
Modern Stochastics: Theory and Applications 8 (2) (2021) 209–237
https://doi.org/10.15559/21-VMSTA180

Optimal transport between determinantal point
processes and application to fast simulation

Laurent Decreusefonda,∗,1, Guillaume Morozb,1

aLTCI, Telecom Paris, Institut polytechnique de Paris, Paris, France
bINRIA Nancy Grand-Est, Nancy, France

laurent.decreusefond@mines-telecom.fr (L. Decreusefond), guillaume.moroz@inria.fr (G. Moroz)

Received: 1 November 2020, Revised: 1 April 2021, Accepted: 10 May 2021,
Published online: 2 June 2021

Abstract Two optimal transport problems between determinantal point processes (DPP for
short) are investigated. It is shown how to estimate the Kantorovitch–Rubinstein and Wasser-
stein-2 distances between distributions of DPP. These results are applied to evaluate the accu-
racy of a fast but approximate simulation algorithm of the Ginibre point process restricted to a
circle. One can now simulate in a reasonable amount of time more than ten thousands points.

1 Introduction

Determinantal point processes (DPP) have been introduced in the seventies [24] to
model fermionic particles with repulsion like electrons. They recently regained in-
terest since they represent locations of eigenvalues of some random matrices. A de-
terminantal point process is characterized by an integral operator with kernel K and
a reference measure m. The integral operator is compact and symmetric and thus
characterized by its eigenfunctions and its eigenvalues. Following [18], the eigen-
values are not measurable functions of the realizations of the point process so it
is difficult to devise how a modification of the eigenfunctions, respectively of the
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eigenvalues or of the reference measure, modifies the random configurations of a
DPP.

A careful analysis of the simulation algorithm given in [18] yields several answers
to these questions. For instance, it is clear that the eigenvalues control the distribution
of the number of points and the eigenfunctions determine the positions of the atoms
once their number is known. The above mentioned algorithm is a beautiful piece of
work but requires to draw points according to distributions whose densities are not
expressed as combinations of classical functions, hence the necessity to use rejec-
tion sampling method. Unfortunately, as the number of drawn points increases, the
densities present high peaks and deep valleys which is the most adverse situation for
rejection sampling, see Figure 1.

Fig. 1. Peaks and valleys of some densities

As a consequence, it is hardly feasible to simulate a DPP with more than one thou-
sand points in less than a few hours. As some DPP arise as locations of eigenvalues of
some matrix ensembles, it may seem faster and simpler to draw random matrices and
compute their eigenvalues with the optimized libraries to do so. However, there are
several drawbacks to this approach: a) we cannot control the domain into which the
points fall, and for some applications it may be important to simulate DPP restricted
to some compact sets, b) as eigenvalues belong to R or C, we cannot imagine DPP
in higher dimensions with this approach, c) for a stationary DPP, it is often useful
to simulate under the Palm measure (see below) which no longer corresponds to a
known random matrix ensemble.

Several refinements of Algorithm 1 have been proposed along the years but the
most advanced contributions have been made for DPP on lattices, which are of a
totally different nature than continuous DPP. We here propose to speed up the simu-
lation of a DPP by reducing the number of eigenvalues considered and approximating
the eigenfunctions by functions whose quadrature can be easily inversed to get rid of
the rejection part.

We evaluate the impact of these approximations by bounding the distances be-
tween the original distribution of the DPP to be simulated and the distribution accord-
ing to which the points are drawn. The computations of the error margin are specific
to the Ginibre DPP but could be done for other processes with radial symmetry like
polyanalytic Ginibre ensembles [17] or the Bergman DPP [19].
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Actually, there are several notions of distances between the distributions of point
processes (see [11] and references therein). We focus here on the total variation dis-
tance and on the quadratic Wasserstein distance. The former counts the difference
of the number of points in an optimal coupling between two distributions. The lat-
ter evaluates the matching distance between two realizations of an optimal coupling
provided that it exists.

The paper is organized as follows. We first recall the definition and salient proper-
ties of DPP. In Section 3, we briefly introduce the optimal transportation problem in
its full generality and give some elements dedicated to point processes. In Section 4,
we show how the eigenvalues and eigenfunctions do appear in the evaluation of the
distances under scrutiny. In Section 5, we apply these results to the simulation of the
Ginibre process.

2 Determinantal point processes

Let E be a Polish space, O(E) the family of all nonempty open subsets of E and B
denotes the corresponding Borel σ -algebra. In the sequel, m is a Radon measure on
(E,B). Let NE be the space of locally finite subsets of E, also called the configura-
tion space:

NE = {ξ ⊂ E : |� ∩ ξ | < ∞ for any compact set � ⊂ E},
equipped with the topology of the vague convergence – the topology generated by the
seminorms

pf (ξ) =
∣∣∣∣∣∣
∑
x∈ξ

f (x)

∣∣∣∣∣∣
for f : E → R continuous with compact support. This makes NE a Polish space and
we denote by FNE

its Borelean σ -field (see [20]). We call elements of NE config-
urations and identify a locally finite configuration ξ with the atomic Radon measure∑

y∈ξ δy , where we have written δy for the Dirac measure at y ∈ E.

Next, let Nf
E = {ξ ∈ NE : ξ(E) < ∞}, the space of all finite configurations on

E. It is naturally equipped with the trace σ -algebra F
N

f
E

= F |
N

f
E

. Note that

N
f
E =

∞⋃
n=0

N
(n)
E

where
N

(n)
E = {ξ ∈ N

f
E, ξ(E) = n}.

Since N(n)
E can be identified with En/Sn where Sn is the group of permutations over

n elements, every function f : N
f
E → R is in fact equivalent to a family of functions

(fn, n ≥ 1) where fn is a symmetric function from En to R.

Definition 1. A locally finite point process is defined as a probability measure on
(NE,FNE

) or as an NE-valued random variable.
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A finite point process is a probability measure on (N
f
E,F

N
f
E

) or an N
f
E-valued

random variable.
For �μ, an N

f
E-valued random variable of distribution μ, we denote by μn the

distribution of �μ given �μ(E) = n. In view of the previous remark, it can be seen
as a probability measure on En, invariant by the action of Sn, which describes the
location of the particles given their number.

A random point process μ is characterized by its Laplace transform, which is
defined for any measurable nonnegative function f on E as

Lμ(f ) =
∫
NE

e
−∑

x∈ξ f (x) dμ(ξ).

A point process is simple if with probability 1, for any x ∈ E, �μ({x}) ≤ 1. In the
sequel, we consider only simple point processes so that we remove the word simple.
Point processes are also often characterized via their correlation functions defined as
follows.

Definition 2. A point process μ is said to have correlation functions (ρn, n ≥ 1) if
for any A1, . . . , An, disjoint bounded Borel subsets of E,

E

[
n∏

i=1

�μ(Ai)

]
=

∫
A1×···×An

ρn(x1, . . . , xn) dm(x1) . . . dm(xn).

We see that ρ1 is the mean density of particles with respect to m, and

ρn(x1, . . . , xn) dm(x1) . . . dm(xn)

is the probability of finding at least one particle in the vicinity of each xi , i =
1, . . . , n.

