
Modern Stochastics: Theory and Applications 2 (2015) 1–15
DOI: 10.15559/15-VMSTA20

Nonparametric Bayesian inference for
multidimensional compound Poisson processes

Shota Gugushvilia,∗, Frank van der Meulenb, Peter Spreijc

aMathematical Institute, Leiden University, P.O. Box 9512,
2300 RA Leiden, The Netherlands

bDelft Institute of Applied Mathematics, Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft University of Technology, Mekelweg 4,

2628 CD Delft, The Netherlands
cKorteweg–de Vries Institute for Mathematics, University of Amsterdam,

P.O. Box 94248, 1090 GE Amsterdam, The Netherlands

shota.gugushvili@math.leidenuniv.nl (S. Gugushvili), f.h.vandermeulen@tudelft.nl (F. van der Meulen),
spreij@uva.nl (P. Spreij)

Received: 24 December 2014, Revised: 27 February 2015, Accepted: 1 March 2015,
Published online: 13 March 2015

Abstract Given a sample from a discretely observed multidimensional compound Poisson
process, we study the problem of nonparametric estimation of its jump size density r0 and in-
tensity λ0. We take a nonparametric Bayesian approach to the problem and determine posterior
contraction rates in this context, which, under some assumptions, we argue to be optimal poste-
rior contraction rates. In particular, our results imply the existence of Bayesian point estimates
that converge to the true parameter pair (r0, λ0) at these rates. To the best of our knowledge,
construction of nonparametric density estimators for inference in the class of discretely ob-
served multidimensional Lévy processes, and the study of their rates of convergence is a new
contribution to the literature.

Keywords Decompounding, multidimensional compound Poisson process, nonparametric
Bayesian estimation, posterior contraction rate

2010 MSC 62G20, 62M30

∗Corresponding author.

© 2015 The Author(s). Published by VTeX. Open access article under the CC BY license.

www.i-journals.org/vmsta

http://dx.doi.org/10.15559/15-VMSTA20
mailto:shota.gugushvili@math.leidenuniv.nl
mailto:f.h.vandermeulen@tudelft.nl
mailto:spreij@uva.nl
http://creativecommons.org/licenses/by/4.0/
http://www.i-journals.org/vmsta


2 S. Gugushvili et al.

1 Introduction

Let N = (Nt )t≥0 be a Poisson process of constant intensity λ > 0, and let {Yj }
be independent and identically distributed (i.i.d.) Rd -valued random vectors defined
on the same probability space and having a common distribution function R, which
is assumed to be absolutely continuous with respect to the Lebesgue measure with
density r . Assume that N and {Yj } are independent and define the Rd -valued process
X = (Xt )t≥0 by

Xt =
Nt∑

j=1

Yj .

The process X is called a compound Poisson process (CPP) and forms a basic stochas-
tic model in a variety of applied fields, such as, for example, risk theory and queueing;
see [10, 21].

Suppose that, corresponding to the true parameter pair (λ0, r0), a sample XΔ,
X2Δ, . . . , XnΔ from X is available, where the sampling mesh Δ > 0 is assumed to be
fixed and thus independent of n. The problem we study in this note is nonparametric
estimation of r0 (and of λ0). This is referred to as decompounding and is well studied
for one-dimensional CPPs; see [2, 3, 6, 9, 24]. Some practical situations in which
this problem may arise are listed in [9, p. 3964]. However, the methods used in the
above papers do not seem to admit (with the exception of [24]) a generalization to the
multidimensional setup. This is also true for papers studying nonparametric inference
for more general classes of Lévy processes (of which CPPs form a particular class),
such as, for example, [4, 5, 19]. In fact, there is a dearth of publications dealing with
nonparametric inference for multidimensional Lévy processes. An exception is [1],
where the setup is however specific in that it is geared to inference in Lévy copula
models and that, unlike the present work, the high-frequency sampling scheme is
assumed (Δ = Δn → 0 and nΔn → ∞).

