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Abstract Sharp large deviation results of Bahadur–Ranga Rao type are provided for the q-
norm of random vectors distributed on the �n

p-ball Bn
p according to the cone probability mea-

sure or the uniform distribution for 1 ≤ q < p < ∞, thereby furthering previous large
deviation results by Kabluchko, Prochno and Thäle in the same setting. These results are then
applied to deduce sharp asymptotics for intersection volumes of different �n

p-balls in the spirit
of Schechtman and Schmuckenschläger, and for the length of the projection of an �n

p-ball onto
a line with uniform random direction. The sharp large deviation results are proven by provid-
ing convenient probabilistic representations of the q-norms, employing local limit theorems
to approximate their densities, and then using geometric results for asymptotic expansions of
Laplace integrals to integrate these densities and derive concrete probability estimates.
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1 Introduction

The study of convex bodies in high dimensions, known today as asymptotic geometric
analysis, has arisen from the local theory of Banach spaces, which aimed at analyzing
infinite-dimensional normed spaces via their finite-dimensional substructures, such as
their unit balls. Despite having its origin in the realm of functional analysis, the field
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has since established itself in its own right, considering problems also beyond the
study of centrally symmetric convex bodies that occur naturally as the unit balls of
Banach spaces. In high dimensions convex bodies exhibit certain regularities, such
as concentration of measure phenomena (see, e.g., [23]), which make it highly use-
ful to approach them from a probabilistic perspective. As pointed out in [6], it might
seem counter-intuitive to analyze something exhibiting regularities from a probabilis-
tic perspective, as probability concerns itself with studying the nature of irregularity,
i.e. randomness, of given quantities. But as with well-known limit theorems from
probability such as the law of large numbers and the central limit theorem, with large
sample sizes (and analogously – with high dimensionality) random objects exhibit
interesting patterns well characterized in the language of probability and vice versa.
Many results analogous to those from classic probability have been found for high-
dimensional convex sets, such as the central limit theorem (see, e.g., Anttila, Ball
and Perissinaki [5], Klartag [34, 35]). For further background on high-dimensional
convexity, see [6, 11, 23, 24].

The �n
p-ball Bn

p, n ∈ N, has been a prominent object of study, as it is the unit ball
of the (finite-dimensional) sequence space �n

p, and has been the subject of a multitude
of results. We will name only a select few and refer to the survey by Prochno, Thäle
and Turchi [40] for a comprehensive summary of classic and contemporary results.
Let us denote by Un,p the uniform distribution on the Euclidean �n

p-ball Bn
p and by

Cn,p the cone probability measure on the �n
p-sphere Sn−1

p . Schechtman and Zinn [46]
and Rachev and Rüschendorf [41] showed a generalization of the Poincaré–Maxwell–
Borel lemma, proving that, for k ∈ N with k < n, the k-dimensional marginal distri-
bution of a random vector distributed according to Cn,p converges to a k-dimensional
generalized Gaussian distribution as n increases. They also provided a probabilistic
representation for such random vectors in terms of these generalized Gaussian distri-
butions, which will be a key building block in our main results. The primary quantity
of interest of this paper however is the behaviour of the q-norm ‖Z‖q of a random
vector Z in S

n−1
p and B

n
p. This was first studied by Schechtman and Zinn [46], who

derived concentration inequalities for ‖Z‖q with Z ∼ Cn,p and Z ∼ Un,p for q > p.
This is closely related to the intersection volume of t-multiples of volume-normalized
�n
p-balls D

n
p := voln(Bn

p)−1/n
B

n
p, i.e. voln(Dn

p ∩ tDn
q) with t ∈ [0,∞), for which

Schechtman and Schmuckenschläger [45] gave the asymptotics for t �= 1. Schecht-
man and Zinn [47] expanded their previous results in [46], by not only considering
the q-norm, but also images of random vectors under Lipschitz functions in general.
Thus, they gave concentration inequalities for f (Z), with Z ∼ Cn,p and Z ∼ Un,p,
p ∈ [1, 2), and f a Lipschitz function with respect to the Euclidean norm. Schmuck-
enschläger [48] provided a central limit theorem (CLT) for ‖Z‖q with Z ∼ Cn,p

and Z ∼ Un,p and used it to refine the previous intersection results in [45] for all
t ∈ (0,∞). Naor [38] gave concentration inequalities for ‖Z‖q

q with Z ∼ Cn,p,
showed that the total variation distance between Cn,p and the normalized surface
measure σn,p on S

n−1
p tends to zero proportional to n−1/2, and used the previously

mentioned results to show a concentration inequality for ‖Z‖q
q with Z ∼ σn,p. He

also discussed how concentration results similar to Schechtman and Zinn [47] for
‖Z‖q could already be derived from previous results of Gromov and Milman [22]
for the concentration of Lipschitz functions on convex bodies. Kabluchko, Prochno
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and Thäle [28] gave a multivariate CLT for (‖Z‖q1 , . . . , ‖Z‖qd
) with Z ∼ Un,p in

the spirit of [48] and also considered the asymptotics for the intersection volume of
multiple �n

p-balls, i.e. voln(Dn
p ∩ t1D

n
q1

∩ · · · ∩ tdD
n
qd

) with ti ∈ [0,∞). This CLT
was furthermore applied by the same authors to infer a central limit theorem for the
length of Bn

p projected onto a line with uniform random direction. Moreover, they
provided a large deviation principle (LDP) for ‖Z‖q with Z ∼ Cn,p and Z ∼ Un,p.
In a follow-up paper [30], the same authors showed a CLT for ‖Z‖q , where the distri-
bution of Z is taken from a wider class of p-radial distributions Pn,p,W, introduced by
Barthe, Guédon, Mendelson and Naor [8], consisting of mixtures of Un,p and Cn,p,
combined via a measure W on [0,∞). This class contains both Un,p and Cn,p, but
also distributions corresponding with geometrically interesting projections (see, e.g.,
[30, Introduction, (iii)]). Finally, they gave a moderate and a large deviation principle
for ‖Z‖q with Z ∼ Pn,p,W.

Generally, studying large deviations within asymptotic geometric analysis has
started fairly recently with Gantert, Kim and Ramanan [20], who gave an LDP for
projections of random points in �n

p-balls with distributions Cn,p and Un,p onto both
random and fixed one-dimensional subspaces. Today, large deviations theory has be-
come a well-established toolbox in high-dimensional convex geometry, giving rise
to a plethora of results (see, e.g., [3, 4, 28–30, 32, 33]). Recently, a new tool from
large deviations theory was introduced to asymptotic geometric analysis by Liao and
Ramanan [37]. They gave sharp large deviation (SLD) results in the spirit of Bahadur
and Ranga Rao [7] and Petrov [39] for the projections of random points in �n

p-balls
with distributions Cn,p and Un,p onto a fixed one-dimensional subspace. Other works
in asymptotic geometric analysis have also employed methods from sharp large de-
viations theory as well, such as Kabluchko and Prochno [27], who derived asymp-
totic volumes for generalizations of �n

p-balls, known as Orlicz balls, and showed a
Schechtman and Schmuckenschläger-type result by considering intersection volumes
of Orlicz balls. Their results on Orlicz balls were then expanded upon by Alonso-
Guiterréz and Prochno in [2], who gave the exact asymptotic volume of Orlicz balls
and provided thin-shell concentrations for them, augmenting their results into sharp
asymptotics under certain conditions.While LDPs only give tail asymptotics on a log-
arithmic scale, the sharp asymptotics provided by sharp large deviations theory can
give tail estimates for concrete values of n ∈ N, which makes them significantly
more useful for practical applications. Moreover, a lot of idiosyncrasies of the un-
derlying distributions, that are drowned out on the LDP scale, are still visible on
the SLD scale, thus giving a deeper understanding of the geometric interpretation of
the quantities involved. This paper will follow closely in the footsteps of Liao and
Ramanan [37] and establish SLD results for the q-norms of random vectors with dis-
tribution Cn,p and Un,p. Furthermore, we will use these results to expand on works of
Schechtman and Schmuckenschläger [45], Schmuckenschläger [48], and Kabluchko,
Prochno and Thäle [28] for intersection volumes of �n

p-balls by giving sharp asymp-
totics for voln(Dn

p ∩ tDn
q) at a considerably improved rate for 1 ≤ q < p < ∞

and t > C(p, q) bigger than some constant dependent on p and q only. Addition-
ally, we will also apply our results for �n

p-spheres to retain sharp asymptotics for the
length of the projection of an �n

p-ball onto the line spanned by a uniform random
direction.
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The paper will proceed as follows: in Section 2 some basic notation and defini-
tions will be provided while also giving some appropriate background on the involved
large deviations theory. Furthermore, we will recapitulate some existing results that
are relevant to this paper. In Section 3 we will present our main results regarding the
q-norms of random vectors on �n

p-spheres and �n
p-balls. Also, we will present and

prove their application to intersections and one-dimensional projections of �n
p-balls,

and outline the idea of the two central proofs. In Section 4 we will reformulate the tar-
get probabilities from the main results in terms of useful probabilistic representations,
using well-established representations of random vectors in �n

p-balls of Schechtman
and Zinn [46] and Rachev and Rüschendorf [41]. In Section 5 local density approx-
imations of these probabilistic representations will be provided. In Sections 6 and 7
we will prove the SLD results for �n

p-spheres and �n
p-balls, respectively, by integrat-

ing over the density estimates. For that, we will utilize some geometric results for
asymptotic expansions of Laplace integrals from Adriani and Baldi [1] and Breitung
and Hohenbichler [12].