Definition 3. A measure μ on N
f
E is regular with respect to the reference measure m

when, for all n ≥ 1, there exist

jn : N
(n)
E −→ R+,

{x1, . . . , xn} 
−→ jn(x1, . . . , xn)

where jn is symmetric on En such that for any measurable bounded f : Nf
E → R,

E[f (�μ)] = f (∅) +
∞∑

n=1

1

n!
∫

En

f (x1, . . . , xn)jn(x1, . . . , xn) dm(x1) . . . dm(xn).

(1)
The function jn is called the n-th Janossy density. Intuitively, it can be viewed as the
probability to have exactly n points located in the vicinity of (x1, . . . , xn).

For details about the relationships between correlation functions and Janossy den-
sities, see [7].
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2.1 Determinantal point processes

For details, we mainly refer to [30]. A (symmetric) determinantal point process on X

is characterized by a kernel K and a reference measure m. The map K is supposed
to be a Hilbert–Schmidt operator from L2(E, m) into L2(E, m) which satisfies the
following conditions:

1. K is a bounded symmetric integral operator on L2(E, m), with kernel K(·, ·),
i.e., for any x ∈ E,

Kf (x) =
∫

E

K(x, y)f (y) dm(y).

2. The spectrum of K is included in [0, 1].
3. The map K is locally trace-class, i.e., for all compact � ⊂ E, the restriction

K� = P�KP� of K to L2(�, m) is trace-class. Here and hereafter, P� de-
notes the orthogonal projection from L2(E, m) onto L2(�, m).

Definition 4. The determinantal measure on NE with characteristics K and m can be
defined through its correlation functions

ρn,K(x1, . . . , xn) = det
(
K

(
xk, xl

))
1≤k,l≤n

,

and for n = 0, ρ0,K(∅) = 1.

There is a particular class of DPP which is the building blocks on which general
DPP are built upon.

Definition 5. A DPP whose spectrum is reduced to the singleton {1} is called a pro-
jection DPP. Actually, its kernel is of the form

Kφ(x, y) =
M∑

j=0

φj (x)φj (y)

where M ∈ N ∪ {∞} and (φj , j = 0, . . . ,M) is a family of orthonormal functions
of L2(E,m).

If M is finite, then almost all configurations of such a point process have M atoms.

Alternatively, when the spectrum of K does not contain 1, we can define a DPP
through its Janossy densities. In this situation, the properties of K ensure that there
exists a sequence (λj , j ≥ 0) of elements of [0, 1) with no accumulation point but 0
and a complete orthonormal basis (φj , j ≥ 0) of L2(E,m) such that

Kφ(x, y) =
∑
j≥0

λj φj (x)φj (y).

Note that if L2(E, m) is a C-vector space, we must modify this definition accord-
ingly:

Kφ(x, y) =
∑
j≥0

λj φj (x)φj (y).
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For a compact subset � ⊂ X, the map J� is defined by

J� = (Id −K�)−1 K�,

so that we have
(Id −K�) (Id +J�) = Id .

For any compact � ⊂ E, the operator J� is a Hilbert–Schmidt, trace-class op-
erator, whose spectrum is included in [0,+∞). We denote by J� its kernel. For any
n ∈ N, any compact � ⊂ E, and any (x1, . . . , xn) ∈ �n, the n-th Janossy density is
given by

j�
n (x1, . . . , xn) = det (J� (xk, xl))1≤k,l≤n . (2)

We can now state how the characteristics of a DPP are modified by some usual trans-
formations on the configurations.

Theorem 6. Let μ be a DPP on Rk with kernel K and reference measure m = h dx.
Let (λj , j ≥ 0) be its eigenvalues counted with multiplicity and (φj , j ≥ 0) the
corresponding eigenfunctions.

1. A random thinning of probability p (i.e. we keep each atom with probability p

independently of the others) transforms μ into a DPP with kernel pK .

2. A dilation of ratio ρ transforms μ into a DPP of kernel

Kρ(x, y) = 1

ρ
K(ρ−1/kx, ρ−1/ky).

3. If H is a C1-diffeomorphism on E, then

H : NE −→ NE,∑
x∈ξ

δx 
−→
∑
x∈ξ

δH(x)

transforms μ into a DPP of kernel

KH (x, y) = K
(
H−1(x), H−1(y)

)
and reference measure m ◦ H−1, the image measure of m by H , see [6].

4. If K(x, y) = k(x − y) then μ is stationary [22] and thus admits a stationary
Palm measure μ0. From [30, Theorem 6.5], we know that μ0 is distributed as
the DPP of kernel

K0(x, y) = K(x, y) − K(x, 0)K(0, y)

K(0, 0)
· (3)

Remark 1. It is straightforward to see that the spectrum of KH in L2(E, m ◦ H−1)

is the same as the spectrum of K in L2(E, m). Actually, this transformation will be a
particular case of the optimal maps obtained in solving the MKP for the Wassertein-2
distance (see Theorem 17).
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Remark 2. The Ginibre point process, denoted by G, which will be our toy model,
is the stationary DPP with kernel

K(x, y) = 1

π
e− 1

2 (|x|2+|y|2)exy

for x, y ∈ C. Expanding the right-most exponential we obtain

K(x, y) =
∞∑

k=0

xk

√
π

√
k!e

−|x|2/2 yk

√
π

√
k!e

−|y|2/2. (4)

By a change of variables in polar coordinates, we have∫
C
(x1 + ix2)

k(x1 − ix2)
me−(x2

1+x2
2 ) dx1 dx2 = 2π

∫
R+

r2k+1e−r2
dr 1{k=m}

= π k!1{k=m},

so that (4) gives the orthonormal eigenfunction expansion of K . If we truncate this
expansion to order N , we obtain the kernel of the point process made by the eigenval-
ues of complex N × N Hermitian matrices with Gaussian entries. This would yield
an easy way to simulate an approximation of G limited by the effectiveness of the
algorithms which compute the eigenvalues. There are several reasons for which this
random matrix based algorithm is not satisfactory, all governed by the practical ap-
plications of the Ginibre point process as a model for locations of some items with
repulsiveness. For instance, in mobile telecommunications systems, antennas can-
not be too close to each other if we want to mitigate interference. This proscribes
to use Poisson point processes, which are the paragon of processes with no depen-
dency among the particles, as models for their distribution and suggests to use point
processes with repulsiveness, like DPP. The first problems with the standard Gini-
bre point process are that we cannot modify neither the mean number of points per
unit of surface, which turns to be 1/π , nor the strength of the repulsiveness. We then
introduce the (λ, β)-Ginibre point process, denoted by Gλ,β , whose kernel is given
by

Kλ,β(x, y) = λ

π
e
− λ

2β
(|x|2+|y|2)

e
λ
β
xy (5)

where λ ∈ R+ and β ∈ (0, 1). The mean number per unit of surface of Gλ,1 is λ/π

and Gλ,β is obtained by the β-thinning of Gλ,1 followed by a
√

β rescaling, so that
the mean number of points per unit of surface remains unchanged. We know that
Gλ,β converges in distribution to a Poisson point process of intensity λ/π when β

goes to zero [9]. This means that the more severe the thinning is (i.e. β small), the
more the repulsiveness decreases. In [16], it is shown that the locations of antennas in
mobile systems of the last generation can be considered as realizations of Gλ,β with
λ varying between 1.5 and 3.5 and β ∈ [0.6, 1], depending on the operator which
deployed the antennas. There is a priori no set of random matrices whose eigenvalues
exhibit such a behavior. Furthermore, in practical situations, we are often forced to
simulate point processes under their Palm measure. We know from [15], that the Palm
measure of G is realized by adding an atom at 0 and removing the atom of G with a
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modulus distributed as the absolute value of a Gaussian random variable. On a given
realization, this atom is clearly impossible to identify but in view of (3), we see that

K0(x, y) = 1

π
e−(|x|2+|y|2)/2(exy − 1).