In this work, we will establish the posterior contraction rate in a suitable metric
around the true parameter pair (λ0, r0). This concerns study of asymptotic frequentist
properties of Bayesian procedures, which has lately received considerable attention
in the literature (see, e.g., [14, 15]), and is useful in that it provides their justification
from the frequentist point of view. Our main result says that for a β-Hölder regular
density r0, under some suitable additional assumptions on the model and the prior, the
posterior contracts at the rate n−β/(2β+d)(log n)�, which, perhaps up to a logarithmic
factor, is arguably the optimal posterior contraction rate in our problem. Finally, our
Bayesian procedure is adaptive: the construction of our prior does not require knowl-
edge of the smoothness level β in order to achieve the posterior contraction rate given
above.

The proof of our main theorem employs certain results from [14, 22] but involves
a substantial number of technicalities specifically characteristic of decompounding.

We remark that a practical implementation of the Bayesian approach to decom-
pounding lies outside the scope of the present paper. Preliminary investigations and a
small scale simulation study we performed show that it is feasible and under certain
conditions leads to good results. However, the technical complications one has to deal
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with are quite formidable, and therefore the results of our study of implementational
aspects of decompounding will be reported elsewhere.

The rest of the paper is organized as follows. In the next section, we introduce
some notation and recall a number of notions useful for our purposes. Section 3 con-
tains our main result, Theorem 2, and a brief discussion on it. The proof of Theorem 2
is given in Section 4. Finally, Section 5 contains the proof of the key technical lemma
used in our proofs.

2 Preliminaries

Assume without loss of generality that Δ = 1, and let Zi = Xi −Xi−1, i = 1, . . . , n.
The Rd -valued random vectors Zi are i.i.d. copies of a random vector

Z =
T∑

j=1

Yj ,

where {Yj } are i.i.d. with distribution function R0, whereas T , which is independent
of {Yj }, has the Poisson distribution with parameter λ0. The problem of decompound-
ing the jump size density r0 introduced in Section 1 is equivalent to estimation of r0
from observations Zn = {Z1, Z2, . . . , Zn}, and we will henceforth concentrate on
this alternative formulation. We will use the following notation:

Pr law of Y1,

Qλ,r law of Z1,

Rλ,r law of X = (Xt , t ∈ [0, 1]).

2.1 Likelihood

We will first specify the dominating measure for Qλ,r , which allows us to write down
the likelihood in our model. Define the random measure μ by

μ(B) = {
#t : (t, Xt − Xt−) ∈ B

}
, B ∈ B

([0, 1]) ⊗ B
(
Rd \ {0}).

Under Rλ,r , the random measure μ is a Poisson point process on [0, 1] × (Rd \ {0})
with intensity measure Λ(dt, dx) = λdtr(x)dx. Provided that λ, λ̃ > 0, and r̃ > 0,
by formula (46.1) on p. 262 in [23] we have

dRλ,r

dRλ̃,̃r

(X) = exp

(∫ 1

0

∫
Rd

log

(
λr(x)

λ̃̃r(x)

)
μ(dt, dx) − (λ − λ̃)

)
. (1)

The density kλ,r of Qλ,r with respect to Qλ̃,̃r is then given by the conditional expec-
tation

kλ,r (x) = E λ̃,̃r

(
dRλ,r

dRλ̃,̃r

(X)

∣∣∣ X1 = x

)
, (2)

where the subscript in the conditional expectation operator signifies the fact that it
is evaluated under Rλ̃,̃r ; see Theorem 2 on p. 245 in [23] and Corollary 2 on p. 246
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there. Hence, the likelihood (in the parameter pair (λ, r)) associated with the sample
Zn is given by

Ln(λ, r) =
n∏

i=1

kλ,r (Zi). (3)

2.2 Prior
We will use the product prior Π = Π1 × Π2 for (λ0, r0). The prior Π1 for λ0 will
be assumed to be supported on the interval [λ, λ] and to possess a density π1 with
respect to the Lebesgue measure.

