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Abstract In this paper, we deal with an Ornstein—Uhlenbeck process driven by sub-fractional
Brownian motion of the second kind with Hurst index H € (%, 1). We provide a least squares
estimator (LSE) of the drift parameter based on continuous-time observations. The strong con-
sistency and the upper bound O(1/4/n) in Kolmogorov distance for central limit theorem of
the LSE are obtained. We use a Malliavin—Stein approach for normal approximations.
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1 Introduction

Let SH = {S,H St > 0} be a sub-fractional Brownian motion (sub-fBm) with Hurst
parameter H € (0, 1) that is a centered Gaussian process, defined on a complete
probability space (€2, F, P), with the covariance function

1
E(SHSH) =2 4 2 = 2 (1t = sPH 41t +5P7), 5120
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Note that, when H = %, S 3 is a standard Brownian motion. We only refer to [21] for
information about the sub-fBm and additional references.
Consider the sub-fractional Ornstein—Uhlenbeck process (sub-fOU) of the second

kind, defined as the unique pathwise solution to

Xo = 0. ey

{dX, = —0X,dt +dY,, t>0,
where Y, := fé e %d S(Z witha; = H e#, and S is a sub-fBm with Hurst parameter
H € (%, 1), whereas 8 > 0 is considered as unknown parameter. Equivalently, X is
the process given explicitly by

t
X, =t / ay,, ?)
0

where the integral with respect to Y can be understood in the Skorohod sense. When

1
= %, the process ¥; = fot e ’d Sais is a standard Brownian motion, by Lévy’s char-
acterization theorem. Therefore, the process X given by (1) is a standard Ornstein—
Uhlenbeck process. Notice also that the model (1) was originally introduced in [15],
where the driving process is a fractional Brownian motion, and its definition is related
to the Lamperti transform of the fractional Brownian motion.

Our aim is to estimate the parameter 6 based the continuous observations of the
process (X;);>0 given by (1). We will restrict to the case when 6 > 0 since the case
when 6 < 0 has been treated in [1]. Throughout the paper we denote by fO" us;dY; the
Skorohod integral (or, say, a divergence-type integral) with respect to the Gaussian
process Y (see Preliminaries for definition). Let us recall the idea to construct the
least squares estimator (LSE) for the drift coefficient 6, introduced in [13]. The LSE

is obtained by minimizing
n .
0 —> / 1X, + 60X, |%dt.
0

In this way, we obtain the LSE proposed in (1.4) in the paper [13], which is defined
by
. fo X.aY,
6, =0 f()n XCdi 3)
In recent years, several researchers have been interested in studying statistical
estimation problems for Gaussian Ornstein—Uhlenbeck processes. We aim to bring
a new contribution to the statistical inference for fractional diffusions by estimating
the drift parameter of a sub-fOU process of the second kind. Our paper is relevant
to the literature on parameter estimation for processes with Gaussian long-memory
processes, including [1-5, 8-10, 12, 13, 17, 20]. Estimation of the drift parameters
for Ornstein—Uhlenbeck processes driven by fractional noise is a problem that is both
well-motivated by practical needs and theoretically challenging. In the finance con-
text, a practical motivation to study this estimation problem is to provide tools to
understand volatility modeling in finance. Let us mention some important results in



Convergence rate of CLT for the drift estimation of sub-fOU process of second kind 331

this field where the volatility exhibits long-memory, which means that the volatility
today is correlated to past volatility values with a dependence that decays very slowly.
Following the approach of [7], the authors of [6] considered the problem of option
pricing under a stochastic volatility model that exhibits long-range dependence. More
precisely they considered and analyzed the dynamics of the volatility that are de-
scribed by the equation (1), where the driving process Y is replaced by a standard
fractional Brownian motion (fBm) with Hurst parameter H greater than 1/2.

The study of the asymptotic distribution of an estimator is not very useful in
general for practical purposes unless the rate of convergence is known. As far as we
know, no result of the Berry—Esséen type is known for the distribution of the LSE 6,
of the drift parameter 6 of the sub-fOU of the second kind (1).