This amounts to remove the first eigenfunction and to the best of our knowledge,
this does not coincide anymore with a DPP arising from a known space of random
matrices. All these considerations show how important it is to have a good simulation
tool of DPP based solely on the eigenfunction expansion.

2.1.1 Simulation of DPP
The simulation algorithm introduced in [18] produces random configurations dis-
tributed according to a determinantal point process. It is based on the following
lemma.

Lemma 7. Let μK,m be a determinantal point process of a trace-class kernel K

and reference measure m. Let sp(K; L2(E,m)) = {λj , j ≥ 0} and (φj , j ≥ 0) be a
CONB of L2(E, m) composed of eigenfunctions of K . Let (B(λj ), j ≥ 0) be a family
of independent Bernoulli random variables of respective parameter λj . Let

I = {j ≥ 0, B(λj ) = 1}.
Since E [|I |] = ∑∞

j=0 λj = trace(K) < ∞, I is a.s. a finite subset of N. Consider

KI (x, y) =
∑
j∈I

φj (x)φj (y)

and

pI (x1, . . . , x|I |) = 1

|I |! det
(
KI (xk, xl), 1 ≤ k, l ≤ |I |

)
.

Construct a random configuration ξ as follows: Given I , draw points (W1, . . . ,W|I |)
with joint density pI . Then ξ is distributed according to μK,m.

In the following, let φI (x) = (φj (x), j ∈ I ).

Data: R, I

Result: W1, . . . ,W|I |
Draw W1 from the distribution with density ‖φI (x)‖2

C|I |/|I |;
e1 ← φI (W1)/‖φI (W1)‖C|I | ;
for j ← 2 to |I | do

Draw Wj from the distribution with density

pj (x) = 1

|I | − j + 1

⎛⎝‖φI (x)‖2
C|I | −

j−1∑
k=1

|ek.φI (x)|2
⎞⎠

uj ← φI (Wj ) − ∑j−1
k=1 ek.φI (Wj ) ek;

ej ← uj/‖uj‖C|I | ;
end

Algorithm 1: Sampling of the locations of the points given the set I of active
Bernoulli random variables
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We have two kinds of difficulties here: drawing of Wi according to a density
function with no particular feature so we usually have to resort to rejection sampling;
furthermore, when |I | is large the computation of the density may be costly as it
contains a sum of |I | terms. Figure 1 also suggests that when the number of points
becomes high, the profile of the conditional density might be very chaotic with high
peaks and deep valleys, involving a large number of rejections in the sampling of this
density.

To illustrate this second difficulty, we simulate Gλ,β restricted to B(0, R), which
we denote by G

λ,β
R . A nice feature of radially symmetric DPP, like Ginibre, Bergmann

or polyanalytic Ginibre point processes is that the eigenfunctions expansion of their
restriction to a ball is easily calculated by just renormalizing the eigenvalues and the
eigenfunctions. For Gλ,β

R , we obtain

λj = γ (j + 1, R2)

j ! ,

φj (x) =
√

λ

π γ (j + 1, R2)

(√
λ

β
x

)j

e
− λ

2β
|x|2

.

For a simulation of a realization of Gλ,β
R , we define the overhead due to rejections by

the ratio of the total number of points drawn and the number of accepted points.

Table 1. Average overhead (over 10 runs) due to rejections in the simulation of G3,β
10

β 1 0.7 0.5 0.25 0.1
Overhead 3.1 4.5 6.1 13 29

These are the problems we intend to address in the following.

Remark 3. Note that this algorithm is fully applicable even if E is a discrete finite
space. It has been improved in several ways [21, 31, 14] but when it comes to simulate
a DPP with a large number of points as it is necessary in some applications [4],
the best way remains to use MCMC methods [1]. By its very construction, this last
approach is not applicable when the underlying space E is continuous, though there
exist some approximate algorithms (see [28] and references therein) based on it.

3 Distances derived from optimal transport

For details on optimal transport in Rd and in general Polish spaces, we refer to
[33, 32]. For two Polish spaces X and Y , for μ (respectively ν) a probability mea-
sure on X (respectively Y ), �(μ, ν) is the set of probability measures on X × Y

whose first marginal is μ and second marginal is ν. We also need to consider a lower
semicontinuous function c from X × Y to R+. The Monge–Kantorovitch problem
associated to μ, ν and c, denoted by MKP(μ, ν, c) for short, consists in finding

inf
γ∈�(μ, ν)

∫
X×Y

c(x, y) dγ (x, y). (6)
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More precisely, since X and Y are Polish and c is l.s.c., it is known from the general
theory of optimal transportation, that there exists an optimal measure γ ∈ �(μ, ν)

and that the minimum coincides with

sup
(F,G)∈�c

(∫
X

F dμ +
∫

Y

G dν

)
,

where (F, G) ∈ �c if and only if F ∈ L1(dμ), G ∈ L1(dν) and F(x) + G(y) ≤
c(x, y). We will denote by Wc(μ, ν) the value of the infimum in (6). In the sequel,
we need the following theorem of Brenier [32, Chapter 2] or [25].

Theorem 8. Let c(x, y) = 2−1‖x − y‖2 be the Euclidean distance on Rk and μ, ν

two probability measures with finite second moment. If the measure μ is absolutely
continuous with respect to the Lebesgue measure, there exists a unique optimal mea-
sure γopt which realizes the minimum in (6). Moreover, there exists a unique function
ψ : Rk → R such that

y = x − ∇ψ(x), γopt-a.s.

Then we have

We(μ, ν) = 1

2

∫
Rk

‖∇ψ‖2
Rk dμ.

The square root of We(μ, ν) (the subscript e stands for Euclidean) defines a distance
on M1(Rk), the set of probability measures on Rk , called the Wasserstein-2 distance.

When X = Y and c is a distance on X, Wc also defines a distance on M1(Rk),
often called Kantorovitch–Rubinstein or Wasserstein-1 distance. It admits the alter-
native characterization.

Theorem 9 (See [12, Chapter 11]). Let (X, c) be a Polish space. For μ and ν, two
probability measures on X,

distKR(μ, ν) := Wc(μ, ν) = sup
f ∈Lip1(X,c)

(∫
X

f dμ −
∫

X

f dν

)
,

where

Lip1(X, c) = {f : X → R, ∀x, y ∈ X, |f (x) − f (y)| ≤ c(x, y)} .