The prior for r0 will be specified as a Dirichlet process mixture of normal densi-
ties. Namely, introduce a convolution density

rF,Σ(x) =
∫

φΣ(x − z)F (dz), (4)

where F is a distribution function on Rd , Σ is a d × d positive definite real ma-
trix, and φΣ denotes the density of the centered d-dimensional normal distribution
with covariance matrix Σ . Let α be a finite measure on Rd , and let Dα denote the
Dirichlet process distribution with base measure α (see [11] or, alternatively, [13] for
a modern overview). Recall that if F ∼ Dα , then for any Borel-measurable parti-
tion B1, . . . , Bk of Rd , the distribution of the vector (F (B1), . . . , F (Bk)) is the k-
dimensional Dirichlet distribution with parameters α(B1), . . . , α(Bk). The Dirichlet
process location mixture of normals prior Π2 is obtained as the law of the random
function rF,Σ , where F ∼ Dα and Σ ∼ G for some prior distribution function G

on the set of d × d positive definite matrices. For additional information on Dirichlet
process mixtures of normal densities, see, for example, the original papers [12] and
[18], or a recent paper [22] and the references therein.

2.3 Posterior
Let R denote the class of probability densities of the form (4). By Bayes’ theorem,
the posterior measure of any measurable set A ⊂ (0,∞) × R is given by

Π(A|Zn) =
∫∫

A
Ln(λ, r)dΠ1(λ)dΠ2(r)∫∫
Ln(λ, r)dΠ1(λ)dΠ2(r)

.

The priors Π1 and Π2 indirectly induce the prior Π = Π1 × Π2 on the collection
of densities kλ,r . We will use the symbol Π to signify both the prior on (λ0, r0) and
the density kλ0,r0 . The posterior in the first case will be understood as the posterior
for the pair (λ0, r0), whereas in the second case as the posterior for the density kλ0,r0 .
Thus, setting A = {kλ,r : (λ, r) ∈ A}, we have

Π(A|Zn) =
∫
A

Ln(k)dΠ(k)∫
Ln(k)dΠ(k)

.

In the Bayesian paradigm, the posterior encapsulates all the inferential conclusions
for the problem at hand. Once the posterior is available, one can next proceed with
computation of other quantities of interest in Bayesian statistics, such as Bayes point
estimates or credible sets.



Nonparametric Bayesian inference for multidimensional compound Poisson processes 5

2.4 Distances

The Hellinger distance h(Q0,Q1) between two probability laws Q0 and Q1 on a
measurable space (Ω,F) is given by

h(Q0,Q1) =
(∫ (

dQ1/2
0 − dQ1/2

1

)2
)1/2

.

Assuming that Q0 
 Q1, the Kullback–Leibler divergence K(Q0,Q1) is

K(Q0,Q1) =
∫

log

(
dQ0

dQ1

)
dQ0.

We also define the V-discrepancy by

V(Q0,Q1) =
∫

log2
(

dQ0

dQ1

)
dQ0.

In addition, for positive real numbers x and y, we put

K(x, y) = x log
x

y
− x + y,

V(x, y) = x log2 x

y
,

h(x, y) = ∣∣√x − √
y
∣∣.

Using the same symbols K, V, and h is justified as follows. Suppose that Ω is a
singleton {ω} and consider the Dirac measures δx and δy that put masses x and y,
respectively, on Ω . Then K(δx, δy) = K(x, y), and similar equalities are valid for the
V-discrepancy and the Hellinger distance.

2.5 Class of locally β-Hölder functions

For any β ∈ R, by �β we denote the largest integer strictly smaller than β, by N the
set of natural numbers, whereas N0 stands for the union N ∪ {0}. For a multiindex
k = (k1, . . . , kd) ∈ Nd

0 , we set k. = ∑d
i=1 ki . The usual Euclidean norm of a vector

y ∈ Rd is denoted by ‖y‖.
Let β > 0 and τ0 ≥ 0 be constants, and let L : Rd → R+ be a measurable

function. We define the class Cβ,L,τ0(Rd) of locally β-Hölder regular functions as the
set of all functions r : Rd → R such that all mixed partial derivatives Dkr of r up to
order k. ≤ �β exist and, for every k with k. = �β, satisfy∣∣(Dkr

)
(x + y) − (

Dk
)
r(x)

∣∣ ≤ L(x) exp
(
τ0‖y‖2)‖y‖β−�β, x, y ∈ Rd .

See p. 625 in [22] for this class of functions.