2 Preliminaries

2.1 Notation and important distributions
We denote by vold the d-dimensional Lebesgue measure on R

d and write B(Rd) for
the σ -field of Borel sets in Rd . For a set A ∈ B(Rd) we write A◦, A, ∂A, and Ac

for the interior, closure, boundary and complement of A, respectively. Furthermore,
we write 〈 · , · 〉 for the standard scalar product in R

d . For g : Rd → R
d , we denote

by Jxg(x∗) the Jacobian of g with respect to the vector x evaluated at x∗ ∈ R
d ,

and for f : Rd → R by ∇xf (x∗) and Hxf (x∗) the gradient and the Hessian of f

with respect to the vector x evaluated at x∗ ∈ R
d , respectively, and use the shorthand

notation

f[i1,...,id ](x∗) = ∂i1

∂x
i1
1

. . .
∂id

∂x
id
1

f (x)
∣∣
x=x∗ . (1)

We write (x1, . . . , xd) ∈ R
d for a standard column vector and for x, y ∈ R

d , we
write their product xT y as xy, skipping the explicit transpose notation for brevity.
Given a random variable X with distribution P, we write X ∼ P and denote by EX

its expectation. For two random variables X, Y with the same distribution we write

X
d= Y . For a random vector X in R

d and s ∈ R
d , denote by ϕX(s) := E[e〈s,X〉]

and �X(s) := log ϕX(s) the moment generating function and cumulant generating
function (m.g.f. and c.g.f.), respectively. We call the set of s ∈ R

d for which �X(s) <

∞ the effective domain DX of �X. Moreover, for x ∈ Rd we denote by �∗
X(x) :=

sups∈Rd [〈x, s〉 − �X(s)] the Legendre–Fenchel transform of the c.g.f. �X. When
considering sequences in n ∈ N, we denote by o(1) a sequence that tends to zero as
n → ∞.

Let us consider the class of distributions at the core of the probabilistic construc-
tions throughout this paper. We say a real-valued random variable X has a generalized
Gaussian distribution if its distribution has the Lebesgue density

fgen(x) := b

2 a �
( 1

b

) e
−
(
|x−m|/a

)b
, x ∈ R,
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where m ∈ R and a, b > 0, and denote this by X ∼ Ngen(m, a, b). As men-
tioned in the introduction, the generalized Gaussian distributions are essential for
constructing probabilistically equivalent representations of the quantities of interest,
based on results of Schechtman and Zinn [46] and Rachev and Rüschendorf [41]. For
these constructions we will be using the specific generalized Gaussian distribution
Np := Ngen

(
0, p1/p, p

)
, p ∈ [1,∞), with the density

fp(x) := 1

2 p1/p �
(
1 + 1

p

) e−|x|p/p, x ∈ R.

For X ∼ Np and r > 0, we write Mp(r) := E|X|r for the r-th absolute moment of
X, for which

Mp(r) := E|X|r =
⎛
⎝ pr/p

r + 1

�
(

1 + r+1
p

)
�
(

1 + 1
p

)
⎞
⎠ . (2)

2.2 Background material from (sharp) large deviations theory

We will give some basic notions and definitions from large deviations theory. To keep
this paper self-contained, we will present them here, while referring the reader to
[17, 18, 31] for additional background material on large deviations. Furthermore, we
want to give some insight into the methods of the lesser known theory of sharp large
deviations.

Definition 1. Let (Pn)n∈N be a sequence of probability measures on R
d . We say

that (Pn)n∈N satisfies a large deviation principle (LDP) if there are two functions
s : N → R and I : Rd → [0,∞], such that I is lower semi-continuous and

a) lim sup
n→∞

1

s(n)
log Pn(C) ≤ −I(C) for all C ⊂ R

n closed,

b) lim inf
n→∞

1

s(n)
log Pn(O) ≥ −I(O) for all O ⊂ R

n open,

where for B ⊂ R
d we define I(B) := infx∈B I(x). We call s the speed and I the rate

function. We say that I is a good rate function, if it has compact sub-level sets.

We apply the definition of LDPs to sequences of random variables as well by
applying the above definition to the sequence of their distributions. In our setting the
sequence parameter n ∈ N will furthermore coincide with the space dimension d ∈
N, as we are considering the effects of increasing dimensionality. Given a sequence
(X(n))n∈N of i.i.d. random vectors in R

d , one is frequently interested in the behaviour
of the sequence (S(n))n∈N of the empirical averages S(n) := 1

n

∑n
i=1 X(i) ∈ R

d .
One of the most well known and most frequently used results in the theory of large
deviations is the theorem of Cramér, which states that if the c.g.f. �X is finite in an
open neighbourhood of the origin, then (S(n))n∈N satisfies an LDP in R

d with speed
n and rate function �∗

X (see, e.g., [17, Theorem 2.2.30, Theorem 6.1.3, Corollary
6.1.6]). Hence, under suitable exponential moment assumptions for the X(n), we can
already infer the large deviation behaviour of (S(n))n∈N.
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The classic LDP gives us an idea of the asymptotic deviation behaviour of a se-
quence of distributions on a logarithmic scale. By doing this however, a lot of sub-
tleties of the underlying distributions can be drowned out. Many small and medium
scale properties of a given sequence of distributions are often missed in the asymp-
totic analysis of LDPs, since they either disappear for very large n ∈ N or are drowned
out by other, more significant phenomena of the distribution. Thus, one is also inter-
ested in considering large deviations on a nonlogarithmic scale, which we refer to
as “sharp” large deviations (also called “precise” or “strong” large deviations in the
literature). One of the first and most prominent results in this regard was shown by
Bahadur and Ranga Rao [7]. They showed that for a sequence (X(n))n∈N of i.i.d.
random variables and any z > E[X(n)] with �∗

X(z) < ∞, it holds that

P

(
S(n) > z

)
= 1√

2πn κ(z)ξ(z)
e−n�∗

X(z)(1 + o(1)),

where κ(z) and ξ(z) are only dependent on the distribution of the X(n) and the de-
viation size z. This is proven via a (somewhat implicit) application of the the so-
called saddle point method (or method of steepest descents), which was established
by Debye [16], and brought to the realm of probability by Esscher [19] and Daniels
[14]. The saddle point method generalizes Laplace’s method for integral approxima-
tion to the complex plane, and is therefore highly useful when dealing with integrals
of characteristic functions. In general, for appropriate functions f , g and n ∈ N

large, the saddle point method gives a way to approximate Laplace-type integrals∫
P

g(z)e−nf (z)dz along complex paths P , by deforming the integration path using
Cauchy’s theorem, into some P̃ that passes through a saddle point of f . The mass
of the reformulated integral is then heavily concentrated around the saddle point and
standard integral expansion methods, such as Edgeworth expansion, can be used to
great effect. In the realm of probability, this has been used for both tail probabili-
ties (e.g., Esscher [19], Cramér [13]) and densities of random variables (e.g., Daniels
[14], Richter [42, 43]), by writing them as an integral of their characteristic functions,
using the Fourier inversion formula, and then approximating those integrals via the
use of a complex saddle point. We say that this was used “somewhat implicitly” in
certain results, such as those of Esscher [19], Cramér [13] and Bahadur and Ranga
Rao [7], since the technique used therein, which is a certain change of measure, often
called exponential tilting or Esscher/Cramér transform, under the surface employs
saddle points as well. For further background on this method, we refer to the book of
Jensen [26].

As mentioned in the introduction, Section 5 will provide density estimates for
our probabilistic representations from Section 4, which are derived using the saddle
point method. However, since our probabilistic representations are given as sums of
i.i.d. random vectors, we will refer to previous results where this was done explicitly,
while making sure that the conditions for their application are still met in our setting.
Generally, the core idea of the saddle point method, which is reformulating an integral
so that all of its mass heavily concentrates around a critical point, around which we
can then employ approximation methods, is used in the overall proof of our main
results in a broader sense as well. We reformulate our target probabilities via some
convenient representations, whose densities we also provide, such that the remaining
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integrals then heavily concentrate their mass around a given critical point, such that
approximations at that point yield accurate results, as we will see in Sections 6 and 7.

2.3 Distributions on �n
p-balls

For p ∈ [1,∞], n ∈ N, and x = (x1, . . . , xn) ∈ R
n we denote by

‖x‖p :=
⎧⎨
⎩
( n∑

i=1
|xi |p

)1/p : p < ∞
max{|x1|, . . . , |xn|} : p = ∞

(3)

the �n
p-norm of x. Let Bn

p := {x ∈ R
n : ‖x‖p ≤ 1} be the unit �n

p-ball and S
n−1
p :=

{x ∈ R
n : ‖x‖p = 1} be the unit �n

p-sphere. We define the uniform distribution on B
n
p

and cone probability measure on S
n−1
p as

Un,p( · ) := voln( · )
voln(Bn

p)
and Cn,p( · ) := voln({rx : r ∈ [0, 1], x ∈ · })

voln(Bn
p)

.

The following result is the basis of our probabilistic representations for random vec-
tors with distributions Cn,p and Un,p and is due to [41] and [46].

Lemma 2. Let p ∈ [1,∞), Y = (Y1, . . . , Yn) be a random vector in R
n with

Yi ∼ Np i.i.d., and U be an independent random variable uniformly distributed on
[0, 1]. Then,

i) the random vector Y/‖Y‖p has distribution Cn,p and is independent of ‖Y‖p,

ii) the random vector U1/n Y/‖Y‖p has distribution Un,p.