In order to describe the asymptotic behavior of the LSE 6, when n — oo, we first
need the following proposition given in [16, Corollary 1]. This result is proved based
on techniques relied on the combination of Malliavin calculus and Stein’s method
(see, e.g., [18]). More precisely, the authors of [16] provided an upper bound of
the Kolmogorov distance for central limit theorem of sequences of the form F,,/G,,
where F), and G,, are functionals of Gaussian fields.

In the following proposition, $®2 denote the symmetric tensor product.

Proposition 1 ([16]). Let f,, g, € $HO2 for all n > 1, and let b, be a positive

function of n such that I5(g,) + b, > 0 almost surely for all n > 1. Define for all
sufficiently large positive n,

. 1 2 2 2 2
no = 4 (B2 =21l 2e0) +81fu @1 full 2o
. 2 2
V) =\ @1 gl + U g
2
Yan) = g\/ gald ez +2lgn ®1 gald -

Suppose that yi(n) — 0 fori = 1,2,3, asn — oo. Then there exists a positive
constant C such that for all sufficiently large positive n,

IZ(fn)
_ 2w _Pp
<Iz(gn> b, Z) (z=9

Let us now describe the results we prove in the present paper. First, in (4) we show
that the strong consistency of the LSE 6, defined by (3), as n — oo. Then, in (5) we
provide, when H € (%, 1), an upper bound of Kolmogorov distance for central limit
theorem of the LSE é,,.

Theorem 1. Assume H € (%, 1) and let 6, be given by (3). Then, as n — 00,

sup [P
zeR

< C max ;).
i=1,2,3

6, —> 6 almost surely. “4)

Moreover, there exists a constant 0 < C < 0o, depending only on 6 and H, such that
for all sufficiently large positive n,

p(ﬂ(e—én)5z>—P(Z§z)

00,H

sup
zeR

C
=< ﬁy )
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where Z denotes a standard normal random variable, and the positive constant og, g
is given by

9\/2 Jo0.002 FOL y2, y3)dy1dy2dys

Ol T HIBHO+1—H,2H — 1) — k6, H)] ~ > ©

with B denoting the classical Beta function, o9,y < 00 (due to [3] and 0 <
Ix — yPH72 — |x + y1?PH2 < |x — y|*" 72 for very x, y > 0), whereas the function
F is defined by

2H—2>

2H-2
) . 7)

The rest of the paper is structured as follows. Section 2 presents some basic el-
ements of Malliavin calculus which are helpful for some of the arguments we use
throughout the paper. Section 3 is devoted to the proof of Theorem 1.

Throughout the paper Z denotes a standard normal random variable, and C de-
notes a generic positive constant (perhaps depending on 6 and H, but not on anything
else), which may change from line to line.

F(y1,y2,¥3)

1 Y
P33l (1= ) (1-4y23) (‘1 g}

_2 -3
X e H —e¢ H

2H-2

—‘l—i-e_%

2H-2 i) »n

H +4+e¢e H

_‘e

2 Preliminaries

In this section, we briefly recall some basic elements of Gaussian analysis, and Malli-
avin calculus which are helpful for some of the arguments we use throughout the
paper. For more details we refer to [18] and [19].

Consider the Gaussian process Y; = fé e_“ng, t >0,witha; = He# . Assume
that % < H < 1. Setting au’1 = Hlog(u/H), it follows from [5] that, for every f, g

inC!,
t v
E </ f@r)dY, / g(r)dYr>
' alf v 11
= HQH —1) / / flayhHglayHe o —%
As Ay
[ =y P2 — )2 axay @)
t v
= / / f(w)g@ry(w, 2)dwdz, €))
N u
where rg (x, ¥) is a symmetric kernel given by
raw.2) = HM7QH = D(@wa)' ™" [lay - a7~ lay + a2 |

1-H
— HZH_I(ZH—l) <ew/HeZ/H>
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2H-2

XHew/H _ ez/H‘ B ‘ew/H n ez/H‘ZH_z]_

In particular, we obtain the following covariance:

t v
E((Y - Y)Yy — V) = / / ri(w, Ddwd:.