3 Main result

Define the complements of the Hellinger-type neighborhoods of (λ0, r0) by

A(εn,M) = {
(λ, r) : h(Qλ0,r0,Qλ,r ) > Mεn

}
,
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where {εn} is a sequence of positive numbers. We say that εn is a posterior contraction
rate if there exists a constant M > 0 such that

Π
(
A(εn,M)

∣∣Zn

) → 0

as n → ∞ in Qn
λ0,r0

-probability.
The ε-covering number of a subset B of a metric space equipped with the metric

ρ is the minimum number of ρ-balls of radius ε needed to cover it. Let Q be a set of
CPP laws Qλ,r . Furthermore, we set

B(ε,Qλ0,r0) = {
(λ, r) : K(Qλ0,r0,Qλ,r ) ≤ ε2, V(Qλ0,r0,Qλ,r ) ≤ ε2}. (5)

We recall the following general result on posterior contraction rates.

Theorem 1 ([14]). Suppose that for positive sequences εn, ε̃n → 0 such that
n min(ε2

n, ε̃
2
n) → ∞, constants c1, c2, c3, c4 > 0, and sets Qn ⊂ Q, we have

log N(εn,Qn, h) ≤ c1nε2
n, (6)

Π(Q \ Qn) ≤ c3e
−ñε2

n(c2+4), (7)

Π
(
B(̃εn,Qλ0,r0)

) ≥ c4e
−c2ñε2

n . (8)

Then, for εn = max(εn, ε̃n) and a constant M > 0 large enough, we have that

Π
(
A(εn,M)

∣∣Zn

) → 0 (9)

as n → ∞ in Qn
λ0,r0

-probability, assuming that the i.i.d. observations {Zj } have been
generated according to Qλ0,r0 .

In order to derive the posterior contraction rate in our problem, we impose the
following conditions on the true parameter pair (λ0, r0).

Assumption 1. Denote by (λ0, r0) the true parameter values for the compound Pois-
son process.

(i) λ0 is in a compact set [λ, λ] ⊂ (0,∞);

(ii) The true density r0 is bounded, belongs to the set Cβ,L,τ0(Rd), and additionally
satisfies, for some ε > 0 and all k ∈ Nd

0 , k. ≤ β,∫ (
L

r0

)(2β+ε)/β

r0 < ∞,

∫ ( |Dkr0|
r0

)(2β+ε)/k

r0 < ∞.

Furthermore, we assume that there exist strictly positive constants a, b, c, and
τ such that

r0(x) ≤ c exp
(−b‖x‖τ

)
, ‖x‖ > a.

The conditions on r0 come from Theorem 1 in [22] and are quite reasonable. They
simplify greatly when r0 has a compact support.

We also need to make some assumptions on the prior Π defined in Section 2.2.

Assumption 2. The prior Π = Π1 × Π2 on (λ0, r0) satisfies the following assump-
tions:
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(i) The prior Π1 on λ has a density π1 (with respect to the Lebesgue measure) that
is supported on the finite interval [λ, λ] ⊂ (0,∞) and is such that

0 < π1 ≤ π1(λ) ≤ π1 < ∞, λ ∈ [λ, λ], (10)

for some constants π1 and π1;

(ii) The base measure α of the Dirichlet process prior Dα is finite and possesses
a strictly positive density on Rd such that for all sufficiently large x > 0 and
some strictly positive constants a1, b1, and C1,

1 − α
([−x, x]d) ≤ b1 exp

(−C1x
a1

)
,

where α(·) = α(·)/α(Rd);

(iii) There exist strictly positive constants κ, a2, a3, a4, a5, b2, b3, b4, C2, C3 such
that for all x > 0 large enough,

G
(
Σ : eigd

(
Σ−1) ≥ x

) ≤ b2 exp
(−C2x

a2
)
,

for all x > 0 small enough,

G
(
Σ : eig1

(
Σ−1) < x

) ≤ b3x
a3 ,

and for any 0 < s1 ≤ · · · ≤ sd and t ∈ (0, 1),

G
(
Σ : sj < eigj

(
Σ−1) < sj (1+ t), j = 1, . . . , d

) ≥ b4s
a4
1 ta5 exp

(−C3s
κ/2
d

)
.

Here eigj (Σ
−1) denotes the j th smallest eigenvalue of the matrix Σ−1.