2.4 LDPs for q-norms in �n
p-balls

Throughout this paper we assume 1 ≤ q < p < ∞. The main variables of interest
will be the q-norms of the random vectors Z(n),Z(n) ∈ B

n
p with Z(n) ∼ Cn,p and

Z(n) ∼ Un,p. Note, that we will always denote quantities related to Z(n) ∼ Un,p

cursively. To get nontrivial results, our target variables also need to be appropri-
ately rescaled. Thus, for random vectors Z(n),Z(n) ∈ Bn

p with Z(n) ∼ Cn,p and

Z(n) ∼ Un,p, our target variables will be n1/p−1/q ‖Z(n)‖q and n1/p−1/q ‖Z(n)‖q ,
respectively. We set

‖Z‖ :=
(
n1/p−1/q ‖Z(n)‖q

)
n∈N and ‖Z‖ :=

(
n1/p−1/q ‖Z(n)‖q

)
n∈N .

It follows via the strong law of large numbers and the continuous mapping theorem
applied to the probabilistic representations in (4) and (5) that the expectations of ‖Z‖
and ‖Z‖ converge to mp,q := Mp(q)1/q as n ∈ N increases. For fixed n ∈ N we will
denote

E

[
n1/p−1/q ‖Z(n)‖q

]
:= mn,p,q and E

[
n1/p−1/q ‖Z(n)‖q

]
:= mn,p,q .

Furthermore, LDPs for ‖Z‖ and ‖Z‖ have been given in previous works, which we
want to include here explicitly. But first, let us look at the following probabilistic
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representations of ‖Z‖ and ‖Z‖, since the LDPs are given with respect to the c.g.f.
of these representations: Let (Y (n))n∈N be a sequence of i.i.d. random vectors Y (n) :=
(Y

(n)
1 , . . . , Y

(n)
n ) with Y

(n)
i ∼ Np, and U be a random variable, independent of the

Y
(n)
i , and uniformly distributed on [0, 1]. Then, we can see via Lemma 2 that

n1/p−1/q ‖Z(n)‖q
d= n1/p−1/q ‖Y (n)‖q

‖Y (n)‖p

=
(

1
n

∑n
i=1 |Y (n)

i |q
)1/q

(
1
n

∑n
i=1 |Y (n)

i |p
)1/p

, (4)

and

n1/p−1/q ‖Z(n)‖q
d= n1/p−1/q U1/n ‖Y (n)‖q

‖Y (n)‖p

= U1/n

(
1
n

∑n
i=1 |Y (n)

i |q
)1/q

(
1
n

∑n
i=1 |Y (n)

i |p
)1/p

. (5)

Define
V (n) :=

(
V

(n)
1 , . . . , V (n)

n

)
∈ R

2n (6)

with
V

(n)
i :=

(
|Y (n)

i |q, |Y (n)
i |p

)
,

and
V(n) :=

(
V

(n)
1 , . . . ,V(n)

n

)
∈ R

3n (7)

with
V

(n)
i :=

(
|Y (n)

i |q, |Y (n)
i |p,U1/n

)
.

We denote the m.g.f. and c.g.f. of the V
(n)
i as

ϕp(τ) :=
∫
R

eτ1|y|q+τ2|y|pfp(y) dy,

and

�p(τ) := log
∫
R

eτ1|y|q+τ2|y|pfp(y) dy, (8)

for τ = (τ1, τ2) ∈ R
2, and the Legendre–Fenchel transform of �p as

�∗
p(x) := sup

τ∈R2

[〈x, τ 〉 − �p(τ)
]
, x ∈ R

2.

Let Dp be the effective domain of �p. Since q < p, for the integral in both ϕp

and �p to be finite, the sign of the dominant term in the exponent must be negative.
Remembering the definition of fp, one can see that this is valid for τ 2 < 1/p, thus
Dp = R × (−∞, 1/p). Now, we want to characterize the points x ∈ R

2 for which
there exists a τ(x) ∈ Dp, such that

�∗
p(x) = 〈x, τ (x)〉 − �p(τ(x)), (9)
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i.e. for which the function gx(τ ) := 〈x, τ 〉 − �p(τ) does not attain its supremum at
infinity. We will do this along the lines of [1, Section 2]. It holds that �p is convex in
τ (see standard properties of the c.g.f. in, e.g., [17, Lemma 2.2.31]), hence gx(τ ) :=
〈x, τ 〉 − �p(τ) is concave as a sum of concave functions. Then, for a given x ∈ R

2,
there either exists a τ(x) ∈ R

2 that satisfies x = ∇τ �p(τ), i.e. that is a root of
∇τ gx(τ ), or the supremum of gx will be attained at infinity. If such a τ(x) exists and
lies in Dp, then �∗

p(x) = 〈x, τ (x)〉 − �p(τ(x)) < ∞ (see [17, Lemma 2.2.31]).

Since the V
(n)
i are not concentrated on a hyperplane (as 1 ≤ q < p < ∞), the

covariance matrix of their distribution given by Hτ �p(0, 0) is positive definite and
thereby invertible. Hτ �p(τ) for τ ∈ Dp can also be interpreted as the covariance

matrix of an exponentially shifted distribution of V
(n)
i (see [1, p. 374]), which, by the

same argument, is also not concentrated on any hyperplane, hence the Hτ �p(τ) are
positive definite as well. This implies that �p(τ) is strictly convex on Dp, thereby
also making gx strictly concave on Dp. Hence, the strict concavity of gx then ensures
that τ(x) is unique in Dp in the above described property. We denote the set of x ∈ R

2

for which such a τ(x) ∈ Dp exists as Jp and call it the admissible domain of �∗
p.

Remark 3. Note that the admissible domain Jp is the image of Dp under the deriva-
tive of the c.g.f. �p. It actually holds that ∇τ�p(τ) is a bijection from the interior
of the effective domain of �p into the interior of the effective domain of �∗

p, by the
properties of the Legendre transform (see [44, Theorem 26.5]). Since Dp is open and
∇τ�p continuous on Dp, we thereby get that the effective domain of �∗

p is also open
and thus, Jp is simply the effective domain of �∗

p.

For the sequence ‖Z‖ the following LDP has already been shown by Kabluchko,
Prochno and Thäle [28, Section 5.1]:

Proposition 4. Let 1 ≤ q < p < ∞ and Z(n) ∼ Cn,p be a random vector in Sn−1
p .

Then the sequence
(
n1/p−1/q ‖Z(n)‖q

)
n∈N satisfies an LDP with speed n and good

rate function

I‖Z‖(z) :=

⎧⎪⎨
⎪⎩

inf
t1, t2 > 0

t
1/q
1 t

−1/p
2 = z

�∗
p(t1, t2) : z > 0

+∞ : z ≤ 0.

In [37, Lemma 2.1, Appendix A] Liao and Ramanan established a simplification
of a similar rate function in a different setting. Their arguments can be analogously
applied in our setting to derive the following result.

Lemma 5. Let z > mp,q be such that z∗ := (zq, 1) ∈ Jp. Then

I‖Z‖(z) = inf
t1, t2 > 0

t
1/q
1 t

−1/p
2 = z

�∗
p(t1, t2) = �∗

p(z∗),

with z∗ being the unique point at which �∗
p attains its infimum under the above con-

ditions.

To keep this paper self-contained, we will present the analogous proof of this
in the Appendix. For the sequence ‖Z‖, the following LDP was also provided by
Kabluchko, Prochno and Thäle in [28, Theorem 1.2].
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Proposition 6. Let 1 ≤ q < p < ∞ and Z(n) ∼ Un,p be a random vector in B
n
p.

Then the sequence
(
n1/p−1/q ‖Z(n)‖q

)
n∈N satisfies an LDP with speed n and good

rate function

I‖Z‖(z) :=
⎧⎨
⎩

inf
z = z1z2
z1, z2 > 0

[
I‖Z‖(z1) + IU(z2)

] : z > 0

+∞ : z ≤ 0,

with I‖Z‖ as in Proposition 4 and

IU(z2) :=
{

− log(z2) : z2 ∈ (0, 1]
+∞ : otherwise.

We again show that the above infimum is attained at a unique point satisfying the
infimum condition.

Lemma 7. Assume the same setting as in Proposition 6. For z > mp,q , we can
simplify the rate function by combining the two infimum operations to get

I‖Z‖(z) = inf
z = t

1/q
1 t

−1/p
2 t3

t1, t2 > 0, t3 ∈ (0, 1]

[
�∗

p(t1, t2) − log(t3)
]
.

We define

IS(t) := [
�∗

p(t1, t2) − log(t3)
]
, t1, t2 ∈ R, t3 ∈ (0, 1],

and set z∗ := (zq, 1) ∈ R
2, z∗∗ := (zq, 1, 1) ∈ R

3. It then holds for z > mp,q with
z∗ ∈ Jp that

I‖Z‖(z) = IS(z∗∗) = �∗
p(z∗),

with z∗∗ being the unique point at which IS attains its infimum under the above
conditions.

Thus, for z > mp,q with z∗ ∈ Jp both ‖Z‖ and ‖Z‖ satisfy LDPs with the same
speed and rate function. Again, the proof of this is relegated to the Appendix.