4 Distances between point processes

There are several ways to define a distance between point processes on the same
underlying space E. We here focus on two of them. They are constructed similarly:
Choose a cost function c on NE and then consider Wc defined by the solution of
MKP(μ, ν, c) for μ and ν, two elements of M1(NE).

Definition 10. Consider the distance in total variation distTV between two configu-
rations (viewed as discrete measures):

distTV(ξ, ζ ) = (ξ�ζ)(E)

where ξ�ζ is the symmetric difference between the two sets ξ and ζ , i.e. we count the
number of distinct atoms between ξ and ζ . Then, for μ and ν belonging to M1(NE),
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their Kantorovitch–Rubinstein distance is defined by

distKR(μ, ν) = inf
law(�μ)=μ

law(�ν)=ν

E
[
(�μ��ν)(E)

]
= sup

f ∈Lip1(NE,distTV)

(∫
NE

f (ξ) dμ(ξ) −
∫
NE

f (ζ ) dν(ζ )

)
. (7)

Remark 4. By the definition of the total variation, it is straightforward that for any
compact set � ⊂ E, the map

�� : (NE, distTV) −→ N,

ξ 
−→ ξ(�)

is Lipschitz. Let (μn, n ≥ 1) be a sequence of point processes and denote by �n an
NE-valued random variable whose distribution is μn. Similarly, for another element
ν ∈ M1(NE), let ϒ be an NE-valued random variable whose distribution is ν. In
view of (7) and Theorem 9, if distKR(μn, ν) tends to zero then for any compact set �,
the sequence of random variables (�n(�), n ≥ 1) converges in distribution to ϒ(�).

In the sequel, we assume that E = Rk and the reference measure m is the
Lebesgue measure on Rk . For the quadratic distance, the cost function is the squared
Euclidean distance (the 1/2 factor is purely cosmetic but traditional)

ce = 1

2
‖x − y‖2

and we define a cost between configurations (see also [3, 2]) as the lifting of ce on
NE : For two configurations ξ1, ξ2, let

c(ξ1, ξ2) = inf

{∫
ce(x, y) dβ(x, y), β ∈ �(ξ1, ξ2)

}
,

where �(ξ1, ξ2) denotes the set of β ∈ NE×E , i.e. configurations on E × E, having
marginals ξ1 and ξ2. First remark that when ξ1(E) is finite, the cost is finite only if
ξ1(E) = ξ2(E), otherwise �(ξ1, ξ2) is empty and then, by convention, the cost is
infinite.

Fig. 2. Cost between two configurations. On the left, there is no feasible coupling as the number
of atoms are different. When the two configurations have the same cardinality, there are several
possible coupling. One is given on the right
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Moreover, the optimum cost is attained at the permutation of {1, . . . , ξ1(E)} which
minimizes the sum of the squared distances

c(ξ1, ξ2) = 1

2
min

σ∈Sξ1(E)

ξ1(E)∑
j=1

‖xi − yσ(i)‖2

where ξ1 = {xj , 1 ≤ j ≤ ξ1(E)} and ξ2 = {yj , 1 ≤ j ≤ ξ1(E)}. For infinite
configurations, it is not immediate that the cost function so defined has the minimum
regularity required to consider an optimal transport problem. According to [29], this
is indeed true as c is lower semicontinuous on NE × NE . We can then consider the
Monge–Kantorovitch problem MKP(μ, ν, c) on M1(NE). The main theorem of [8]
is the following (see Definition 1 for the notations).

Theorem 11. Let � ⊂ E be a compact set. Let μ be a regular probability measure on
N

f
� and ν be a probability measure on NE . We denote by j

μ
n the n-th order Janossy

density of μ. Then μn satisfies

dμn(x1, . . . , xn) = 1

μ(ζ(�) = n)
jμ
n (x1, . . . , xn) dx1 . . . dxn,

and is called the normalized Janossy measure. The Monge–Kantorovitch distance,
associated to c, between μ and ν is finite if and only if the following two conditions
hold

1. μ(ζ(�) = n) = ν(ξ(E) = n) := cn for any integer n ≥ 0,

2.
∑

n≥1 cn We(μn, νn) is finite.

For any n ≥ 1, let ϕn : �(n) → E(n) be the optimal transport map between μn and
νn given by Theorem 8. Then, for ξ ∈ N

(n)
� ,

ζ = ϕn(ξ), γopt-a.s.

Moreover,
Wc(μ, ν) =

∑
n≥1

cn We(μn, νn). (8)

We denote by distW2 the Wasserstein-2 distance between μ and ν defined by

distW2(μ, ν) = √
Wc(μ, ν).

This means that whenever the distance between μ and ν is finite, there exists a
strong coupling which works as follows: 1) draw a discrete random variable with the
distribution of ξ(�), and let ι be the obtained value 2) draw the points of ξ according
to μι and then 3) apply the map ϕι to ξ . The obtained configuration is distributed
according to νι.

It is shown in [8] that for two Poisson point processes of respective intensities σ1
and σ2, the distance defined above is finite if and only if σ1(E) = σ2(E) and

ζ =
∑
x∈ξ

δt (x), γopt-a.s.
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where t is the optimal transport map between σ1/σ1(E) and σ2/σ2(E) for the Eu-
clidean cost as defined in Theorem 8. Note that the optimal map is a transformation
which is applied to each atom independently of the others. This amounts to say that

ϕn(x1, . . . , xn) = (t (x1), . . . , t (xn)),

instead of

ϕn(x1, . . . , xn) = (t1(x1, . . . , xn), . . . , tn(x1, . . . , xn)),

in non-Poissonian cases.

4.1 Distances between DPP
For determinantal point processes, we can evaluate the effect of a modification of the
eigenvalues with the Kantorovitch–Rubinstein distance and the effect of a modifica-
tion of the eigenvectors with the Wasserstein-2 distance.

Lemma 12. Let μ and ν be two determinantal point processes with respective kernels
Kμ and Kν . Assume that Kμ and Kν are two projection kernels in some Hilbert space
L2(E,m) such that Kμ = Kν + L where L is another projection kernel, orthogonal
to Kν , i.e. im(L) ⊂ ker Kν . Then

distKR(μ, ν) ≤ rank(L). (9)

Proof. The hypothesis means that there exists (φj , j = 0, . . . , n + l), a family of
orthonormal functions in L2(E,m), such that

Kν(x, y) =
n∑

j=0

φj (x)φj (y) and L(x, y) =
n+l∑

j=n+1

φj (x)φj (y).

Since L is a positive symmetric operator, this exactly means that Kν ≺ Kμ in the
Loewner ordering. According to the Strassen theorem [15, 23], there exists a prob-
ability space (�′,A′, P′) on which we can construct three NE-valued random vari-
ables �′

μ, �′
ν and ϒ ′ such that �′

μ and �′
ν have respective distributions μ, ν and

�′
μ = �′

ν ∪ ϒ ′ and ξ ′
ν ∩ ϒ ′ = ∅, P′ a.s.

This implies that
�′

μ ��′
ν(E) = ϒ ′(E) = l.

According to the first definition of distKR, see (7), this implies (9).