This assumption comes from [22, p. 626], to which we refer for an additional
discussion. In particular, it is shown there that an inverse Wishart distribution (a pop-
ular prior distribution for covariance matrices) satisfies the assumptions on G with
κ = 2. As far as α is concerned, we can take it such that its rescaled version α is a
nondegenerate Gaussian distribution on Rd .

Remark 1. Assumption (10) requiring that the prior density π1 is bounded away
from zero on the interval [λ, λ] can be relaxed to allowing it to take the zero value at
the end points of this interval, provided that λ0 is an interior point of [λ, λ].

We now state our main result.

Theorem 2. Let Assumptions 1 and 2 hold. Then there exists a constant M > 0 such
that, as n → ∞,

Π
(
A

(
(log n)�n−γ ,M

)∣∣Zn

) → 0

in Qn
λ0,r0

-probability. Here

γ = β

2β + d∗ , � > �0 = d∗(1 + 1/τ + 1/β) + 1

2 + d∗/β
, d∗ = max(d, κ).

We conclude this section with a brief discussion on the obtained result: the loga-
rithmic factor (log n)� is negligible for practical purposes. If κ = 1, then the posterior
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contraction rate obtained in Theorem 2 is essentially n−2β/(2β+d), which is the mini-
max estimation rate in a number of nonparametric settings. This is arguably also the
minimax estimation rate in our problem as well (cf. Theorem 2.1 in [16] for a related
result in the one-dimensional setting), although here we do not give a formal argu-
ment. Equally important is the fact that our result is adaptive: the posterior contraction
rate in Theorem 2 is attained without the knowledge of the smoothness level β being
incorporated in the construction of our prior Π . Finally, Theorem 2, in combination
with Theorem 2.5 and the arguments on pp. 506–507 in [15], implies the existence of
Bayesian point estimates achieving (in the frequentist sense) this convergence rate.

Remark 2. After completion of this work, we learned about the paper [8] that deals
with nonparametric Bayesian estimation of intensity functions for Aalen counting
processes. Although CPPs are in some sense similar to the latter class of processes,
they are not counting processes. An essential difference between our work and [8]
lies in the fact that, unlike [8], ours deals with discretely observed multidimensional
processes. Also [8] uses the log-spline prior, or the Dirichlet mixture of uniform den-
sities, and not the Dirichlet mixture of normal densities as the prior.

4 Proof of Theorem 2

The proof of Theorem 2 consists in verification of the conditions in Theorem 1. The
following lemma plays the key role.

Lemma 1. The following estimates are valid:

K(Qλ0,r0,Qλ,r ) ≤ λ0K(Pr0 ,Pr ) + K(λ0, λ), (11)

V(Qλ0,r0,Qλ,r ) ≤ 2λ0(1 + λ0)V(Pr0 ,Pr ) + 4λ0K(Pr0,Pr )

+ 2V(λ0, λ) + 4K(λ0, λ) + 2K(λ0, λ)2, (12)

h(Qλ0,r0,Qλ,r ) ≤ √
λ0 h(Pr0 ,Pr ) + h(λ0, λ). (13)

Moreover, there exists a constant C ∈ (0,∞), depending on λ and λ only, such that
for all λ0, λ ∈ [λ, λ],

K(Qλ0,r0,Qλ,r ) ≤ C
(
K(Pr0 ,Pr ) + |λ0 − λ|2), (14)

V(Qλ0,r0,Qλ,r ) ≤ C
(
V(Pr0 ,Pr ) + K(Pr0 ,Pr ) + |λ0 − λ|2), (15)

h(Qλ0,r0,Qλ,r ) ≤ C
(|λ0 − λ| + h(Pr0 ,Pr )

)
. (16)

The proof of the lemma is given in Section 5. We proceed with the proof of The-
orem 2.