Remark 8. Note that in the results within this paper, deviations from the “limit expec-
tation” mp,q are considered, even though the sequences ‖Z‖ and ‖Z‖ have respective
expectations mn,p,q and mn,p,q , that only converge to mp,q as n ∈ N increases. This,
however, is not an issue for our results. As seen in (4) and (5), the sequences are repre-
sented via the empirical averages of probabilistic representations seen in (6) and (7).
The expectations of these representations only ever play a role in our proofs regarding
the behaviour of the corresponding c.g.f.s, specifically only in the case of ‖Z‖ (e.g.,
in the proofs of Lemma 7 and Lemma 17, or implicitly in the proof of the density ap-
proximations in Section 5). As the V

(n)
i in (6) are i.i.d., they all share the same c.g.f.

as given in (8) and the same expectation E[V (n)
i ] = (Mp(q),Mp(p)) = (m

q
p,q, 1).

Hence, the fact that the expectation mn,p,q only converges to mp,q does not affect our
proofs. This is in keeping with classical results from large deviations theory like the
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Gärtner–Ellis theorem (see [18, Theorem V.6]), where an arbitrary (i.e. not necessar-
ily i.i.d.) sequence of random variables is not required to have a shared expectation,
but rather that the sequence of the (appropriately rescaled) c.g.f.s of the individual
random variables in the sequence converge to a fixed function with the origin in the
interior of its effective domain. The resulting LDP then considers deviation probabil-
ities from the limiting expectation as well. In the case of ‖Z‖ the c.g.f.s of the V

(n)
i

are not employed at all (neither themselves nor their limit in n). Instead, we simply
use the density approximation in Proposition 18 for the sum of the V

(n)
i and make

use of the independence of U1/n from the coordinates of V
(n)
i . Since our main results

assume n ∈ N to be sufficiently large (that is, large enough for the local density ap-
proximations in Section 5 to hold), this effectively means that for n ∈ N sufficiently
large, the difference of mp,q and mn,p,q , mn,p,q is of order at most o(1) and therefore
does not affect our SLD estimates.

2.5 A few remarks on Weingarten maps and curvature

As outlined in the introduction, we will finish the proof of our first main result in
Theorem 11 by integrating over a previously established density estimate via a result
of Adriani and Baldi [1] for Laplacian integral expansions. This result has a heavily
geometric flavour and relies on the Weingarten maps of certain hypersurfaces, which
in our case are simply curves in R

2. We will therefore just give a brief reminder of the
Weingarten map in this setting, recall some of its properties, and refer to the relevant
literature (e.g., [25, 36]) or Adriani and Baldi [1] for a more in-depth discussion of
the topic.

In general, the Weingarten map of a smooth hypersurface M ⊂ R
d at a point

p ∈ M is an endomorphism of the tangent space TpM at p, mapping any y ∈ TpM

to the directional derivative of a normal field of M in p in the direction of y. However,
as remarked in [1, Example 4.3], for d = 2, hypersurfaces simplify to planar curves
and the Weingarten map at a point p simplifies to the absolute value of the curvature
K(p) of the curve at p. For implicit curves, i.e. curves given as the zero set of a
function, we have the following formula for its curvature from [21, Proposition 3.1].

Lemma 9. Let F : R2 → R be a smooth function. For a curve C := {x ∈ R
2 :

F(x) = 0} given as the zero set of F , and a point p ∈ C, where ∇xF (p) �= 0, it
holds that

K(p) =
(−F[0,1], F[1,0]

) ( F[2,0] F[1,1]
F[1,1] F[0,2]

) (−F[0,1], F[1,0]
)

(
F[1,0]2 + F[0,1]2

)3/2 ,

with derivatives F[i,j ] = F[i,j ](p) as in (1).

Remark 10.

i) Given the set-up of the previous lemma, straightforward calculation of the
above fraction gives that

K(p) = F[0,1]2F[2,0] − 2F[0,1]F[1,0]F[1,1] + F[1,0]2F[0,2](
F[1,0]2 + F[0,1]2

)3/2 .
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ii) In case that C is the graph of a smooth function f : R → R, i.e. C =
{(x1, x2) ∈ R

2 : x2 = f (x1)}, and p = (x, f (x)), the above reduces to

K(p) = |f ′′(x)|(
1 + f ′(x)2

)3/2 .

3 Main results

Using the concepts and notation established in the previous section, we now proceed
to present our main results and their applications.

3.1 Sharp asymptotics for q-norms of random vectors in S
n−1
p and B

n
p

For Z(n) ∼ Cn,p, we want to give sharp asymptotics for the probability
P
(
n1/p−1/q ‖Z(n)‖q > z

)
for z > mp,q such that z∗ ∈ Jp, with z∗ as defined in

Lemma 5. Before presenting our results, let us define the deviation-dependent func-
tions ξ(z) and κ(z), as mentioned also in the sharp large deviation results of Bahadur
and Ranga Rao [7]. For x ∈ R

2, we set

Hx := Hτ�p(τ(x)) (10)

to be the Hessian of the c.g.f. �p(τ) in τ ∈ R
2, evaluated at τ(x). For z > mp,q such

that z∗ ∈ Jp, we then define the deviation-dependent functions as

ξ(z)2 := 〈Hz∗ τ(z∗), τ (z∗)〉 detHz∗ , (11)

and
κ(z)2 := 1 − cκ(z), (12)

where cκ(z) is given by(
τ(z∗)2

1 + τ(z∗)2
2

)3/2 |pq(p − q)zq |∣∣τ(z∗)2
2

(
H

−1
z∗
)

11
− 2τ(z∗)1τ(z∗)2

(
H

−1
z∗
)

12
+ τ(z∗)2

1

(
H

−1
z∗
)

22

∣∣ (z2q + p2q−2)3/2
.

Theorem 11. Let 1 ≤ q < p < ∞, n ∈ N, and Z(n) be a random vector in B
n
p with

Z(n) ∼ Cn,p. Then, for n sufficiently large and any z > mp,q such that z∗ ∈ Jp, it
holds that

P

(
n1/p−1/q‖Z(n)‖q > z

)
= 1√

2πn κ(z)ξ(z)
e−n�∗

p(z∗) (1 + o(1)).

We want to do the same for P
(
n1/p−1/q ‖Z(n)‖q > z

)
with Z(n) ∼ Un,p and

z > mp,q . Again, we start by defining our deviation-dependent function for z > mp,q

as

γ (z)2 := detHz∗ τ(z∗)2
1 (qzqτ (z∗)1 + 1)2

×
[
z2qq2

p2

(
H

−1
z∗
)

11
+ 2zqq

p

(
H

−1
z∗
)

12
+
(
H

−1
z∗
)

22
+ τ(z∗)1

zqq(q − p)

p2

]
.

(13)
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Theorem 12. Let 1 ≤ q < p < ∞, n ∈ N, and Z(n) be a random vector in B
n
p with

Z(n) ∼ Un,p. Then, for n sufficiently large and any z > mp,q such that z∗ ∈ Jp, it
holds that

P

(
n1/p−1/q‖Z(n)‖q > z

)
= 1√

2πn γ (z)
e−n�∗

p(z∗) (1 + o(1)).

We have seen in Section 2.4 that ‖Z‖ and ‖Z‖ both satisfy LDPs with the same
speed and rate function for z > mp,q such that z∗ ∈ Jp, despite the underlying
distributions being different. Comparing Theorem 11 and Theorem 12 now paints
a different picture, with the sharp asymptotics for ‖Z‖ and ‖Z‖ being noticeably
different. As mentioned in our introductory statements, idiosyncratic phenomena of
underlying distributions, which can be drowned out on the LDP scale, are often still
visible on the scale of sharp large deviations. This is in keeping with what was shown
in [37, Theorem 2.4, Theorem 2.6] for one-dimensional projections of �n

p-spheres and
�n
p-balls.

Remark 13. Let us draw a brief comparison between our results and the concen-
tration inequality that follows by the Gromov–Milman theorem as discussed in [38,
Remark, p. 1062]. Therein, it is shown that the Gromov–Milman theorem from [22]
implies that for 1 < q ≤ p < ∞ and a random vector Z(n) ∼ Cn,p, it holds that

P

(∣∣n1/p−1/q‖Z(n)‖q − mn,p,q

∣∣ ≥ z
)

≤ C exp
(
−c n zmax{2,p}) ,

where C > 0 and c > 0 are constants. If we consider the set-up of Theorem 11, i.e.
1 ≤ q < p < ∞ and z > mn,p,q , and only consider deviations without the absolute
value, we can derive from the above that

P

(
n1/p−1/q‖Z(n)‖q > z

)
≤ C exp

(
−c n zmax{2,p}) .

Comparing this with our sharp large deviation results from Theorem 11 for z > mp,q

such that z∗ ∈ Jp,

P

(
n1/p−1/q‖Z(n)‖q > z

)
= 1√

2πn κ(z)ξ(z)
e−n�∗

p(z∗) (1 + o(1)),

we can see that our results improve the estimate in terms of n ∈ N by a factor of
n−1/2 and give explicit and deviation-dependent terms κ(z) and ξ(z) instead of fixed
constants for all deviations z.

Remark 14. When comparing the SLD results in Theorem 11 and Theorem 12 to
those of Liao and Ramanan [37, Theorem 2.4, Theorem 2.6], one directly notices
the core difference in the settings. Liao and Ramanan examine projections of ran-
dom vectors on S

n−1
p and B

n
p with respective distributions Cn,p and Un,p onto fixed

one-dimensional subspaces, and therefore have to consider weighted sums of depen-
dent random vectors as probabilistic representations. Thus, all their results have to
be conditioned on the projection space and include additional terms accounting for
the specifics of the subspace. In our case however, the probabilistic representations
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are given as sums of i.i.d. random variables (see Section 4), which does not necessi-
tate these additional factors. Therefore, when using results from Liao and Ramanan
[37], we adapt their usage accordingly to the given probabilistic representations in
our setting. Beyond that however, the SLD results share several similarities, espe-
cially when comparing the deviation-dependent terms κ , ξ and γ , which for q = 1
are almost equal.