Theorem 13. Let � be a compact subset of E and (φj , j ≥ 0) be a CONB of
L2(�,m) and

Kμ(x, y) =
∞∑

j=0

λμ
n φj (x)φj (y),

Kν(x, y) =
∞∑

j=0

λν
n φj (x)φj (y)

where
λν

j ≤ λ
μ
j , ∀j ≥ 0.
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Let μ (respectively ν) be a determinantal point process of characteristics Kμ and hμ

(respectively Kν and hν). Then

distKR(μ, ν) ≤
∞∑

j=0

(λ
μ
j − λν

j ). (10)

Proof. We make a coupling of the Bernoulli random variables which appear in Lem-
ma 7 by using the same sequence of uniform random variables: Let (Uj , j ≥ 0)

be a sequence of independent, identically uniformly distributed over [0, 1], random
variables, and let us consider

X
μ
j = 1{Uj ≤λ

μ
j } and Xν

j = 1{Uj ≤λν
j }.

Note that
P(Xν

j �= X
μ
j ) = (λ

μ
j − λν

j ). (11)

Let Iμ = {j ≥ 0, X
μ
j = 1} and Iν = {j ≥ 0, Xν

j = 1}. In view of the hypothesis,
Xν ≤ Xμ hence Iν ⊂ Iμ. In other words, KIμ and KIν are two projection kernels
which satisfy the hypothesis of Lemma 12. Hence, there exists a realization (�μ, �ν)

of �(μ, ν) given Iμ and Iν , such that

distTV(�μ, �ν) =
∞∑

j=0

1{Xν
j �=X

μ
j }.

Gluing these realizations together, we get a coupling (�μ, �ν) such that

E
[
distTV(�μ, �ν)

] = E
[
E
[
distTV(�μ, �ν) | Iμ, Iν

]]
= E

⎡⎣ ∞∑
j=0

1{Xν
j �=X

μ
j }

⎤⎦
=

∞∑
j=0

(λ
μ
j − λν

j ),

according to (11). Since the Kantorovitch–Rubinstein distance is obtained as the in-
fimum over all couplings of the total variation distance between �μ and �ν , this
particular construction shows that (10) holds.

The next corollary is an immediate consequence of the alternative definition of
the Kantorovitch–Rubinstein distance for point processes, see (7).

Corollary 14. With the hypothesis of Theorem 13, let �μ and �ν be random point
processes of respective distributions μ and ν. Then we have that

sup
A⊂�

distTV(�μ(A), �ν(A)) ≤
∞∑

n=0

(λμ
n − λν

n).

This means that the Kantorovitch–Rubinstein distance between point processes
focuses on the number of atoms in any compact. As we shall see now, the Wasserstein-
2 distance evaluates the matching distance between configurations when they have the
same cardinality.
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Theorem 15. Let μ (respectively ν) be a determinantal point process of characteris-
tics Kμ and hμ (respectively Kν and hν) on a compact set � ⊂ Rk . The Wasserstein-2
distance between μ and ν is finite if and only if

sp(Kμ; L2(hμdx)) = sp(Kν; L2(hνdx)).

Proof. If the Wasserstein-2 distance between μ and ν is finite, then, according to
point 1 of Theorem 11, the distributions of �μ(�) and �ν(�) coincide. We also
know from Lemma 7 that

�μ(z) = Eμ

[
z�μ(�)

]
=

∏
λ∈sp Kμ

(1 − λ + λz), (12)

the infinite product being convergent since trace Kμ = ∑
λ∈sp Kμ

λ is finite. A similar
formula holds for �ν(�). The zeros of φμ are (1 − 1/λ) for λ ∈ sp Kμ, counted with
multiplicity. Hence the zeros of the holomorphic functions φμ and φν appear to be
negative and isolated. Let

m(�, r) = number of zeros (counted with multiplicity) of � in B(0, r).

By the properties of zeros of holomorphic functions we have

m(�μ, r) = m(�ν, r) for any r ≥ 0.

Hence, the zeros of φμ and φν coincide and so do the two spectra.
Conversely, if the two spectra coincide, it remains to verify point 2 of Theorem 11.

By the very definition of We,

We(μn, νn) ≤
∫

�

‖x‖2(dμn + dνn) ≤ sup
x∈�

‖x‖2
(
μn(�) + νn(�)

)
.

Thus, using the notations of Theorem 11, we have∑
n≥1

We(μn, νn) cn ≤ sup
x∈�

‖x‖2
∑
n≥1

(
μn(�) + νn(�)

)
cn

≤ (sup
x∈�

‖x‖)2 (E [
�μ(�)

] + E [�ν(�)]
)

= (sup
x∈�

‖x‖)2 (trace(Kμ) + trace(Kν)
)
.

This quantity is finite, hence the Wasserstein-2 distance between μ and ν is finite as
soon as the spectra are equal.

The next lemma is a straightforward consequence of Lemma 7.

Lemma 16. Let μ be a determinantal point process of characteristics Kμ and hμ.
For a finite subset I , let

cI =
∏
i∈I

λ
μ
i

∏
j∈I c

(1 − λ
μ
j ),
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where λ
μ
i ’s are the eigenvalues of Kμ. Then, its n-th Janossy density is given by

jμ
n (x1, . . . , xn) =

∑
I⊂N|I |=n

cI pI (x1, . . . , xn).

This means that given �μ(E) = n, the points are distributed according to the proba-
bility density

pμ
n : (x1, . . . , xn) 
−→ c−1

n

∑
I⊂N|I |=n

cI pI (x1, . . . , xn) where cn =
∑
I⊂N|I |=n

cI .

Proof. Consider that �μ is constructed with Algorithm 1 and denote by I�μ the set
of indices of the Bernoulli random variables which are equal to 1 for the drawing of
�μ. For any bounded f : N

f
E → R,

E
[
f (�μ)

] = f (∅) +
∞∑

n=1

E
[
f (�μ)1{�μ(E)=n}

]
= f (∅) +

∞∑
n=1

∑
J⊂N|J |=n

E
[
f (�μ) | I�μ = J

]
cJ

= f (∅) +
∞∑

n=1

∑
J⊂N|J |=n

cJ

∫
En

f (x1, . . . , xn) pJ (x1, . . . , xn) dx1 . . . dxn

= f (∅) +
∞∑

n=1

cn

∫
En

f (x1, . . . , xn) p
μ
n (x1, . . . , xn) dx1 . . . dxn.

The result follows by identification with (1).

Then, Theorem 11 applies as follows.

Theorem 17. Suppose that the hypothesis of Theorem 15 holds. Let Id −∇ψn be the
optimal transport map between p

μ
n and pν

n. Then the optimal coupling is given by the
following rule: For �μ such that �μ(E) = n, it is coupled with �ν , the configuration
with n atoms described by

�ν =
∑

x∈�μ

δx−∇xψn(�μ).

Furthermore,

Wc(μ, ν) =
∞∑

n=1

cn We(p
μ
n , pν

n)

= 1

2

∞∑
n=1

∫
En

‖∇ψn(x1, . . . , xn)‖2
En jμ

n (x1, . . . , xn) dx1 . . . dxn.
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Theorems 15 and 17 mean that two determinantal point processes are strongly
coupled when and only when their eigenvalues are identical. Moreover, the eigenval-
ues also control the convex combination of the densities of the projection DPP which
appear in the Janossy densities.