Let εn = n−γ (log n)� for γ and � > �0 as in the statement of Theorem 2. Set
εn = 2Cεn, where C is the constant from Lemma 1. We define the sieves of densities
Fn as in Theorem 5 in [22]:

Fn =
{
rF,Σ with F =

∞∑
i=1

πiδzi
: zi ∈ [−αn, αn]d ,∀i ≤ In;

∑
i>In

πi < εn;

σ 2
0,n ≤ eigj (Σ) < σ 2

0,n

(
1 + ε2

n/d
)Jn

}
,
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where
In = ⌊

nε2
n/ log n

⌋
, Jn = αa1

n = σ
−2a2
0,n = n,

and a1 and a2 are as in Assumption 2. We also put

Qn = {
Qλ,r : r ∈ Fn, λ ∈ [λ, λ]}. (17)

In [22], sieves of the type Fn are used to verify conditions of Theorem 1 and
to determine posterior contraction rates in the standard density estimation context.
We further will show that these sieves also work in the case of decompounding by
verifying the conditions of Theorem 1 for the sieves Qn defined in (17).

4.1 Verification of (6)

Introduce the notation

h1(λ1, λ2) = C|λ1 − λ2|, h2(r1, r2) = Ch(Pr1 ,Pr2).

Let {λi} be the centers of the balls from a minimal covering of [λ, λ] with h1-intervals
of size Cεn. Let {rj } be centers of the balls from a minimal covering of Fn with h2-
balls of size Cεn. By Lemma 1, for any Qλ,r ∈ Qn,

h(Qλ,r ,Qλi ,rj ) ≤ h1(λ, λi) + h2(r, rj ) ≤ εn

by appropriate choices of i and j . Hence,

N(εn,Qn, h) ≤ N
(
Cεn, [λ, λ], h1

) × N(Cεn,Fn, h2),

and so

log N(εn,Qn, h) ≤ log N
(
Cεn, [λ, λ], h1

) + log N(Cεn,Fn, h2).

By Proposition 2 and Theorem 5 in [22], there exists a constant c1 > 0 such that for
all n large enough,

log N(Cεn,Fn, h2) = log N(εn,Fn, h) ≤ c1nε2
n = c1

4C
2
nε2

n.

On the other hand,

log N
(
Cεn, [λ, λ], h1

) = log N
(
εn, [λ, λ], | · |),

� log

(
1

εn

)
� log

(
1

εn

)
.

With our choice of εn, for all n large enough, we have

c1

4C
2
nε2

n ≥ log

(
1

εn

)
,
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so that for all n large enough,

log N(εn,Qn, h) ≤ c1

2C
2
nε2

n.

We can simply rename the constant c1/(2C
2
) in this formula into c1, and thus (6) is

satisfied with that constant.

4.2 Verification of (7) and (8)

We first focus on (8). Introduce

B̃(ε,Qλ0,r0) = {
(λ, r) : K(Pr0,Pr ) ≤ ε2, V(Pr0 ,Pr ) ≤ ε2, |λ0 − λ| ≤ ε

}
.

Suppose that (λ, r) ∈ B̃(ε,Qλ0,r0). From (14) we obtain

K(Qλ0,r0,Qλ,r ) ≤ CK(Pr0,Pr ) + C|λ − λ0|2 ≤ 2Cε2.

Furthermore, using (15), we have

V(Qλ0,r0 ,Qλ,r ) ≤ CV(Pr0,Pr ) + CK(Pr0 ,Pr ) + C|λ − λ0|2 ≤ 3Cε2.

Combination of these inequalities with the definition of the set B(ε,Qλ0,r0) in (5)
yields

B̃(ε,Qλ0,r0) ⊂ B(
√

3Cε,Qλ0,r0).

Consequently,

Π
(
B(

√
3Cε,Qλ0,r0)

) ≥ Π
(
B̃(ε,Qλ0,r0)

)
= Π1(|λ0 − λ| ≤ ε)

× Π2
(
rf,Σ : K(Pr0,PrF,Σ

) ≤ ε2, V(Pr0 ,PrF,Σ
) ≤ ε2).

(18)

By Assumption 2(i),
Π1(|λ0 − λ| ≤ ε) ≥ π1ε.

Furthermore, Theorem 4 in [22] yields that for some A,C > 0 and all sufficiently
large n,

Π2
(
rF,Σ : K(Pr0,PrF,Σ

) ≤ An−2γ (log n)2�0 , V(Pr0,PrF,Σ
) ≤ An−2γ (log n)2�0

)
≥ exp

(−Cn
{
n−γ (log n)�0

}2)
.