Both proofs of Theorem 11 and Theorem 12 contain three essential steps, as al-
ready briefly mentioned in the introduction. The first will be rewriting the probabili-
ties in both theorems with respect to convenient probabilistic representations, specif-
ically S(n) and S(n) given in (16) of Section 4 as the respective empirical averages of
the V

(n)
i and V

(n)
i in (6) and (7). The idea is to write the deviation probabilities as an

integral of their distribution over a given “deviation area”. The second step is giving
local density approximations for these representations. Since the entries of both the
V (n) and the V(n) are highly dependent, no canonical joint densities are available to
us to easily do so. However, their Fourier transforms can be given explicitly, thus, for
n ∈ N large enough one can use the Fourier inversion theorem to write the densities
of S(n) and S(n) as integrals of their Fourier transforms. Heuristically speaking, this
means that while the individual V

(n)
i and V

(n)
i do not possess densities in R

2, but
for n ∈ N sufficiently large their empirical averages S(n) and S(n) asymptotically
do. The resulting integrals can then be approximated using the saddle point method.
Since our representations are given as sums of i.i.d. random vectors, for whom this
has been done in previous results (see, e.g., [10, 14, 42, 43]), we will not prove the
density approximations here explicitly. The third and final step then is to calculate the
integrals of these densities over their respective deviation area. For ‖Z‖, this is done
by a result of Adriani and Baldi [1], which construes the boundary of the deviation
area and the level sets of the rate function in the corresponding LDP as hypersur-
faces, which are just planar curves in our setting, and uses their Weingarten maps to
approximate the integral. For ‖Z‖, this is not applicable, as certain differentiability
conditions are no longer met. Thus, a result by Breitung and Hohenbichler [12] is
used, which allows for multi-dimensional Laplace integral approximations under less
restrictive differentiability conditions.

3.2 Intersection volumes of �n
p-balls

We want to use our sharp large deviation results to further the findings of Schechtman
and Schmuckenschläger [45] and Schmuckenschläger [48] for intersection volumes
of t-multiples of different �n

p-balls. We will first give a brief overview of the orig-
inal results. For p ∈ [1,∞), we define D

n
p := voln(Bn

p)−1/n
B

n
p to be the volume

normalized �n
p-ball and recall that

voln(B
n
p) =

(
2�
(

1 + 1
p

))n

�
(

1 + n
p

) .

We furthermore set

cn,p := n1/p voln
(
B

n
p

)1/n

and cp := 2 e1/p p1/p �

(
1 + 1

p

)
,
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and recall that it was shown in [45] that lim
n→∞ cn,p = cp. Moreover, for p, q ∈

[1,∞), p �= q, we set

cn,p,q := cn,p

cn,q

, An,p,q := cn,p

mp,q cn,q

, and Ap,q := lim
n→∞ An,p,q .

Hence, it follows that

Ap,q = cp

mp,q cq

=
�
(

1 + 1
p

)1+(1/q)

�
(

1 + 1
q

)
�
(

q+1
p

)1/q
e1/p−1/q .

Lastly, for t ≥ 0 and n ∈ N, we define tn ≥ 0 such that

tn
Ap,q

An,p,q

= t.

Having established the necessary notation, we shall now recall the result of Schmuck-
enschläger [48, Theorem 3.3]. Therein, it was shown that for p, q ∈ [1,∞), p �= q,
and t ≥ 0 it holds that

voln
(
D

n
p ∩ tDn

q

)
−→
n→∞

⎧⎪⎨
⎪⎩

1 : Ap,q t > 1
1
2 : Ap,q t = 1

0 : Ap,q t < 1.

(14)

To prove this, a central limit theorem for n1/p−1/q‖Z(n)‖q with Z(n) ∼ Un,p and
p, q ∈ [1,∞), p �= q, is shown in [48, Proposition 2.4, Proof of Theorem 3.2], since
voln(Dn

p ∩ tDn
q) can be written as

voln(D
n
p ∩ tDn

q) = voln

({
z ∈ D

n
p : z ∈ tn

Ap,q

An,p,q

D
n
q

})

= voln

({
z ∈ D

n
p : z ∈ tn Ap,q mp,q

cn,q

cn,p

D
n
q

})

= voln
({

z ∈ voln(B
n
p)−1/n

B
n
p :

z ∈ tn Ap,q mp,q n1/q−1/p voln(B
n
p)−1/n

B
n
q

})
= voln(B

n
p)−1

× voln
({

z ∈ B
n
p : z ∈ tn Ap,q mp,q n1/q−1/p

B
n
q

})
= P

(
n1/p−1/q‖Z(n)‖q ≤ tn Ap,q mp,q

)
. (15)

However, we know from the Berry–Esseen theorem (see [49, Theorem 2.1.3]) that
the error of the Gaussian approximation given by a central limit theorem decreases
with rate n−1/2. Thus, using (15) and the central limit theorem from [48], we can only
infer a rate of convergence of n−1/2 in (14). Using Theorem 12, we can considerably
refine that rate of convergence in the first of the three cases in (14) from a sublinear
rate to an exponential rate for 1 ≤ q < p < ∞.
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Proposition 15. Let 1 ≤ q < p < ∞ and n ∈ N. Using the notation established
above, it holds for t > mp,q cn,p,q

−1 such that (t cn,p,q)∗ ∈ Jp, and sufficiently large
n ∈ N that

voln
(
D

n
p ∩ tDn

q

)
= 1 − 1√

2πn γ (t cn,p,q)
e−n�∗

p((t cn,p,q )∗) (1 + o(1)).

Proof. Let 1 ≤ q < p < ∞, t > mp,q cn,p,q
−1 such that (t cn,p,q)∗ ∈ Jp, and

assume Z(n) is a random vector in B
n
p with Z(n) ∼ Un,p. Using (15), we get that

voln
(
D

n
p ∩ tDn

q

)
= P

(
n1/p−1/q‖Z(n)‖q ≤ tnAp,q mp,q

)
= 1 − P

(
n1/p−1/q‖Z(n)‖q > tnAp,q mp,q

)
.

Now, by t > mp,q cn,p,q
−1, we have that t m−1

p,q cn,p,q = t An,p,q = tn Ap,q > 1, and
hence t cn,p,q = tn Ap,q mp,q > mp,q with (t cn,p,q)∗ ∈ Jp. Thus, by Theorem 12,
it follows that

voln
(
D

n
p ∩ tDn

q

)
= 1 − 1√

2πn γ (t cn,p,q)
e−n�∗

p((t cn,p,q )∗) (1 + o(1)),

which finishes our proof.

3.3 One-dimensional projections of �n
q -balls

In Remark 14 we have already discussed the differences between the setting of the
results of Liao and Ramanan [37] and the setting of this paper. However, a geomet-
rically similar result to those in [37] follows from Theorem 11. In [28, Section 2.4]
Kabluchko, Prochno and Thäle derived a central limit theorem for the length of the
projection of an �n

p-ball onto the line spanned by a random vector θ(n) ∈ S
n−1 with

θ(n) ∼ Cn,2 as a corollary of their main results. We will proceed similarly and derive
sharp large deviation results in the same setting. To be specific, in [37] sharp asymp-
totics where provided for the scalar product of a random vector Z(n) ∼ Cn,p on
S

n−1
p with a random vector θ(n) ∼ Cn,2 on S

n−1, which can be negative. We, on the
other hand, consider the absolute value of the scalar product of such random vectors,
thereby only considering nonnegative values.

In the following, for q ∈ [1,∞], define its conjugate q∗ via 1/q + 1/q∗ = 1,
setting 1/∞ = 0 by convention. Furthermore, for a vector θ(n) ∈ S

n−1, we write
Pθ(n)B

n
q for the projection of Bn

q onto the line spanned by θ(n). Then, our quantity of

interest is the projection length vol1
(
Pθ(n)B

n
q

)
.

Corollary 16. Let 2 < q ≤ ∞ and θ(n) ∈ S
n−1 be a random vector with θ(n) ∼ Cn,2.

Then, for any z > 2 m2,q∗ such that ( z
2 )∗ ∈ Jp, and sufficiently large n ∈ N, it holds

that

P

(
n1/2−1/q vol1

(
Pθ(n)B

n
q

)
> z

)
= 1√

2πn κ
(

z
2

)
ξ
(

z
2

) e−n�∗
2(( z

2 )
∗
) (1 + o(1)),

with �2 as in (8) and ξ , κ as in (11), (12), respectively, for q∗ and p = 2.
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Proof. It holds that

P

(
n1/2−1/q vol1

(
Pθ(n)B

n
q

)
> z

)
= P

(
n1/2−1/q 2 sup

x∈Bn
q

|〈x, θ(n)〉| > z

)

= P

(
n1/2−1/q ‖θ(n)‖q∗ >

z

2

)
.

Since 2 < q ≤ ∞, we have 1 ≤ q∗ < 2 = p, whereby we can apply Theorem 11 to
the above to get that

P

(
n1/2−1/q vol1

(
Pθ(n)B

n
q

)
> z

)
= 1√

2πn κ
(

z
2

)
ξ
(

z
2

) e−n�∗
2((

z
2 )∗) (1 + o(1)),

with �2, ξ , κ as described above, which concludes our proof.

