ≥ 0.

Proof. Denote by g(x) = e−x2
for x ∈ R. By the chain rule of the Malliavin deriva-

tive (7), we have, for every s ≥ 0,

D(s)F = g(s)
(√

kW(f )
)

k
s
2 f ⊗s . (17)

We will use the following relation between the derivatives of the function g and the
Hermite polynomials:

g(s)(x) = (−1)se−x2
2

s
2 Hs(

√
2x), for every s ≥ 0, x ∈ R. (18)

It is easy to see that if s is odd, then the of (14) expectation vanishes. If s is even, by
plugging (18) into (17), we obtain (14). Consequently,

ED(s)F = (2k)
s
2 s!f ⊗sE

(
e−kW(f )2

Hs

(√
2kW(f )

))
and by using (13), we obtain (15) and (16).

The next step is to get the chaos expansion of U2k with U a random variable
uniformly distributed over [0, 1]. If f, g are two functions, by f ⊗̃g we denote the
symmetrization of their tensor product.

Lemma 3. Let U be given by (10). Then for every k > 0 the random variable U2k

admits the following Wiener chaos expansion:

U2k =
∑
n≥0

kn

(2k + 1)n+1 I2n(h2n), (19)

with

h2n = (−1)n
n∑

s=0

1

s!(n − s)!f
⊗2s⊗̃g⊗(2n−2s). (20)
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Proof. We will first show that for every k > 0

ED(n)U2k = 0 if n is odd (21)

and for every n ≥ 1

ED(2n)U2k = kn

(2k + 1)n+1 (2n)!h2n (22)

with hn given by (20). By using the Leibniz rule for the Malliavin derivarive (see,
e.g., [9], Exercise 1.2. 13), we can write, for n, k ≥ 1,

D(n)U2k = D(n)(e−kW(f )2
e−kW(g)2

)

=
n∑

s=0

Cs
n

(
D(s)e−kW(f )2

)
⊗̃

(
D(n−s)e−kW(g)2

)
,

so

ED(n)U2k =
n∑

s=0

Cs
n

(
ED(s)e−kW(f )2

)
⊗̃

(
ED(n−s)e−kW(g)2

)
(23)

where we used the independence of W(f ) and W(g). By Lemma 2, we immediately
get that ED(n)U2k = 0 if n is odd and

ED(2n)U2k = (−1)nkn

(2k + 1)n+1

n∑
s=0

C2s
2n

(2s)!(2n − 2s)!
s!(n − s)! f ⊗2s⊗̃g⊗(2n−2s)

= (−1)nkn

(2k + 1)n+1

n∑
s=0

(2n)!
s!(n − s)!f

⊗2s⊗̃g⊗(2n−2s)

= kn

(2k + 1)n+1 (2n)!h2n

with h2n given by (20).
In order to obtain the Wiener chaos decomposition of U2k , we will use the Stroock

formula (see, e.g., [9]) to write

U2k =
∑
n≥0

1

n!In

(
ED(n)U2k

)
, (24)

and using the formulas (21) and (22) for ED(n)Uk with n ≥ 1 and k ≥ 1, we get
(19).

Remark 1. It is worth to point out that the (trivial) formulas EU2k = 1
2k+1 and

EU4k = 1
4k+1 can also be checked through the chaos expansion (26). Indeed, for

n = 0 in the right-hand side of (26) we get EU2k = 1
2k+1 and, since ‖h2n‖2 =∑n

s=0
(2s)!(2n−2s)!

(2n)!
1

(s!(n−s)!)2 we get, via the isometry (9)

EU4k = E(U2k)2 = 1

(2k + 1)2

∞∑
n=0

k2n

(2k + 1)2n
(2n)!‖h2n‖2
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= 1

(2k + 1)2

∞∑
n=0

k2n

(2k + 1)2n

n∑
s=0

(2s)!(2n − 2s)!
(s!(n − s)!)2

= 1

(2k + 1)2

∞∑
s=0

(2s)!
s!2

∞∑
n=s

k2n

(2k + 1)2n

(2n − 2s)!
(n − s)!)2

= 1

(2k + 1)2

( ∞∑
n=0

k2n

(2k + 1)2n

(2n)!
n!2

)2

= 1

4k + 1
,

since, with Z ∼ N(0, 1),

∞∑
n=0

k2n

(2k + 1)2n

(2n)!
n!2 =

∞∑
n=0

k2n

(2k + 1)2n
2nEZ2n

= E
∞∑

n=0

k2n

(2k + 1)2n

(2n)!
n!2 =

∞∑
n=0

k2n

(2k + 1)2n
2nZ2n = Ee

2k2

(2k+1)2
Z2

= 2k + 1√
1 + 4k

.