Fix a time interval [0, T']. We denote by §) the canonical Hilbert space associated
to the Gaussian process Y. It is the closure of the linear span £ generated by the
indicator functions 1y, t € [0, T'], with respect to the inner product

<l[s,t]» 1[u,v]>5§ =F ((Yt - Ys)(Yv - Yu))-

The mapping 1jp;] +— Y; can be extended to a linear isometry between §) and the
Gaussian space H; spanned by Y. We denote this isometry by ¢ € ) — Y (¢).

For % < H < 1, we introduce || as the set of measurable functions ¢ on [0, T']
such that

T T
ol :=/ / P @)ll9 ) (u, v)dudv < .
0 0

Note that, if ¢, ¥ € |$)],

T T
E(Y(w)Y(w))=fo /O )y ()ry (u, v)dudv.

The space |$]| is a Banach space with the norm ||.|||s and it is included in ). Let
C°(R", R) be the class of infinitely differentiable functions f : R" — R such
that f and all its partial derivatives are bounded. We denote by S the class of smooth
cylindrical random variables G of the form

F=fX(g1),....Y(gn), (10)

wheren > 1, f € Ci°(R",R) and ¢y, ..., ¢, € 5.
The derivative operator D of a smooth cylindrical random variable G of the form
(10) is defined as the $-valued random variable

n a
DG — Zl a—){i(wl), Y (@)

In this way the derivative DG is an element of LZ(Q; ). We denote by D2 the
closure of & with respect to the norm defined by

IGI}, = E(G?) + E(IDG|3).

The divergence operator § is the adjoint of the derivative operator D. Concretely, a
random variable u € L?(Q; $)) belongs to the domain of the divergence operator
Doms if

EDG, u)s| < cullGlir2q



334 M. F. Baldé, K. Es-Sebaiy

for every G € S, where ¢, is a constant which depends only on u. In this case & («) is
given by the duality relation

E(G3(u)) = E (DG, u)g,

for any F € D2, We will make use of the notation
T
S(u) :/ usdYs, u € Doms.
0

In particular, for h € 9, Y (h) = 8(h) = [, hsdY,.

For every n > 1, let $,, be the nth Wiener chaos of B, that is, the closed linear
subspace of L2(Q) generated by the random variables {H, (Y (h)), h € ), ||h|ls = 1}
where H, is the nth Hermite polynomial. The mapping I,,(h®") = n!H,, (Y (h)) pro-
vides a linear isometry between the symmetric tensor product §©” (equipped with the
modified norm ||.||gon = M||.||5®n) and §,,. For every f, g € H°" the following
product formula holds

E (In(f)1n(8)) = n!(f. g) gen.

Notice that for every nonrandom Hélder continuous function ¢ of order & € (1 —
H, 1), we have

t t
/0 (pdesz/(; psdYy =Y (). (11)

For a smooth and cylindrical random variable F = (Y (¢1), ..., Y(¢,)), with
gi € H,i =1,...,n,and [ € CgO(R”) (f and all of its partial derivatives are
bounded), we define its Malliavin derivative as the $)-valued random variable given
by

=9
DF = ;3_){;(Y((p1), s Yon) @i

For every g > 1, H, denotes the gth Wiener chaos of Y, defined as the closed lin-
ear subspace of L3() generated by the random variables {H, (Y (h)), h € 9, |hlls =
1} where H, is the gth Hermite polynomial. Wiener chaoses of different orders are
orthogonal in L? ().

The mapping I, (h®%) : = q'H, (Y (h)) is a linear isometry between the symmet-
ric tensor product 7 (equipped with the modified norm ||. | gos = /¢!l [l 52q) and
H,. Forevery f, g € $H®4 the following extended isometry property holds

E (Iq(f)lq(g)) = q!(f, g),@®q.