Fig. 3. For two rank-3 DPP, to compute the optimal map at stage 2 (i.e. for configurations with
two points), we compute the coefficient of the convex combination which will be used on both
sides to compute the Janossy density. Then we solve the optimal transport problem between
these two densities. This gives the map to be applied to configurations with 2 points of the first
DPP to obtain the matching configuration in the second DPP

4.2 Determinantal projection processes
Recall from Definition 5 that a projection DPP has a spectrum reduced to {1}. When it
is of finite rank M , almost all its configurations have M points distributed according
to the density

pφ(x1, . . . , xM) = 1

M! det
(
Kφ(xi, xj ), 1 ≤ i, j ≤ M

)
. (13)

Theorem 17 cannot be used as is since a projection DPP do not possess Janossy
densities. However, the initial definition of Wc can still be used.

Theorem 18. Let ψ = (ψj , 1 ≤ j ≤ M) and ψ = (ψj , 1 ≤ j ≤ M) be two
orthonormal families of L2(E; m). Let μψ and μφ be the two projection DPP asso-
ciated to these families. Then

Wc(μψ, μφ) ≤ inf
σ∈SM

M∑
j=1

We(|ψj |2 dm, |φσ(j)|2 dm).

Proof. We know that the points of μψ (respectively μφ) are distributed according to
pψ (respectively pφ) given by (13). Let γ be a probability measure on EM × EM

whose marginals are pψ dm and pφ dm. We know that

Wc(μψ, μφ) =
∫

EM×EM

inf
σ∈SM

M∑
j=1

|xj − yσ(j)|2E dγ (x1, . . . , xM, y1, . . . , yM)
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≤
M∑

j=1

∫
EM×EM

|xj − yj |2E dγ (x1, . . . , xM, y1, . . . , yM).

We know from Algorithm 1, that the marginal distribution of a single atom of μψ has
distribution

dμ1
ψ(x) = 1

M

M∑
j=1

|ψj (x)|2 dm(x).

Since pψ and pφ are both invariant with respect to permutations, we obtain

Wc(μψ, μφ) ≤ M

∫
E×E

|x1 − y1|2E dγ (x1, . . . , xM, y1, . . . , yM)

≤ M We(μ
1
ψ,μ1

φ).

If γ 1
i is a coupling between |ψi |2 dm and |φi |2 dm then M−1 ∑M

i=1 γ 1
i is a coupling

between μ1
ψ and μ1

φ . Hence,

Wc(μψ, μφ) ≤
M∑

j=1

∫
E×E

|x1 − y1|2 dγ 1
j (x1, y1)

≤
M∑

j=1

We(|ψj |2 dm, |φj |2 dm).

Since we can arrange the elements of the families ψ and φ in any order, the result
follows.

5 Simulation

In this section, we show how the previous theorems can be applied to give some
guarantees when we make an approximate simulation of a Ginibre point process.
We will consider Ginibre point processes but our reasoning could be applied to any
rotational invariant determinantal process like the polyanalytic ensembles [17, 13] or
the Bergman process [19]. For the Ginibre process, which will be our toy model, its
restriction to BR , denoted by G

1,1
R , has a kernel of the form ([10])

KR(x, y) =
∞∑

n=0

λR
n φR

n (x)φR
n (y)

where

λR
n = γ (n + 1, R2)

n! ,

φR
n (x) = 1√

πγ (n + 1, R2)
xne−|x|2/2,
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with γ (n, r) being the lower incomplete gamma function. We denote by G
1,1
R,N the

truncated Ginibre process whose kernel is the truncation of KR to its first N compo-
nents:

KR
N(x, y) =

N−1∑
n=0

λR
n φR

n (x)φR
n (y).

We assume here λ = 1 and β = 1 only for the sake of simplicity, the computations
could be done similarly for any values of λ and β. In the following, we remove the
superscript (1, 1) as λ and β are fixed. The strict application of Algorithm 1 for the
simulation of GR , requires to compute all the quantities of the form

λR
n

∞∏
k=n+1

(1 − λR
k )

to determine which Bernoulli random variables are active. Strictly speaking, this is
unfeasible. However, it is a well-known observation that the number of points of GR

is about R2. So it is likely that GR and GR,NR
should be close for NR close to R2.

This is what proves the next theorem.

Theorem 19. Let c > 0 and NR = (R + c)2. For R > c, we have

distKR(GR, GR,NR
) ≤

√
2

π
Re−c2

.

Actually, the proof says that with high probability, GR and GR,NR
do coincide.

Proof. First, using the integral expression γ (j, x) = ∫ x

t=0 tj−1e−t dt , observe that∑∞
j=1

γ (j,x)
�(j)

= x. Then, using the formula γ (n+1, x) = nγ (n, x)−xne−x , we have
by induction

∞∑
j=n+1

γ (j, x)

�(j)
= xne−x − (n − x)γ (n, x)

�(n)
·

For n = (R + c)2 and x = R2, this implies

∑
j≥(R+c)2

λR
j ≤ (R + c)2 R2(R+c)2

e−R2

(R + c)2! .

Using the bound n! ≥ √
2πn

(
n
e

)n
,

∑
j≥(R+c)2

λR
j ≤ R + c√

2π

R2(R+c)2
e(R+c)2−R2

(R + c)2(R+c)2

≤ R + c√
2π

e(R+c)2−R2−2(R+c)2 log(1+ c
R

)

≤ R + c√
2π

e
(R+c)2−R2−2(R+c)2

c
R

1+ c
R
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≤ R + c√
2π

e−c2
.

Since R > c, the proof is complete.

As a corollary of the previous proof, we have

P(∃j ≥ (R + c)2, B(λR
j ) = 1) ≤

∑
j≥(R+c)2

λR
j ≤ κRe−c2

(14)

for R large enough. This means that the number of active Bernoulli random variables
in Algorithm 1 is less than (R + c)2 with high probability. We can also provide a
lower bound on the cardinality of I .

Lemma 20. For any R > c > 0,

P(card(I ) < (R − c)2) ≤ 1√
2π

Re−c2
.

Proof. As in the previous proof, we will reduce the problem to bounding a sum of
reduced incomplete gamma functions.

P(card(I ) < (R − c)2) = 1 − P(card(I ) ≥ (R − c)2)

≤ 1 −
∏

0≤j<�(R−c)2�
P(B(λR

j ) = 1)

≤
∑

0≤j<�(R−c)2�
(1 − P(B(λR

j ) = 1))

≤
∑

1≤j≤�(R−c)2�

�(j, R2)

�(j)
·

Using the formula �(n + 1, x) = n�(n, x) + xne−x , we have by induction

n∑
j=1

�(j, x)

�(j)
= xne−x − (x − n)�(n, x)

�(n)
·

For n = �(R − c)2� and x = R2, this implies

P(card(I ) < (R − c)2) ≤ (R − c)2 R2(R−c)2
e−R2

(R − c)2! ·

Using Stirling formula,

P(card(I ) < (R − c)2) ≤ R − c√
2π

R2(R−c)2
e(R−c)2−R2

(R − c)2(R−c)2

≤ R − c√
2π

e(R−c)2−R2−2(R−c)2 log(1− c
R

)
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≤ R − c√
2π

e
(R−c)2−R2+2(R−c)2

c
R

1− c
R

≤ R − c√
2π

e−c2 ·

The proof is thus complete.