4 Probabilistic representation

Recalling the definitions of the random vectors V (n) and V(n) from (6) and (7), we
define

S(n) := 1

n

n∑
i=1

V
(n)
i and S(n) := 1

n

n∑
i=1

V
(n)

i (16)

as the empirical averages of their respective coordinates. Furthermore, we define the
sets

Dz := {(t1, t2) ∈ R
2 : t1, t2 > 0, t

1/q

1 t
−1/p

2 > z}
and

Dz := {(t1, t2, t3) ∈ R
3 : t1, t2 > 0, t3 ∈ (0, 1], t3 t

1/q

1 t
−1/p

2 > z}.
It then follows from the reformulations of ‖Z(n)‖q and ‖Z(n)‖q in (4) and (5) that we
can write the probabilities within Theorem 11 and Theorem 12 with respect to S(n)

and S(n), respectively, as

P

(
n1/p−1/q ‖Z(n)‖q > z

)
= P

⎛
⎝1

n

n∑
i=1

|Y (n)
i |q > zq

(
1

n

n∑
i=1

|Y (n)
i |p

) q
p

⎞
⎠

= P

(
S(n) ∈ Dz

)
(17)

and

P

(
n1/p−1/q ‖Z(n)‖q > z

)
= P

⎛
⎝U

q
n

1

n

n∑
i=1

|Y (n)
i |q > zq

(
1

n

n∑
i=1

|Y (n)
i |p

) q
p

⎞
⎠

= P

(
S(n) ∈ Dz

)
. (18)

We refer to these sets as “deviation areas”, as S(n) orS(n) lying in Dz or Dz represents
a deviation of ‖Z(n)‖q and ‖Z(n)‖q . Note that the boundaries of the deviation areas

∂Dz = {(t1, t2) ∈ R
2 : t1, t2 > 0, t

1/q
1 t

−1/p
2 = z}
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and

∂Dz = {(t1, t2, t3) ∈ R
3 : t1, t2 > 0, t3 ∈ (0, 1], t3 t

1/q

1 t
−1/p

2 = z}
are the same sets given by the infimum conditions in the respective LDPs for ‖Z‖ and
‖Z‖ in Proposition 4 and Proposition 6. The fact that for z > mp,q the rate functions
of these LDPs both assume a unique minimum on ∂Dz and ∂Dz, respectively, as was
shown in Lemma 5 and Lemma 7, will be essential to the proof of our main results
in Sections 6 and 7. We can expand this unique infimum property onto the entirety of
Dz and Dz, as the following lemma will show.

Lemma 17. Assume the same set-up as in Lemma 5 and Lemma 7. Let z > mp,q

such that z∗ ∈ Jp. Then

i) z∗ = (zq, 1) is the unique point at which �∗
p attains its infimum on Dz,

ii) z∗∗ = (zq, 1, 1) is the unique point at which IS attains its infimum on Dz.

Proof. We start off by showing i). Let t ∈ R
2 such that t ∈ D◦

z , meaning t
1/q

1 t
−1/p

2 >

z. Then, for z̃ := t
1/q
1 t

−1/p
2 we assume that z̃ ∈ Jp, as otherwise our claim trivially

holds by Remark 3. We then have that t ∈ ∂Dz̃, thus, by Lemma 5, �∗
p(t1, t2) >

�∗
p(z̃q , 1) = I‖Z‖(z̃). We know that �∗

p is a convex function with a root in the

expectation (m
q
p,q, 1) of the V

(n)
i from (6), since it is a rate function (apply arguments

from [17, Lemma 2.2.5] in R
2). We also show in Lemma 21 ii) that Hx�

∗
p(x) = H−1

x ,
and have argued in Section 2 for why Hx is positive definite on Dp, hence the Hessian
of �∗

p is also positive definite on Jp, giving us the strict convexity of �∗
p and, thereby,

strict convexity of I‖Z‖(z) = �∗
p(z∗) on Jp. Hence we know that I‖Z‖(z) is strictly

increasing in z for z > mp,q . Thus, as z̃ > z > mp,q , it follows that

�∗
p(t1, t2) > �p(z̃q , 1) = I‖Z‖(z̃) > I‖Z‖(z) = �∗

p(zq, 1) = �∗
p(z∗),

showing that z∗ = (zq, 1) minimizes �∗
p over Dz. The proof of ii) is analogous, also

using the strict monotonicity of the rate function.

Suppose that the distributions of S(n) and S(n) have respective densities h(n)

and h(n). Then we can formulate our probabilities of interest as

P

(
n1/p−1/q ‖Z(n)‖q > z

)
= P

(
S(n) ∈ Dz

)
=
∫

Dz

h(n)(x) dx (19)

and

P

(
n1/p−1/q ‖Z(n)‖q > z

)
= P

(
S(n) ∈ Dz

)
=
∫
Dz

h(n)(x) dx. (20)

The following section will be devoted to showing the existence of these densities h(n)

and h(n) and presenting them explicitly, while Sections 6 and 7 will then approximate
their integrals over their respective deviation areas Dz and Dz.
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5 Joint density estimate

Recalling the notation and definitions established in Section 2, we assume the same
set-up as in Section 4 and can formulate the following local limit theorems for the
densities h(n) and h(n) of our probabilistic representations S(n) and S(n).

Proposition 18. For S(n) = 1
n

∑n
i=1 V

(n)
i with V

(n)
i = (|Y (n)

i |q, |Y (n)
i |p), Y

(n)
i ∼ Np

i.i.d., and x ∈ Jp, it holds that for sufficiently large n ∈ N the distribution of S(n) has
the Lebesgue density

h(n)(x) = n

2π
(detHx)

−1/2 e−n�∗
p(x) (1 + o(1)),

where Hx := Hτ�p(τ(x)) as in (10).

For the proof of this, we refer to the results of Borovkov and Rogozin [10] or
their convenient reformulation in [1, Theorem 3.1]. Therein, a local density estimate
is derived for a sum of i.i.d. random vectors in R

d via the saddle point method. As
discussed in Section 2.2, this means that one writes the density via the Fourier inver-
sion theorem as a complex integral of its Fourier transform and then uses Cauchy’s
theorem to deform the path of integration, so that it passes through a complex saddle
point. For sufficiently large n ∈ N, the mass of the integral then heavily concentrates
around that saddle point and standard integral expansion methods can be used to great
effect. Naturally, this requires the conditions of the Fourier inversion theorem to be
met, that is, the Fourier transform of the density has to be integrable. In [1, Theorem
3.1] this follows from the assumption that all the i.i.d. random vectors have a com-
mon bounded density, though it is noted in [1, Remark 3.2], that this can be replaced
by any argument ensuring that the Fourier inversion theorem can be applied. In our
setting, the i.i.d. vectors are given by V

(n)
i := (|Y (n)

i |q, |Y (n)
i |p), whose coordinates

are highly dependent, thus such a density of the V
(n)
i is not available. However, one

can write the Fourier transform of V
(n)
i with respect to the underlying distribution

Np of the Y
(n)
i , and then infer integrability via the properties of its density fp and

the Hausdorff–Young inequality, as was done by Liao and Ramanan in [37, Lemma
6.1]. As the considered settings are quite similar, virtually the same arguments can
be applied in our case, thereby making sure our referral to [1, Theorem 3.1] is indeed
justified.

Proposition 19. For S(n) = 1
n

∑n
i=1 V

(n)
i with V

(n)
i = (|Y (n)

i |q, |Y (n)
i |p,U1/n),

Y
(n)
i ∼ Np i.i.d., U uniformly distributed on [0, 1] independently of the Y

(n)
i , and x =

(x1, x2) ∈ Jp, y ∈ (0, 1], it holds that for sufficiently large n ∈ N the distribution of
S(n) has the Lebesgue density

h(n)(x1, x2, y) = n2

2π
y−1(detHx)

−1/2 e−nIS(x1,x2,y) (1 + o(1)),

where IS(x1, x2, y) := [�∗
p(x) − log(y)] and Hx := Hτ�p(τ(x)) as in (10).

Proof. By direct calculation, we can see for y ∈ [0, 1] that P
(
U1/n ≤ y

) =
P (U ≤ yn) = yn, hence the density of U1/n is given by fU1/n(y) = n yn−1. As



258 T. Kaufmann

U1/n is independent of the Y
(n)
i , and thereby also of S(n) = (|Y (n)

i |q, |Y (n)
i |p), the

density of S(n) = 1
n

∑n
i=1(|Y (n)

i |q, |Y (n)
i |p,U1/n) is given by the product of their

densities, hence

h(n)(x1, x2, y) = h(n)(x1, x2)fU1/n(y)

= n2

2π
y−1(detHx)

−1/2 e−n [�∗
p(x)−log(y)] (1 + o(1)).

This completes our proof.

6 Proof of the main result for �n
p-spheres

In (19) we have reformulated the deviation probability P
(
n1/p−1/q ‖Z(n)‖q > z

)
as

an integral of the density estimate h(n) of the probabilistic representation S(n) over
the deviation area Dz. In Proposition 18 we gave h(n) explicitly. For the proof of
Theorem 11 it remains to calculate that integral. To do so, the integral will be split up
into a neighbourhood Bz of the point z∗, that has been shown in Lemma 17 to be the
infimum of �∗

p over D̄z, and its complement Bc
z . The LDP from Proposition 4 will

be used to show the negligibility of the integral outside of the neighbourhood of z∗.
Within the neighbourhood Bz, we use a result from Adriani and Baldi [1], which uses
the Weingarten maps of the planar curves given by the boundary of Dz ∩ Bz and
the level set of �∗

p at z∗, to compute the integral. Following that, we will give these
Weingarten maps explicitly, finishing our proof.