We substitute ε with
√

An−γ (log n)�0 and write ε̃n =
√

3ACn−γ (log n)�0 to arrive
at

Π
(
B(̃εn,Qλ0,r0)

) ≥ π1

√
An−γ (log n)�0 × exp

(
− C

3AC
ñε2

n

)
.

Now, since γ < 1
2 , for all n large enough, we have

π1

√
An−γ (log n)�0 ≥ exp

(−n1−2γ (log n)2�0
)
.
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Consequently, for all n large enough,

Π(B(̃εn,Qλ0,f0) ≥ exp

(
−

(
C + 1

3AC

)
ñε2

n

)
. (19)

Choosing c2 = C+1
3AC

, we have verified (8) (with c4 = 1).
For the verification of (7), we use the constants c2 and ε̃n as above. Note first that

Π(Q \ Qn) = Π2
(
Fc

n

)
.

By Theorem 5 in [22] (see also p. 627 there), for some c3 > 0 and any constant c > 0,
we have

Π2
(
Fc

n

) ≤ c3 exp
(−(c + 4)n

{
n−γ (log n)�0

}2)
,

provided that n is large enough. Thus,

Π(Q \ Qn) ≤ c3 exp

(
−c + 4

3AC
ñε2

n

)
.

Without loss of generality, we can take the positive constant c greater than 3AC(c2 +
4) − 4. This gives

Π(Q \ Qn) ≤ c3 exp
(−(c2 + 4)ñε2

n

)
,

which is indeed (7).
We have thus verified conditions (6)–(8), and the statement of Theorem 2 follows

by Theorem 1 since ε̄n ≥ ε̃n (eventually).

5 Proof of Lemma 1

We start with a lemma from [7], which will be used three times in the proof of
Lemma 1. Consider a probability space (Ω,F,P). Let P0 be a probability measure on
(Ω,F) and assume that P0 
 P with Radon–Nikodym derivative ζ = dP0

dP . Further-
more, let G be a sub-σ -algebra of F. The restrictions of P and P0 to G are denoted P′

and P′
0, respectively. Then P′

0 
 P′ and
dP′

0
dP′ = EP[ζ |G] =: ζ ′.

Lemma 2. Let g : [0,∞) → R be a convex function. Then

EP′g
(
ζ ′) ≤ EP g(ζ ).

The proof of the lemma consists in an application of Jensen’s inequality for con-
ditional expectations. This lemma is typically used as follows. The measures P and
P0 are possible distributions of some random element X. If X′ = T (X) is some
measurable transformation of X, then we consider P′ and P′

0 as the corresponding
distributions of X′. Here T may be a projection. In the present context, we take
X = (Xt , t ∈ [0, 1]) and X′ = X1, and so P in the lemma should be taken as
R = Rλ,r and P′ as Q = Qλ,r .

In the proof of Lemma 1, for economy of notation, a constant c(λ, λ) depending
on λ and λ may differ from line to line. We also abbreviate Qλ0,r0 and Qλ,r to Q0 and
Q, respectively. The same convention will be used for Rλ0,r0 , Rλ,r , Pr0 , and Pr .
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Proof of inequalities (11) and (14). Application of Lemma 2 with g(x) =
(x log x)1{x≥0} gives K(Q0,Q) ≤ K(R0,R). Using (1) and the expression for the
mean of a stochastic integral with respect to a Poisson point process (see, e.g., prop-
erty 6 on p. 68 in [23]), we obtain that

K(R0,R) =
∫

log

(
dR0

dR

)
dR0

= λ0

∫
log

(
λ0r0

λr

)
r0 − (λ0 − λ)

= λ0K(P0,P) +
(

λ0 log

(
λ0

λ

)
− [λ0 − λ]

)
= λ0K(P0,P) + K(λ0, λ).

Now

λ0 log

(
λ0

λ

)
− (λ0 − λ) = λ0

∣∣∣∣log

(
λ

λ0

)
−

(
λ

λ0
− 1

)∣∣∣∣
≤ c(λ, λ)|λ0 − λ|2,

where c(λ, λ) is some constant depending on λ and λ. The result follows.