4 Chaos analysis in Selberg’ s theorem

We use the results in the previous section in order to get the chaos expansion of the
Dirichlet series (6) and to study the behavior, as T → ∞, of each chaos component
of log ζ

( 1
2 + iT U

)
with U given by (10).

4.1 Chaos expansion of the Dirichlet series
We first obtain the Wiener–Itô chaos expansion of the Dirichlet series (6) that approx-
imates log ζ on the critical line (in the sense of (35)). We will actually focus on the
analysis of the real part of (6) but we stress that a similar study can be done for the
imaginary part. Consider the family (XT )T >0 given by

XT =
∑
p≤T

[
cos(T U log p)√

p
− E

cos(T U log p)√
p

]
, (25)

where the sum is taken over the primes p and U is U[0, 1] distributed, of the form
(10).

Proposition 1. For T > 0, let XT be given by (25). Denote

XT := 1√
1
2 log log T

XT .

Then
XT =

∑
n≥1

c2n(T )I2n(h2n) (26)

where for every n ≥ 1, hn are defined by (20) and

c2n(T ) = 1√
1
2 log log T

∑
p≤T

1√
p

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k

(
k

2k + 1

)n

. (27)
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Proof. From (19) and the series expansion of the cosinus function cos x =∑
k≥0

(−1)k

(2k)! x2k , we obtain the chaos decomposition of the random variable
cos(T log pU) where T > 0, p is a prime number and U is defined in (10). We
actually have

cos(T U log p) =
∑
k≥0

(−1)k

(2k + 1)! (T log p)2k
∑
n≥0

I2n(h2n)

(
k

2k + 1

)n

.

Thus 1√
1
2 log log T

∑
p≤T

1√
p

cos(T log pU) = ∑
n≥0 J2n(T ) with

J2n(T ) = I2n (hh)
∑
p≤T

1√
p

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k

(
k

2k + 1

)n

(28)

and hn given by (20). Note that the chaos of order zero can be explicitly computed.
In fact,

J0(T ) = 1√
1
2 log log T

∑
p≤T

1√
p

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k

= 1√
1
2 log log T

∑
p≤T

1√
p

1

T log p
sin(T log p) = 1√

1
2 log log T

EXT

and therefore

XT = 1√
1
2 log log T

XT =
∞∑

n=1

J2n(T ) =
∞∑

n=1

c2n(T )I2n(h2n).

Note that only Wiener chaoses of even order appear in the decomposition of XT .

4.2 Asymptotic behavior for each chaos

We now analyze the limit behavior of the projection of � log ζ
( 1

2 + iT U
)

on each
Wiener chaos. The first step is to do this study for the Dirichlet series (6).

4.2.1 Chaoses of the Dirichlet series
From Proposition 1, we notice that the (renormalized) Dirichlet series (25) can be
expanded into an infinite sum of random variables in chaoses of even orders. The
projection on the 2nth Wiener chaos is given by

J2n(T ) = c2n(T )I2n(h2n) (29)

with c2n(T ), h2n from (27), (20) respectively. We will show that for every n ≥ 1,

J2n(T ) →T →∞ 0 almost surely and in L2(�),
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i.e. the projection of each Wiener chaos of XT converges to zero when T → ∞.
Note that in (29) only the coefficients c2n(T ) depend on T and but the random parts
I2n(h2n) do not. Therefore it suffices to study the behavior of c2n(T ) as T → ∞.
This is done in the lemma below.

Lemma 4. Let T > 0, n ≥ 1 and let c2n(T ) be defined by (27). Then for every n ≥ 1,

c2n(T ) →T →∞ 0.

Proof. Let us first give the proof for n = 1. This will illustrate what happens in the

general case. For n = 1, we have, writting k
2k+1 = 1

2

(
1 − 1

2k+1

)
,

c2(T ) = 1√
1
2 log log T

∑
p≤T

1√
p

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k

(
k

2k + 1

)

= 1

2

1√
1
2 log log T

∑
p≤T

1√
p

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k

−1

2

1√
1
2 log log T

∑
p≤T

1√
p

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k

(
1

2k + 1

)
.