The combination of Lemma 20 and (14) shows that the cardinality of I is of the
order of R2 with high probability.

5.1 Inverse transform sampling

The next step of the algorithm is to draw the points according to a density given by
a determinant. Since we do not have explicit expression of the inverse cumulative
function of these densities, we have to resort to rejection sampling. Fortunately, the
particular form of the eigenfunctions of isotropic point processes, like the Ginibre
point process, is prone to the simulation of modulus and arguments by inverting their
respective cumulative distribution function. The key remark is that along the iterations
which are necessary to draw the Wi , the densities always have the same form:

pi(z) =
∑
k∈I

ak,i znk fk(|z|), for i = 1, . . . , |I |. (15)

Without any approximation, fk corresponds to the radial component of pI and is
given by (19). When we approximate the eigenfunctions, fk is replaced by f̃k as in
(20). This new approach is summarized in Algorithm 2.

Lemma 21 (Cumulative distribution of the modulus). Let

p(z) =
∑
i∈I

aiz
ni fi(|z|) (16)

and

P(r) =
∫ r

ρ=0

∫ 2π

θ=0
|p(ρejθ )|2ρ dρ dθ.

The following equality holds:

P(r) =
∑
i∈I

|ai |2Fi(r
2)

where

Fi(r
2) =

∫ r2

ρ=0
πρni f 2

i (
√

ρ) dρ.

Given a sequence of complex numbers W� for � from 1 to |I |, we denote by e� the
orthonormal vectors obtained by the Gram–Schmidt orthonormalization of the vec-
tors φR

I (W�). Let also M� ∈ R
|I | be the vector (|e�,i |2)i∈I where e�,i is the coordinate

of index i of e�. Moreover, let UF (r) = (Fi(r))i∈I . Finally, let Ui be the sequence
of vectors defined by induction with U1 = (1)i∈I and Ui+1 = Ui − Mi . Then, using
Lemma 21, we observe that the cumulative distribution associated with the density pi
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in Algorithm 1 is the function 1
|I |−i+1Ui · UF (r). Thus drawing the modulus of Wi in

Algorithm 1 is reduced to sampling ci uniformly in [0, 1] and solving the equation

ci = 1

|I | − i + 1
Ui · UF (r). (17)

Knowing Ui , we can compute Ui+1 in O(|I |) arithmetic operations. By construction
Equation (17) has only one solution in the interval [0, 1], thus using the bisection
method ([5]), it can be solved with precision δ using O(|I | log(1/δ)) evaluation of Fi .

Given the modulus, we can now simulate the arguments.

Lemma 22 (Cumulative distribution of the argument). Let p be given by (16) and

Q(r, α) =
∫ α

θ=0
|p(reiθ )|2r dθ.

Then Q can be rewritten as a sum of |I |2 terms:

Q(r, α) =
∑
i,k∈I

aiakGi,k(r, α)

where Gi,k(r, α) =
⎧⎨⎩rgi(r)gk(r)

ej (ni−nk)α − 1

j (ni − nk)
if i �= j

rg2
i (r)α if i = k

and gi(r) = rni fi(r).

Similarly to the simulation of the modulus, for � from 1 to |I |, let A� ∈ C
|I |2 be

the vector (e�,ie�,k)i,k∈I . Let VG(r, α) = (
Gi,k(r, α)

)
i,k∈I

. Let (Vi)i=1...|I |−1 be the
sequence of vectors defined by recurrence with V1 = (1i=k)i,k∈I and Vi+1 = Vi −Ai .
Drawing the argument of Wi in Algorithm 1 is now reduced to sampling ci uniformly
in [0, 1] and solving the equation (i.e. inverting numerically the cdf):

ci = 1

Vi · VG(r, 2π)
Vi · VG(r, α). (18)

Computing Vi+1 from Vi requires O(|I |2) arithmetic operations. Then, for fixed r ,
(18) can be solved up to precision δ in O(|I |2 + |I | log δ) arithmetic operations and
evaluations of the fi , using a dichotomy approach.

The total cost of sampling the Wi with this approach is O(|I |3 + |I |2 log δ) op-
erations. We will see in the next section how we can reduce this complexity using an
approximation of the eigenfunctions.

Gathering the results of this section, we get in Algorithm 2 an efficient method to
sample points from a symmetric projection point process.

5.2 Compact Ginibre and approximation

Using Theorem 18 with a well-chosen approximation, we will show that we can re-
duce in Algorithm 2 the complexity of steps A. and B. from O(|I |2) to O(|I |1.5)

operations with high probability. The idea to approximate the eigenfunctions was al-
ready present in [27] but it was not used to its whole power. We here approximate the
eigenfunctions so that they contain substantially less monomials than the originals.



Optimal transport between determinantal point processes and application to fast simulation 231

Data: R, I

Result: W1, . . . ,W|I |
Draw W1 from the distribution with density ‖φI (x)‖2

C|I |/|I |;
e1 ← φI (W1)/‖φI (W1)‖C|I | ;
U1 = (1)i∈I ;
V1 = (1i=k)i,k∈I ;
for i ← 2 to |I | do

A. Update vectors Ui and Vi for next point simulation

Mi ← (|ei,�|2|)�∈I ;
Ai ← (ei,kei,�)k,�∈I ;
Ui ← Ui−1 − Mi ;
Vi ← Vi−1 − Ai ;

B. Draw point Wi

Draw ci from the uniform distribution in the interval [0, 1];
ri ← solution of ci = 1

|I |−i+1 Ui · UF (r);

Draw di from the uniform distribution in the interval [0, 1];
αi ← solution of di = 1

Vi ·VG(ri ,2π)
Vi · VG(ri , α);

Wi ← rie
iαi ;

C. Compute new vector ei

ui ← φI (Wi) − ∑i−1
k=1 ek.φI (Wi) ek ;

ei ← ui/‖ui‖C|I | ;
end

Algorithm 2: Simulation of a compact symmetric projection point process re-
stricted to the disc BR

For a given constant c > 0 and for an integer n, let Rn be the ring between the
circles of radii un = min(R,

√
n + c) and ln = max(0, min(

√
n,R) − c). Let

μn =
∫

Rn

|φR
n (z)|2 dz = γ (n + 1, u2

n) − γ (n + 1, l2
n)

γ (n + 1, R2)
,

fn(|z|) = 1√
πγ (n + 1, R2)

e− |z|2
2 . (19)

and define the following approximated functions:

f̃n(|z|) =
{

fn(|z|)/√μn if z ∈ Rn,

0 otherwise,
(20)

and let
φ̃R

n (z) = znf̃n(|z|).
Remark 5 (Complexity simplification). For a complex z ∈ B(0, R), z belongs to Rn

for integers n such that
(|z| − c)2 ≤ n ≤ (|z| + c)2.