We will only need to know the product formula for ¢ = 1 (see [18, Section 2.7.3]),
which is

L(HNh() =h(f®g+(f 8y 12)
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Let {ex, k > 1} be a complete orthonormal system in the Hilbert space $3. Given
fen gen® andp =1,...,n Am,the pth contraction between f and g is
the element of $H®"+7=2P) defined by

o0

f®pg= Z (fiei, @ ®ei,)ner @(g, 6, Q- Bei,)nor.

Let us also recall the hypercontractivity property in Wiener chaos. For h € $%9, the
multiple Wiener integrals I, (%), which exhaust the set §),, satisfy a hypercontractivity
property (equivalence in §), of all L” norms for all p > 2), which implies that for
any G € @?zlﬁl (i.e. in a fixed sum of Wiener chaoses), we have

(E[lGI”])l/p <cpyg (E[|G|2])1/2 for any p > 2. 13)

It should be noted that the constants c), , above are known with some precision when
G is a single chaos term: indeed, by Corollary 2.8.14 in [18], ¢ 4 = (p — 1)4/2.

The following result is a direct consequence of the Borel-Cantelli Lemma (the
proof is elementary; see, e.g., [14, Lemma 2.1]). It is convenient for establishing
almost sure convergences from L? convergences.

Lemma 1. Let y > 0. Let (Z,)>1 be a sequence of random variables. If for every
p > 1 there exists a constant c;, > 0 such that for all n > 1,

1ZullLr@) <cp-n~7,

then for all ¢ > O there exists a random variable o, which is almost surely finite such
that
|Z| < e -n~ YT almost surely

foralln > 1. Moreover, E|a.|P < oo forall p > 1.

3 Proof of Theorem 1
From (3) we can write

~ fo XidY,

0—06, = . 14
" X2dr 14

It follows from (2) that
1 [
= /O XidY, = L.
with

hu(s, 1) := Le—e“—s‘l 2 (s, 1) (15)
n\o, . 2\/ﬁ [0,n] ) .
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On the other hand, using the product formula (12),

2
th = (I] (e_e(t_')l[(),,](.))>
2
= b (efz‘g’eg”ee”l[oyt]z (u, v)) + Hefe(t*‘)l[o,,](.)H53 .

Let us introduce the positive constant

a7

(18)

H*M(H —1)
po.H = f[ﬂwe Y 1—H,2H — 1) — k@, H)], (16)

with '

kO, H) := f w0 H Q4 u)?H 24y,

0
Thus
1 n 1 n
/ X2dr = 12< / 6726t€6u66U1[0 2, v)dt)
npe.H Jo npe,H Jo '
1 /n 6—20[ ||69u1[0,t](u)“§ dt
npo.u Jo )
= I2(gn)+bn,
where
by = — / e T 2
npg.H Jo )
and
1 ou 0 e—29(u\/v) _e—%)n
gn(u,v) = an’He“é’ v T Lio,np2 (u, v)
1 —0Ju— —20n _0u 0
= B (e u=vl _ g=20ng0u, v) Lig.np2 (u, v)

1
= —h,(u,v) —1,(u,v),
PN n(, v) — I (u, v)

with h,, given by (15), and

1
Ly(u,v) = 76_20}169”691)1[0’"]2 (u, v).

2n0p, 1
Therefore, combining (14), (15) and (17), we get

N (9 _ én) I L(fn)

00.H "~ DL(gn) + by’

where oy g is given by (6), and

1
o= ———hy.
Po,HOGY . H

19)

(20)