The two sums above can be calculated. Since

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k = 1

T log p
sin(T log p)

and

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k

(
1

2k + 1

)

=
∑
k≥0

(−1)k

(2k + 1)! (T log p)2k 1

(T log p)2k+1

∫ T log p

0
y2kdy

= 1

T log p

∫ T log p

0

sin y

y
dy,

we will have

c2(T ) = 1

2

1√
1
2 log log T

∑
p≤T

1√
p

1

T log p

(
sin(T log p) −

∫ T log p

0

sin y

y
dy

)
.

By (34) and the trivial inequality∣∣∣∣
∫ t

0

sin y

y
dy − π

2

∣∣∣∣ ≤ C

t
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we clearly get c2(T ) ≤ CT − 1
2 →T →∞ 0. Concerning the general case, we use again

the identity k
2k+1 = 1

2

(
1 − 1

2k+1

)
and the Newton’s formula to get

c2n(T ) (30)

= 1√
1
2 log log T

∑
p≤T

1√
p

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k

(
k

2k + 1

)n

= 1√
1
2 log log T

∑
p≤T

1√
p

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k

(
1

2
− 1

2(2k + 1)

)n

= (−1)n

2n

1√
1
2 log log T

∑
p≤T

1√
p

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k
n∑

a=0

Ca
n(2k+1)−a(−1)n−a

:= (−1)n

2n

n∑
a=0

Ca
n(−1)n−aAT (a) (31)

where, for every a = 0, 1, .., n, we used the notation

AT (a) := 1√
1
2 log log T

∑
p≤T

1√
p

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k(2k + 1)−a.

The only element depending on T in the decomposition of c2n(T ) is the one denoted
by AT (a). We will show that for every a = 0, 1, . . . , n,

AT (a) →T →∞ 0. (32)

We already proved the results for a = 0, 1, so we assume a ≥ 2. We write

AT (a)

= 1√
1
2 log log T

∑
p≤T

1√
p

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k(T log p)−a(2k+1)

(∫ T log p

0
y2k

)a

= 1√
1
2 log log T

∑
p≤T

1√
p

∑
k≥0

(−1)k

(2k + 1)! (T log p)2k−2ka−a

∫ T log p

0
...

∫ T log p

0
dy1 . . . dya(y1y2...ya)

2k

= 1√
1
2 log log T

∑
p≤T

1√
p

∫ T log p

0
...

∫ T log p

0
dy1 . . . ya

1

T log p

1

y1..ya

∑
k≥0

(−1)k

(2k + 1)!
(

y1..ya

(T log p)a−1

)2k+1
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= 1√
1
2 log log T

∑
p≤T

1√
p

∫ T log p

0
...

∫ T log p

0
dy1 . . . ya

1

T log p

1

y1..ya

sin(y1..ya(T log p)1−a).

By the change of variables ỹi = yi

T log p
for i = 1, .., a, we obtain

AT (a) = 1√
1
2 log log T

∑
p≤T

1√
p

∫ 1

0
...

∫ 1

0
dy1 . . . ya

1

T log p

1

y1..ya

× sin(y1..ya(T log p)).

By choosing δ ∈ (0, 1) small enough and by writting

sin(y1..ya(T log p))

y1..ya(T log p)
=

(
sin(y1..ya(T log p))

y1..ya(T log p)

)δ (
sin(y1..ya(T log p))

y1..ya(T log p)

)1−δ

,

so that ∣∣∣∣ sin(y1..ya(T log p))

y1..ya(T log p)

∣∣∣∣ ≤
(

1

y1..ya(T log p)

)1−δ

,

we can bound AT (a) as follows:

AT (a) ≤ C
1√

1
2 log log T

T δ−1
∑
p≤T

1√
p

(log p)δ−1

≤ C
1√

1
2 log log T

T δ−1
∑
p≤T

1√
p

≤ C
1√

1
2 log log T

T δ−1/2

log T
(33)

and this converges to zero as T → ∞ if δ < 1
2 . In the last inequality we used the

following estimate (see, e.g., [16, 15]): for every s ∈ C with �s < 1 we have

∑
p≤x

p−s ∼ x1−s

(1 − s) log x
. (34)

From (31) and (33) we deduce that for every n ≥ 1 and for T large enough, |c2n(T )|≤
C 1√

1
2 log log T

T δ−1/2

log T
with δ ∈ (0, 1

2 ) and the conclusion follows.