There are [4c|z|] ≤ [4cR] such integers. This means that the modified function ŨF

contains at most 4cR nonzero coefficients instead of R2 coefficients in the original
expression. The numerical effort to find ci and di in Algorithm 2 is reduced accord-
ingly.
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We now show that replacing φR
n by φ̃R

n does not cost much in terms of accuracy.
In the course of the proof, we need the so-called Bakry–Emery–Blower theorem (see
[32, Theorem 9.9 and pages 291–292]).

Theorem 23 (Bakry–Emery–Blower theorem). Let V be a C2 function on R with∫
e−V (x) dx = 1 and V ′′(x) ≥ λ > 0 then the measure ρ∞ of density e−V with re-

spect to the Lebesgue measure satisfies the Talagrand inequality: For any probability
measure ρ,

We(ρ, ρ∞) ≤ H(ρ | ρ∞) =
∫

ρ(r) log
ρ(r)

ρ∞(r)
dr. (21)

Theorem 24. For any I ⊂ {1, . . . , NR},

Wc(μφ, μφ̃) ≤
∑
j∈I

log

(
1

μj

)
·

Proof. According to Theorem 18, it is sufficient to evaluate

We

(
|φR

j |2 dx, |φ̃R
j |2 dx

)
for any j ∈ I . Denote the two measures involved in the previous optimal transport
problem by

ζj (dx) = |φR
j (x)|2 dx, ζ̃j (dx) = |φ̃R

j (x)|2 dx.

These are two radially symmetric measures on R2. We still denote by ζ and ζ̃ the two
measures they induce on the polar coordinates (r, θ). Consider

ζj (dr | θ) = cj r2j+1e−r2
1[0,R](r) where cj = 1

γ (j + 1, R2)
,

the distribution of r given θ under ζ and the same quantity for ζ̃ . If we have a coupling
between these two measures, i.e. if we have a measure

γθ (dr, dr ′) ∈ �
(
ζj (dr | θ), ζ̃j (dr ′ | θ)

)
,

then the measure
1

2π
γθ (dr, dr ′) dθ

is a coupling between ζj and ζ̃j . It follows that

We(ζj , ζ̃j ) ≤ We

(
cj r

2j+1e−r2
1[0,R](r) dr, c̃j r

2j+1e−r2
1Rj

(r) dr
)

where

c̃j = 1

μj

·

Furthermore, we have

− d2

dr2 log(r2j+1e−r2
) = 2j + 1

r2 + 2 ≥ 2.
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Hence the Bakry–Emery–Blower criterion (Theorem 23) is satisfied and the measure

ρ∞(dr) = cj r
2j+1e−r2

1[0,R](r) dr

satisfies the Talagrand inequality. Apply (21) to

ρj (dr) = c̃j r
2j+1e−r2

1Rj
(r) dr

to obtain

We(ρj , ρ∞) ≤ log

(
1

ρ∞(Rj )

)
= log

(
1

μj

)
·

The proof is thus complete.

Finally, using the same techniques as above, we bound the sum of log
(

1
μi

)
in the

following lemma.

Lemma 25. There exists a constant κ such that for
√

log R ≤ c ≤ R:

∞∑
n=0

log

(
1

μn

)
≤ κR2e−c2 ·

Proof. We split the sum in three parts:

S1 =
(R−c)2−1∑

n=0

log

(
1

μn

)
,

S2 =
R2−1∑

n=(R−c)2

log

(
1

μn

)
,

S3 =
∞∑

n=R2

log

(
1

μn

)
.

We will first prove that the terms in S1 and S2 are O(e−c2
) and the terms log( 1

μ
R2+k

)

in S3 are O(Re−c2
(1 − 1

R
)k).

For c ≥ 1 and n ≤ (R − c)2, we show that μn
−1 is roughly equal to γ (n+1,R2)

�(n+1)
:

γ (n + 1, u2
n) − γ (n + 1, l2

n)

= �(n + 1) − �(n + 1, u2
n) − γ (n + 1, l2

n)

≥ �(n + 1) − u
2(n+1)
n

u2
n − n − 1

e−u2
n − l

2(n+1)
n

n + 1 − l2
n

e−l2n

≥ �(n + 1) − u2
ne

−c2

(u2
n − n − 1)

√
2πn

�(n + 1) − l2
ne

−c2

(n + 1 − l2
n)

√
2πn

�(n + 1)

≥ �(n + 1)(1 − e−c2
).
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This implies that
1

μn

≤ γ (n + 1, R2)

�(n + 1)(1 − e−c2
)

and

log

(
1

μn

)
≤ 1

1 − e−c2

(
�(n + 1, R2)

�(n + 1)
+ e−c2

)
·

Thus, for c ≥ 1, we have

S1 ≤ 2Re−c2 + 2R2e−c2
.

For S2 we have un = R and ln = √
n − c such that

1

μn

= 1

1 − γ (n + 1, (
√

n − c)2)

γ (n + 1, R2)

·

Moreover, for n + 1 ≤ R2, we know that

γ (n + 1, R2) ≥ �(n + 1)

2

and

γ (n + 1, (
√

n − c)2) ≤ e−c2
�(n + 1).

Combine these identities with the well-known fact∑
i

log

(
1

1 − εi

)
≤

∑
i εi

1 − max εi

to obtain

S2 ≤ 2cRe−c2

1 − e−c2 ·
Finally for S3, we have un = R and ln = R − c, so that we have

1

μn

= 1

1 − γ (n+1,(R−c)2)

γ (n+1,R2)

·

Then remark that

γ (n, (R − c)2)

γ (n, R2)
≤ (R − c)2ne−(R−c)2

/(n − (R − c)2)

R2ne−R2
/n

≤ (1 − c
R

)2neR2−(R−c)2

1 − (R−c)2

n

≤ (1 − c
R

)2(n−R2)e
−2R2 c

R
−R2 c2

R2 +2cR−c2

1 − (R−c)2

n
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Fig. 4. Simulation of determinantal point processes. Left: kernel K(z,w) =
1
π e− 1

2 (|z|2+|w|2)+zw , restricted to the disk of radius 100. Right: kernel K(z,w) = 1
π(1−zw)

,
restricted to the disk of radius 0.9995

≤ (1 − c
R

)2(n−R2)e−2c2

1 − (R−c)2

R2

≤ R

c

(
1 − c

R

)2(n−R2)

e−2c2
.

Thus, summing from R2 to ∞ we get

S3 ≤
R2

c2 e−2c2

1 − R

c
e−2c2

·

The proof is thus complete.

5.3 Experimental results

An implementation in Python of this algorithm publicly available in [26] allowed
us to sample 10 002 points in 2 128 seconds on a 8 core 3Ghz CPU for the Ginibre
kernel restricted to a disk of radius 100, shown in Figure 4. In the case of a projection
determinantal process, the last matrix V should be 0 if the vectors ej are orthonormal.
In our simulation, the norm of V is 9.42 × 10−11 which is an indicator on the small
numerical error that we had with our approximation. For the simulation in a disk of
radius 30, leading to roughly 900 points, we ran 10 simulations that all took between
3.2 and 3.4 seconds. The same approach can be used for the DPP with the so-called
Bergmann kernel [19]. In this case, the simulation in a disk of radius 0.9995 leads to
roughly 1000 points. We ran 10 simulations that all took between 5.9 and 7.3 seconds.
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