21

In order to prove our main result we make use of the following technical lemmas.
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Lemma?2. Let H € (%, 1), and let b,, and f,, be the functions given by (18) and (21),

respectively. Then, for alln > 1,

C
by — 1] < —, (22)
n
C
1= 21l = = 23)
n
Consequently, for alln > 1,
C
S —

by =21l full e

Proof. Using (8) and making the change of variables u = x/y, we get

€% 110,11 (u) ||§3
— HQH — 1) / ) f " (e YO (yryHOH
ap Jag

[l = P72 = (x4 )22 axdy

1
— QH2HO-OH o _ 1)/a’ J2HO-1 / LHO—H
ap ap/y

[|1 —uPH2 (14 u)zH_z]dudy

— 2p2H-0+1 0 _ ) /a’ J2HO-1 /1 L HO—H
ag 0
[|1 —uPH2 (14 u)z”*z]dudy

ap/y
uHG—H

ag
o H2HA=0H o p l)f yZHQ—I/
ap 0
[|1 _uPH2 (14 u)”’*z]dudy
:= A; — By, (24)

where

A, = 2H2HU-OF o 1)/a’ V2HO=1 g
ap

1
HO—H [11 _ ,2H=2 _ (| 4 02H=2] 4
(T
QHHA=0+1 o _ 1)[ﬁ(H0 +1—H,2H —1) —k(6, H)]

ag
% / y2H9—1dy
ao

20 _
W[ﬂ(m) 41— H,2H — 1) — k@, H)](e%” —1).
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Moreover,

L[ op H*(QH - 1)

W ﬁ[ﬁ(He—i—l—HjH—l)—k(e,H)]

n Jo

- e—29n -1
X s e— .
20n
Thus
1 n 1— —26n 1
/ WA d—1] = —¢ < (25)
npe H Jo 20n 20n

On the other hand,

ar
|Bt| < 2H2H(1—0)+1(2H _ l)f y2H(9—1
ao

@y 2H-2 2H-2
x/ uHe*H‘|1—u| H=2 _ (1 4w~ ‘dudy
0

a ap/y
< 2H2H(1—0)+1(2H . 1)/ y2H0—1f MHG—HH _ u|2H—2dudy
ap 0
ar ap/y
< 2H2H(]79)+] (2H— l)/ yzﬁﬂfl(ao/y)l‘lew/ u*H
ag 0
(1— u)ZH_zdudy
a; 1
ap 0
2H+1 -1
= 2H 2H—-1)B(1—-H,2H —1
( )B( ) 1o
< ce’.
Hence,
n c (" C
/ e Bldt < —f e dr < =, (26)
npg.H Jo nJo n

Therefore, combining (24), (25) and (26), we deduce (22).
Now let us prove (23). First we decompose the integral f[o At into

5
= = , (27
/[\Oﬂn]4 ‘/L:J?]Ai,n ; ‘/I;i,n

where

8 12 16
Atn =Y Din, Azp =Y;Z9Din, Az n =U;213Din,
20 24
Asn =217 Din, Asp =2y Din,
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with

Dy, = {0<
Dy, = {0 <
D;, = {0<
Dy, = {0<
Ds, = {0<
D¢, = {0<
D7, = {0<
Dg, = {0 <
Dy, = {0<
D, = {0<
Dy, = {0<
Dipn = {0<
Dizn = {0<
Dy, = {0<
Dispn = {0<
Dign = {0<
Dyn = {0<
Dign = {0<
Dy = {0<
Dyn = {0<
Dyn = {0<
Dy, = {0<
Dy, = {0<
Dyun = {0<

Therefore, using (9), (27), and setting

mpy (X1, X2, X3, X4) =

we have

2
(A

x1
x1
x2
x2
x3
X3
X4

X4

X1
X3
X2

X4

X1
X3
X2

X4

X1
X4
x2

X3

X1
X4
X3

x2

AN AN A AN ANA

AN AN AN AN AN AN AN AN ANA

A AN AN A

x2
x2
X1
x1
X4
X4
x3

X3

X3
X1
X4

X2

X3
X1
X4

X2

X4
x1
X3

X2

X4
x1
x2

x3

AN AN AN A AN ANA

AN AN AN AN AN AN AN AN ANA

A AN AN A

x3
X4
X3
X4
xi
x2
X1

X2

x2
X4
X1

X3

X4
x2
x3

X1

X2
X3
X1

X4

X2
X1

X4

e O1x1=x3] ,—0lx2—x4]