4.2.2 On the chaos decomposition of log ζ on the critical line
Let us finish by some remarks concerning the asymptotic behavior of the chaos pro-
jection of log

∣∣ζ ( 1
2 + iT U

)∣∣. This random variable is obviously square integrable. It
is close to the Dirichlet series (6) in the sense that (see [13, 7])

E

∣∣∣∣∣∣log |ζ
(

1

2
+ iT U

)
| −

∑
p≤T

cos(T log pU)√
p

∣∣∣∣∣∣
2

≤ C,
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so

E

∣∣∣∣∣∣
1√

log log T
log |ζ

(
1

2
+ iT U

)
| − 1√

log log T

∑
p≤T

cos(T log pU)√
p

∣∣∣∣∣∣
2

≤ C
1

log log T
→T →∞ 0. (35)

From the results in the previous paragraph, we can deduce the asymptotic behav-
ior of the chaoses that compose log ζ on the real line. We have the following result.

Proposition 2. Let U be given by (10). Assume that for every T > 0 the square
integrable random variable 1√

1
2 log log T

log
∣∣ζ ( 1

2 + iT U
)∣∣ admits the chaos decom-

position
1√

1
2 log log T

� log ζ

(
1

2
+ iT U

)
=

∑
n≥0

Kn(T ).

Then for every n ≥ 1, Kn(T ) →T →∞ 0 in L2(�).

Proof. Since 1√
1
2 log log T

∑
p

1√
p

cos(T log pU) = ∑
n≥0 J2n(T ) with Jn from (28),

we can write, by using (35),

E

∣∣∣∣∣∣
1√

1
2 log log T

� log ζ

(
1

2
+ iT U

)
− 1√

1
2 log log T

∑
p≤T

1√
p

cos(T log pU)

∣∣∣∣∣∣
2

=
∑
n≥0

E |K2n(T ) − J2n(T )|2 +
∑
n≥0

E|K2n+1(T )|2

≤ C
1

1
2 log log T

.

This clearly implies that for every n ≥ 1,

Kn(T ) →T →∞ 0 in L2(�).

Let us make some comments on the result stated in Proposition 2. We denoted
by Kn(T ) the nth chaos component of the random variable FT := 1√

1
2 log log T

×
log

∣∣ζ ( 1
2 + iT U

)∣∣, i.e for every T > 0 we have FT = ∑
n≥0 Kn(T ). We showed

that for every n ≥ 0, Kn(T ) →T →∞ 0 almost surely and in L2(�). Let us discuss
the meaning of this result. Suppose that we have a random sequence (XT )T >0 which
converges in distribution, as T → ∞, to the standard normal distribution. Assume
that for each T > 0 the random variable XT admits a chaos decomposition

XT =
∑
n≥0

In(fn(T )).
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In many situations, for such a limit theorem, there exists a dominant chaos for XT

(see, e.g., Theorem 1.7 in [10] for an example on the average of solutions to some
stochastic partial differential equations, or [8] for an example related to stochas-
tic geometry). That is, there exists N0 ≥ 1 such that IN0(fN0(T )) converges in
law, as T → ∞, to N(0, 1) while the other chaos components are negligible, i.e.
EIn(fn(T ))2 →T →∞ 0 for n �= N0. This situation would be very convenient be-
cause, in order to understand the behavior of XT , it suffices to look at the convergence
of the chaos of order N0.

In other situations, each chaos converges to a Gaussian limit, i.e. In(fn(T ))

→T →∞ N(0, σ 2
n ) in law for every n ≥ 0 and

∑
n≥0 σ 2

n = 1. We refer to, e.g.,
the paper [5] for such a situation.

We actually showed that we are not in the situations described above. We showed
that for every n ≥ 0, the behavior of Kn(T ) is very close to the behavior of the
nth chaos component of the Dirichlet series (6) (denoted by Jn(T ) in (29)) and we
proved that Jn(T )2 →T →∞ 0 almost surely and in L2. This follows from the fact
that Jn(T ) = 0 if n is odd and J2n(T ) = c2n(T )I2n(h2n) with cn(T ) a deterministic
sequences converging to zero as T → ∞. This suggests the complexity of the Selberg
theorem since the contribution to the limit comes from every chaos.
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