Proof of inequalities (12) and (15). We have

V(Q0,Q) = EQ0

[
log2

(
dQ0

dQ

)
1{ dQ0

dQ ≥1}

]
+ EQ0

[
log2

(
dQ0

dQ

)
1{ dQ0

dQ <1}

]
= I + II.

Application of Lemma 2 with g(x) = (x log2(x))1{x≥1} (which is a convex function)
gives

I ≤ E R0

[
log2

(
dR0

dR

)
1[ dR0

dR ≥1]

]
≤ V(R0,R). (20)

As far as II is concerned, for x ≥ 0, we have the inequalities

x2

2
≤ ex − 1 − x ≤ 2

(
ex/2 − 1

)2
.

The first inequality is trivial, and the second is a particular case of inequality (8.5) in
[15] and is equally elementary. The two inequalities together yield

e−xx2 ≤ 4
(
e−x/2 − 1

)2
.

Applying this inequality with x = − log dQ0
dQ (which is positive on the event { dQ0

dQ <1})
and taking the expectation with respect to Q give

II = EQ

[
dQ0

dQ
log2 dQ0

dQ
1{ dQ0

dQ <1}

]
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≤ 4
∫ (√

dQ0

dQ
− 1

)2

dQ

= 4h2(Q0,Q) ≤ 4K(Q0,Q).

For the final inequality, see [20], p. 62, formula (12).
Combining the estimates on I and II, we obtain that

V(Q0,Q) ≤ V(R0,R) + 4K(Q0,Q). (21)

After some long and tedious calculations employing (1) and the expressions for the
mean and variance of a stochastic integral with respect to a Poisson point process
(see, e.g., property 6 on p. 68 in [23] and Lemma 1.1 in [17]), we get that

V(R0,R) = λ0

∫ {
log

(
λ0

λ

)
+ log

(
r0

r

)}2

f0

+ λ2
0

{∫
log

(
r0

r

)
r0 + log

(
λ0

λ

)
−

(
1 − λ

λ0

)}2

= III + IV.

By the c2-inequality (a + b)2 ≤ 2a2 + 2b2 we have

III ≤ 2λ0 log2
(

λ0

λ

)
+ 2λ0

∫
log2

(
r0

r

)
r0

= 2V(λ0, λ) + 2λ0V(P0,P), (22)

from which we deduce

III ≤ c(λ, λ)|λ0 − λ|2 + 2λV(P0,P) (23)

for some constant c(λ, λ) depending on λ and λ only. As far as IV is concerned, the
c2-inequality and the Cauchy–Schwarz inequality give that

IV ≤ 2λ2
0

(∫
log

(
r0

r

)
r0

)2

+ 2λ2
0

(
log

(
λ0

λ

)
−

[
1 − λ

λ0

])2

≤ 2λ2
0V(P0,P) + 2K(λ0, λ)2, (24)

from which we find the upper bound

IV ≤ 2λ
2
V(P0,P) + c(λ, λ)|λ0 − λ|2 (25)

for some constant c(λ, λ) depending on λ and λ. Combining estimates (22) and (24)
on III and IV with inequalities (21) and (11) yields (12). Similarly, the upper bounds
(23) and (25), combined with (21) and (11), yield (15).

Proof of inequalities (13) and (16). First, note that for g(x) = (
√

x − 1)21[x≥0],

h2(Q0,Q) = EQ

[(√
dQ0

dQ
− 1

)2]
= EQ

[
g

(
dQ0

dQ

)]
.
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Since g is convex, an application of Lemma 2 yields h(Q0,Q) ≤ h(R0,R). Using (1)
and invoking Lemma 1.5 in [17], in particular, using formula (1.30) in its statement,
we get that

h(R0,R) ≤ ‖√λ0r0 − √
λr‖

≤ ‖√λ0r0 − √
λ0r‖ + ‖√λ0r − √

λr‖
≤ √

λ0‖√r0 − √
r‖ + |√λ0 − √

λ|
= √

λ0h(P0,P) + h(λ0, λ),

where ‖ · ‖ denotes the L2-norm. This proves (13). Furthermore, from this we obtain
the obvious upper bound

h(R0,R) ≤
√

λ h(P0,P) + 1

2
√

λ
|λ0 − λ|,

which yields (16).
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