AN AN AN AN ANA

AN AN AN AN AN AN AN AN ANA

A AN AN A

x4
x3
X4
x3
x2
x1
x2

X1

X4
x2
x3

X1

x2
X4
X1

X3

x3
x2
X4

X1

x2
x3
X4

x1

AN AN A AN ANA

AN AN AN AN AN AN AN AN ANA

A A AN A

1
—/ mpy(x1,x2, X3, X4)dxy ...dxy
4n [0,n]4

1
sl ol
4” Al,n AZ,n A3.71 A4,n AS,n

xmpy(x1, X2, x3, x4)dx1 ...dx4

ry (x1, x2)rg (X3, X4),

339
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1
- L s/ +4/ +4/ +4/ +4/
4n Dy Do D3 D17, Dy

xm g (x1, X2, X3, X4)dxy . ..dxa
= 2hin+hn+ B+ lan+ Isn, (28)

where we used the fact that
/ mpy (X1, x2, X3, x4)dx1dxodx3dxy
Dl,n
= 2[ mpy (X1, X2, X3, X4)dx1dxodx3dxs,
DS,n
f mpy (X1, x2, X3, x4)dx1dxodx3dxy
D9,n
== / mpy (X1, X2, X3, X4)dxdxydx3dx4,
Dian
f mpy (X1, X2, X3, X4)dx1dxodx3dxs
D13
- = / mp (X1, X2, X3, X4)dx1dxadx3dxq,
Di6.n
/ mpy (X1, X2, X3, x4)ddx1dx2dx3dx4
Dy7.n
== / mpy (X1, X2, X3, x4)dx1dxodx3dxs,
Do
/ mp (X1, X2, X3, X4)dx1dxodx3dxs4
Dy n
== [ mpy (X1, X2, X3, x4)dx1dxodx3dxs.
D24,n

Let us now estimate / ,. Making the change of variables y3 = x4 —x1, y2 = x4 — X2,

y1 = x4 — x3, and y4 = x4, we obtain that mll’" is equal to

n
lf/ 0101 =331 y=Olr2—xal H(1/ H—1)(x1-xa-bocs )
nJo Jo<xi<xy<xz<xa

exl/H _ exz/H

X( ‘2H72_ exl/H+ex2/H’2H2)
“(

1 n
= - / / F(y1,y2, y3)dyi1dyadysdys
nJo Jo<y <yr<ys<ys

1 n n o0 y3 V2
nl1Jo Jo<yi<y<yz<oo Jo Jys Jo Jo

2H-2
M/ H _ eX4/H‘

2H-2
— |er3/H 4 eX4/H‘ ) dxidxrdx3dxy
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= / F(y1, y2, y3)dy1dysdy;
O<yi<yr<y3<oo

1 [ [0 [y [»
—= / f f f F(y1, y2, y3)dyi1dyzdysdya, (29)
nJjo ya 0 0

where the function F is given by (7). Moreover, i [ fy4 157 7 FOn, oy,

y3)dy1dy,dysdys is equal to

Y3 orn
/ / / / e 0=yl ,—0x (lf Y1+y2+y3)
n y4
’

[ 2H-2 » » 2H2]
X |:‘1 —e 7

— e_ﬁ +€_H
1 [ [ [y3 02 1
— _/ / / / e 0y1=y31p=032 , (1= ) (V1+y2+3)
nJo Jy, Jo Jo

3 |2H=2 y |2H-2
‘l—e H

2H— 2’

2
gH—eH

2H-2 oy [2H-
—‘l—i-e H }dyldyzdyzdm

oy |2H=2
+e A

—‘eiH —e H
1 |2H-2

v 2H-2 \
‘1 —e H

_n _n
e H e H

1 12H
+e H

i)
)dyldyzdyadm

2H-2
‘1

+ ‘ # e
=AD —AD _A® 4 AW, (30)