Proof of Theorem 11. We assume the set-up of Theorem 11 and use the reformula-
tion (19) to proceed by considering P

(
S(n) ∈ Dz

)
. Let Bz ⊂ R

2 be an open neigh-
bourhood around z∗, small enough that Bz ⊂ Jp. Then

P(S(n) ∈ Dz) =
∫

Dz

h(n)(x) dx

=
∫

Dz∩Bz

h(n)(x) dx +
∫

Dz∩Bc
z

h(n)(x) dx. (21)

Since z∗ /∈ Bc
z , by Lemma 17, there exists an η > 0, such that

inf
y∈Dz∩Bc

z

�∗
p(y) > �∗

p(z∗) + η,

and thus, by the LDP in Proposition 4, it holds that

lim sup
n→∞

1

n
logP(S(n) ∈ Dz ∩ Bc

z ) ≤ − inf
y ∈ Dz∩Bc

z

�∗
p(y) ≤ −�∗

p(z∗) − η.

This gives us that

P

(
S(n) ∈ Dz ∩ Bc

z

)
≤ e−n�∗

p(z∗)−n η (1 + o(1))

= 1

en η
e−n�∗

p(z∗)(1 + o(1)). (22)
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Furthermore, by our density estimate in Proposition 18, it holds that∫
Dz∩Bz

h(n)(x) dx = n

2π

∫
Dz∩Bz

(detHx)
−1/2 e−n�∗

p(x) dx(1 + o(1)). (23)

To calculate this explicitly, we will rely on a technique established in [1, Proof of The-
orem 4.4]. Therein, an asymptotic integral expansion of Bleistein and Handelsmann
[9, Equation (8.3.63)] for Laplace integrals is reformulated via the Weingarten maps
of the integration area and the level set of the exponential function at its minimum,
both seen as hypersurfaces. We will present it as one concise result, similar to that
formulated in [37, Lemma 4.6].

Proposition 20. Let D ⊂ R
d be a bounded domain such that ∂D is a differentiable

hypersurface in R
d . Furthermore, let g : Rd → R be a differentiable function and

φ : D → [0,∞) be a nonnegative function that is twice differentiable and attains a
unique infimum over D at x∗ ∈ ∂D. Define the hypersurfaces

CD = ∂D and Cφ = {x ∈ R
d : φ(x) = φ(x∗)},

and denote by LD and Lφ their respective Weingarten maps at x∗. Then, for suffi-
ciently large n ∈ N, it holds that∫

D

g(x) e−nφ(x) dx

= (2π)(d−1)/2 det(L−1
φ (Lφ − LD))−1/2

n(d+1)/2 〈Hx φ(x∗)−1 ∇xφ(x∗),∇xφ(x∗)〉1/2
g(x∗) e−nφ(x∗)(1 + o(1)).

The proof of this is given by first applying the result from [9, Equation (8.3.63)]
for Laplace-type integrals and then using the reformulation of the terms therein from
[1, Equation (4.6)] with respect to the Weingarten map.

Let us now check that the above conditions hold for the integral in (23). We have
that Dz ∩ Bz is bounded, and for z > mp,q , we can write ∂Dz as the graph of the in-

finitely differentiable function f : (0,∞) → (0,∞) with f (t1) = z−pt
p/q

1 , thus both
∂Dz and ∂(Dz ∩ Bz) are differentiable planar curves. As discussed in Section 2, for
x ∈ Jp, gx(τ ) := 〈x, τ 〉−�p(τ) has a unique supremum τ(x), i.e. x−∇τ�p(τ) = 0
has a unique solution in (x, τ ). It was also dicussed that Hτ�p(τ) is invertible for
all τ ∈ Dp, thus, it follows from the implicit function theorem that x �→ τ(x) is as
differentiable in x as (x, τ ) �→ (x − ∇τ�p(τ)) is in τ . As �p is the logarithm of

the joint m.g.f. of the V
(n)
i from (6), the components of its derivatives are themselves

infinitely differentiable within Dp by the standard properties of the m.g.f. (see, e.g.,
[15, Theorem 5.4]), yielding that τ(x) is infinitely differentiable on Jp. This over-
all gives us the infinite differentiability of the function �p(τ(x)) and thereby also
of �∗

p(x) on Jp. For Bz chosen small enough, it follows that for any z > mp,q with
z∗ ∈ Jp, �∗

p is twice differentiable on Dz∩ Bz. Nonnegativity of �∗
p follows directly

by the standard properties of rate functions (apply arguments from, e.g., [17, Lemma
2.2.5] in R

2). By the infinite differentiability of �p(τ(x)) in x, we get the differen-
tiability of g(x) := (detHx)

−1/2 = (detHτ�p(τ(x))−1/2 in x. Lemma 17 gives us
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the uniqueness of z∗ = (zq, 1) ∈ ∂(Dz ∩ Bz) as an infimum on Dz and Dz ∩ Bz.
Thus, in view of the above, we can use Proposition 20 for D = Dz ∩ Bz ⊂ R

2 with
g(x) = (detHx)

−1/2, φ(x) = �∗
p(x), and x∗ = z∗, and get that

∫
Dz∩Bz

h(n)(x) dx

= n

2π

(2π)1/2 det(L−1
� (L� − LD))−1/2 (detHz∗)−1/2 e−n�∗

p(z∗)

n3/2 〈Hx �∗
p(z∗)−1 ∇x �∗

p(z∗),∇x �∗
p(z∗)〉1/2

(1 + o(1)),

(24)

for the respective Weingarten maps at z∗ of the curves

CD = ∂(Dz ∩ Bz) and C� = {x ∈ R
2 : �∗

p(x) = �∗
p(z∗)}.

Let us present the following identities for some of the terms in the fraction above, re-
sulting from the definition of τ(x) and the properties of the Legendre–Fenchel trans-
form:

Lemma 21. It holds that

i) ∇x�
∗
p(x) = τ(x),

ii) Hx�
∗
p(x) = Hx

−1.

Proof. We start by showing that ∇x �∗
p(x) = τ(x). We have defined τ(x) as the

supremum of [〈x, τ 〉 − �p(τ)] in τ ∈ R
2 (see (9)), thus it follows that

∇τ

[〈x, τ 〉 − �p(τ)
]∣∣

τ=τ(x)
= x − ∇τ�p(τ(x)) = 0. (25)

With this, it follows that

∇x�
∗
p(x) = ∇x

[〈x, τ (x)〉 − �p(τ(x))
]

= τ(x) + Jxτ(x) x − ∇x�p(τ(x))

= τ(x) + Jxτ(x) x − Jxτ(x)∇τ�p(τ(x))

= τ(x) + Jxτ(x)
[
x − ∇τ�p(τ(x))

]
= τ(x).

Let us now prove that Hx�
∗
p(x) = Hx

−1. On the one hand, it follows from the above
that

Hx�
∗
p(x) = Jxτ(x), (26)

while on the other hand, it holds that

Hx�
∗
p(x) = Hx

[〈x, τ (x)〉 − �p(τ(x))
]

= Hx

[〈x, τ (x)〉]− Hx

[
�p(τ(x))

]
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= Jx

[∇x〈x, τ (x)〉]− Jx

[∇x�p(τ(x))
]

= Jx

[
τ(x) + Jxτ(x)x

]− Jx

[
Jxτ(x)∇τ�p(τ(x))

]
= Jxτ(x) + Jx

[
Jxτ(x)x

]− Hxτ (x)∇τ�p(τ(x))

−Jxτ(x)Jx

[∇τ�p(τ(x))
]

= 2Jxτ(x) + Hxτ (x)
[
x − ∇τ�p(τ(x))

]
−Jxτ(x) Jxτ(x)Hτ�p(τ(x))

= 2Jxτ(x) − Jxτ(x) Jxτ(x)Hτ�p(τ(x)). (27)

Equating the terms (26) and (27) yields

Jxτ(x) = 2Jxτ(x) − Jxτ(x) Jxτ(x)Hτ�p(τ(x))

⇔ 0 = Jxτ(x) − Jxτ(x) Jxτ(x)Hτ�p(τ(x))

⇔ 0 = I2 − Jxτ(x)Hτ�p(τ(x))

⇔ Jxτ(x) = Hτ�p(τ(x))−1,

where I2 denotes the identity matrix in R
2. Again using (26) on the above yields

Hx�
∗
p(x) = Jxτ(x) = Hτ�p(τ(x))−1 = H−1

x ,

and thereby finishes the proof.

Via Lemma 21, we get〈
Hx �∗

p(z∗)−1 ∇x �∗
p(z∗),∇x �∗

p(z∗)
〉
=
〈
Hz∗ τ(z∗), τ (z∗)

〉
.