2H-2
dy\dyrdysdyy

xeﬁ—eH l—e_ﬁ

nopoo rys ryy
l/ / / / e*9y36(17%)(y1+y2+y3)
nJo Jy, Jo Jo

» 3 |2H-2 )
Xl|le H —eH

. HpO—H, 2H—1)/ /"O/ =073 (1= 4 (2+73)
2

vy [2H=2
“"H —e H

2H— 2’

2H-2
dy\dy dysdyy

l—e #

dy>dysdys

e

_ HBA—H.2H-1) f” /°° /” o3 (1= 1) (3 —32)
n 0 Jys JO

2H-2
x ’1 _ e—(yz—yz)/H‘ dyrdy3dy,
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_ HB(1—H,2H — 1) /n /oo /ys e_0y3e(l_#)x2
n 0 Jys JO

xy |2H=2
X )1 —e H dxydyzdya
HB(1 — H,2H — 1))> [" (> _,.
< (HB( ) / / e~ dysdys
n 0 Jya
(HB(1 — H,2H — 1))?
- 62n ’
Since
yz vy [2H=2 " vy |2H=2 v [2H=2 v 12H=2
‘e_ﬁ—i—e_ﬁ < ‘e_ﬁ—e_ﬁ and ‘l—i—e_ﬁ <|l1—e H ,
we have
C C C
AP =14 = — AP < 1A < — and AP < 1400 <
Consequently,
1 " [ [y [ C
—/ / / / F(y1, y2, y3)dyidyrdysdys < —. (31)
nJo Jy, Jo Jo n
Combining (29) and (31) we deduce
4H-2 2 c
h,—H 2H - 1) F(y1, y2, y3)|dyidyadys < —.  (32)
0<y1<y2<y3<00 n
Moreover,
4H-2 2 C
Lin—H (2H -1) F(y1, y2, y3)dyrdyrdys| < —,  (33)
O<y1<y3<yz<oo n
since

/ F(y1, y2, y3)dyidyzdy,
O<y;<y3<y2<00
= / F(y1. y2, y3)dyidy:dys.
0<y1<y2<y3<oo

Using similar arguments as above, we can conclude

_ C

I — H2QH — 1) / F(y, ya. y)dyadyrdys| < S, (34)
0<y2 <y <y3<00 n
_ C

I — B2 QH — 172 f Fo, ya ydyadysdyi| < S, (35)
O<yz<yz<yr<oo n
_ C

Low — H2QH — 1) / F(yn, ya. y)dysdyidys| < <. (36)
0<y3 <y <y2<00 n
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_ C
Isn — 20 - 12 [ FOn 2, y)dysdyady| < <. (37)
0<y3<yr2<y;<o0o n
Combining (28), (32)—(37) and the fact that
0,00 = [ J10 < yo(1) < ¥o2) < Yo3) < 00},
oe®
where G is a set of permutations on a set {1, 2, 3}, we deduce that
2 4H-2 2 ¢
1hnllge: — H (2H -1) F(y1, y2, y3)dyidy:dys| < —, (38)
(0’00)3 n
which proves (23). |

Lemma 3. Suppose H € (%, 1). Let g, and f, be the functions given by (19) and
(21), respectively. Then, for alln > 1,

C
1 fn ®1 fullge2 < N (39)
C
8n ,FJ®2 = —,
gl < N (40)
C
llgn ®1 gn”f3®2 = 232 41)
c
i ®1 gnllge2 < e (42)
C
|(far 8n)gyen| < —=. (43)
Jn

Proof. Taking into account that

1
81l fn ®1 fullfyen = Var (EIIDFnH%@z) : for F, := h(fy),
in order to obtain (39), it is sufficient to show that
C

Var (IDFill}e: ) < (“4)

Now using (9), we can write
) n n
[DFullge: = 4/ / I (fuCu, NI (fa(, Dra(u, v)dudv

0o Jo

Using the multiplicative formula (12), we see that

N DI = (e, @, e + B folw 38 fu(w,)
=: Ai(u,v) + Ay(u, v).
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Here A is deterministic and A, has expectation zero. Thus, we obtain that

n n
IDF e~ E(IDFalRe:) =4 [ [ st vyt v)dudo
$ 2] o Jo

Hence, in order to have (44), we need to show that

E |:</ / Ar(u, v)ry (u, v)dudv) ] < —.
0 JO n

We have

n prn 2
E |:</ / Ar(u, v)rg (u, v)dudv) :|
0 Jo

=f 4E[Az(ul,vl)Az(uz,vz)]rH(ul,vl)rH(uz,vz)duldvlduzdvz
[0,n]

= /[an]4 </[0,n]4 (fulur, I® fu (v, D(x1, y1)

X (fuuz, )& fu(v2, ) (x2, y2)ra (x1, y)ru(xa, yz)dxldy1dX2dy2)

xrg(uy, v)rg (s, v2)duidviduydv,
= /[0 5 (a1, I fuwi, Y1, y1)) (fa (w2, I® fu(v2, ) (X2, ¥2)

xry(x1, yDryg (x2, y2)rg(uy, vi)
xrg o, v2)dxidydx,dyrduidvidurdv,.

Note that forevery 0 < x,y < T

2H-2
= K(x,y).

rg(x,y) < H*=1oH - l)e(%_l)(“'y) el — i

Thus,

n n 2
E |:</ / Ar(u, v)ry(u, v)dudv) j|
0o Jo

< /[o ; (fu Gt D& fu 1, I xr, 1) (faua, I fu(va, ) (x2, y2)

xK(x1, y1)K (x2, y2) K (u1, v1) K (u2, v2)dx1dyidxadyrduydvidusdv;
C

< —
n

k]

where the last inequality comes from [3, Lemma 5.1]. Hence the inequality (39) is
obtained.
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Since for every (u, v) € [0, n]z, gn(u,v) >0, h,(u,v) > 0and [, (u,v) > 0,
using (19), we get

1
<——7—h .
llgnll ez = epg,Hﬁ|l nll o2

Combining this with (38), we obtain (40). Similarly, using (19), (21) and (39), we
have

C
lgn ®1 gnllger = —litn @1 hnligor

C

< Sl fllge
C

< a2

< =

which implies (41).
It is well known that

1f ®1 gallger = (fu ®1 fos 80 ®1 &) gyen,

due to a straightforward application of the definition of contractions and the Fubini
theorem.
Thus, from (39) and (41), we obtain

1 ®1 enllfer < I1fn @1 fullgezllgn ©1 gallger

- C
— n3 b
which leads to (42).
Finally, the inequality (43) is a direct consequence of (23) and (40). The proof of
the lemma is thus complete. O

Proof of Theorem 1. First we prove the almost sure convergence (4). From (20) we
can write

Vs SRR
" 12(gn)+bn'

Furthermore, using (23), and (40), we have

1 1 2 C C
E [(EIQW) } = 1 ulher = — and  E[(L(gn)?] = 2lgule: <

n n

Combining this with (13) and Lemma 1, we obtain that, as n — oo,

1
ﬁh(fn) —> 0, and Ix(gy) — 0
almost surely. Moreover, it follows from (22) that b, —> 0, as n — o00. Therefore
(4) is obtained.
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Let us now prove the convergence in law (5). It follows from (20), Proposition 1,

Lemma 2 and Lemma 3 that for every n large,

sup
zeR

P<£<9—én>fZ>_P(ZSZ)

00,H

s

fomaX{

by =2l fullger | 1fa ®1 fullgez, |(fr gn)sye2

1
1 @1 8all s llgn @1 ulnen, galldes |

which implies the desired conclusion. O
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