With the definition of ξ(z)2 in (11) the integral in (24) hence simplifies as follows:∫
Dz∩Bz

h(n)(x) dx

= 1√
2πn ξ(z)

(
det(L−1

� (L� − LD)
)−1/2

e−n�∗
p(z∗) (1 + o(1)). (28)

We see that it only remains to prove that det(L−1
� (L� − LD)) = κ(z)2. We proceed

to calculate the Weingarten maps of the curves CD and C� explicitly. As discussed
in Section 2.5, the Weingarten map of a planar curve at a point x reduces to the
absolute value of its curvature in x. As previously mentioned, ∂Dz is the graph of a
function f : (0,∞) → (0,∞) with f (t1) = z−pt

p/q

1 . Thus, the same holds locally
for CD = ∂(Dz ∩ Bz) in a neighbourhood of z∗, so by the curvature formula for
graphs of functions, as seen in Remark 10 ii), it holds that

LD = |f ′′(zq)|
(1 + f ′(zq)2)3/2 ,
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where

f ′(t1)2 =
(
pq−1 z−p t1

(p/q)−1
)2 ⇒ f ′(zq)2 = p2q−2z−2q,

and

f ′′(t1) = pq−1
(
pq−1 − 1

)
z−p t1

(p/q)−2 ⇒ f ′′(zq) = (p2 − pq)q−2 z−2q .

This yields

LD = |(p2 − pq)q−2 z−2q |
(1 + p2q−2z−2q)3/2 = |pq(p − q)zq |

(z2q + p2q−2)3/2 . (29)

The curve C� is the zero set of the function F(x) := �∗
p(x) − �∗

p(z∗). From
Lemma 21 we know that

(F[1,0], F[0,1]) =
( ∂

∂x1
�∗

p(z∗), ∂

∂x2
�∗

p(z∗)
)

= τ(z∗)

and

(
F[2,0] F[1,1]
F[1,1] F[0,2]

)
=

⎛
⎜⎜⎝

∂2

∂2x1
�∗

p(z∗) ∂2

∂x2∂x1
�∗

p(z∗)
∂2

∂x1∂x2
�∗

p(z∗) ∂2

∂2x2
�∗

p(z∗)

⎞
⎟⎟⎠ = H

−1
z∗ ,

for derivatives F[i,j ] = F[i,j ](z∗) as in (1). Hence, by the curvature formula for im-
plicit curves from Lemma 9 and Remark 10 i), we get

L� =
∣∣∣τ(z∗)2

2

(
H

−1
z∗
)

11
− 2τ(z∗)1τ(z∗)2

(
H

−1
z∗
)

12
+ τ(z∗)2

1

(
H

−1
z∗
)

22

∣∣∣(
τ(z∗)2

1 + τ(z∗)2
2

)3/2 . (30)

Since both LD and L� are one-dimensional, it follows from (29) and (30) that

det(L−1
� (L� − LD)) = L−1

� (L� − LD) = 1 − LD

L�

= κ(z)2.

for κ(z)2 as in (12). It now follows with (28) that∫
Dz∩Bz

h(n)(x) dx = 1√
2πn ξ(z) κ(z)

e−n�∗
p(z∗) (1 + o(1)). (31)

Comparing (31) with the upper bound of the integral outside of Bz in (22), we can
see that the integral over Bc

z is negligible for large n ∈ N. Thus, combining (21), (22)
and (31) finishes the proof of Theorem 11.

7 Proof of the main result for �n
p-balls

We use the notation and definitions established in Sections 2 through 4. Let 1 ≤ q <

p < ∞ and z > mp,q be such that z∗ ∈ Jp. We proceed similarly to the previous
proof, using the reformulation of P

(
n1/p−1/q ‖Z(n)‖q > z

)
from (20) in conjunction
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with the density approximation from Proposition 19. The resulting integral over Dz

is again split into a neighbourhood of the minimum of IS over Dz and its comple-
ment, which, according to Lemma 17, is attained at z∗∗ = (zq, 1, 1). For the integral
within that neighbourhood, we apply a result of Breitung and Hohenbichler [12],
which yields an integral approximation under less restrictive differentiability condi-
tions than those in Proposition 20. This result is again geometric in nature, as the
behaviour of the density on ∂Dz still heavily dictates the value of the overall approx-
imation. However, since this result is formulated for a certain neighbourhood of the
origin, we first need to construct a sufficient transformation, mapping our deviation
area into such a neighbourhood. After that, we calculate the specific approximation
in our setting.

Proof of Theorem 12. We assume the set-up of Theorem 12 and use the reformula-
tion (20) to proceed by considering P

(
S(n) ∈ Dz

)
. Let Bz ⊂ R

3 be an open neigh-
bourhood around z∗∗ = (zq, 1, 1) small enough that the first two coordinates of points
within Bz lie in Jp and the third is positive. Then it holds by Proposition 19 that

P

(
S(n) ∈ Dz

)
=

∫
Dz∩Bz

h(n)(x1, x2, y) dx1dx2 dy

+
∫
Dz∩Bc

z

h(n)(x1, x2, y) dx1dx2 dy. (32)

As in the proof of Theorem 11, we can deduce from Lemma 17 ii) and the LDP in
Proposition 6 that there is an η > 0, such that

P

(
S(n) ∈ Dz ∩ Bc

z

)
≤ e−nIS(z∗∗)−nη(1 + o(1))

= 1

en η
e−n�∗

p(z∗)(1 + o(1)), (33)

with IS(t) = [
�∗

p(t1, t2) − log(t3)
]
, as defined in Lemma 7. Let us now consider

the first integral in (32). Since z∗ ∈ Jp, for sufficiently small Bz, we have that
x = (x1, x2) ∈ Jp and y ∈ (0, 1]. By the density approximation from Proposition 19,
it holds that∫

Dz∩Bz

h(n)(x1, x2, y) dx1 dx2 dy

= n2

2π

∫
Dz∩Bz

y−1(detHx)
−1/2 e−nIS(x1,x2,y) dx1 dx2 dy (1 + o(1)).

As we have seen in Lemma 17, IS attains its infimum on Dz at z∗∗. However, we
cannot use the result of Adriani and Baldi from Proposition 20 here, since at z∗∗
the boundary of Dz ∩ Bz is not differentiable, and thereby not smooth. Hence, we
use the following asymptotic integral approximation results based on Breitung and
Hohenbichler [12], which gives a Laplace integral approximation very similar to that
in Liao and Ramanan [37, Lemma 5.1], but under weaker conditions.

Proposition 22. Let F ⊂ R
3 be a bounded closed set containing the origin in its

interior. If
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(a) f : F → R and g : F → R are continuous functions with g(0) �= 0, where
0 := (0, 0, 0),

(b) f (x) > f (0) for all x ∈ F ∩ (R2+ × R) \ {0},
(c) there is a neighbourhood V ⊂ F of 0 in which f is twice continuously differ-

entiable,

(d) f[1,0,0] > 0, f[0,1,0] > 0, and f[0,0,2] > 0, with derivatives f[i,j,k] = f[i,j,k](0)

as in (1),

then∫
F∩(R2+×R)

g(x) e−nf (x) dx =
√

2π

n5/2

g(x∗)
f[1,0,0]f[0,1,0]

√
f[0,0,2]

e−nf (x∗)(1 + o(1)).

Remark 23. This is the result from [12, Lemma 4] for n = 3, k = 2 and functions
g and (−f ) instead of h and f . The parameter λ in our setting is replaced by the
integer n ∈ N. Furthermore, a typo within the said result has been corrected, namely
the sum in [12, Equation (11)] is replaced by a product (compare proof therein). This
proposition is quite close to [37, Lemma 5.1], but does not require the same level of
smoothness of f and g, and g does not depend on n ∈ N.

To apply this, we use a transformation of Dz ∩Bz, mapping z∗∗ = (zq, 1, 1) to 0.
Consider I : R3 → R

3 with

I(x1, x2, y) = (yqx1 − zqx
q/p

2 , 1 − y, x2 − 1) = (t1, t2, t3).

It holds that I(z∗∗) = 0 and I(Dz) = D̃z := {t ∈ R
3 : t1 > 0, t2 ∈ [0, 1), t3 > −1}.

Furthermore, in a neighbourhood of z∗∗ small enough such that t2 < 1, I is invertible
with

I−1(t1, t2, t3) =
(

t1 + zq(t3 + 1)q/p

(1 − t2)q
, t3 + 1, 1 − t2

)
.

Let us calculate the Jacobian of I−1:

JtI
−1(t) =

⎛
⎜⎝

1
(1−t2)

q
q(t1+zq (t3+1)q/p)

(1−t2)
q+1

zq q
p

(t3+1)(q/p)−1

(1−t2)
q

0 0 1
0 −1 0

⎞
⎟⎠. (34)

Thus, we have that | det JtI
−1(t)| = (1 − t2)

−q . We set

g(x1, x2, y) := y−1(detHx)
−1/2,

as well as B̃z := I(Bz), and transform the area of integration via I−1, yielding

P

(
S(n) ∈ Dz ∩ Bz

)
=
∫
Dz∩Bz

h(n)(x1, x2, y) dx1dx2 dy
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= n2

2π

∫
Dz∩Bz

y−1(detHx)
−1/2 e−n [�∗

p(x1,x2)−log(y)] dx1 dx2 dy (1 + o(1))

= n2

2π

∫
Dz∩Bz

g(x1, x2, y) e−nIS(x1,x2,y) dx1 dx2 dy (1 + o(1))

= n2

2π

∫
D̃z∩ B̃z

g ◦ I−1(t) e−nIS◦I−1(t) (1 − t2)
−q dt (1 + o(1)).

We now set g̃(t) := (1 − t2)
−q g ◦ I−1(t) and f̃ (t) := IS ◦ I−1(t), then

P

(
S(n) ∈ Dz ∩ Bz

)
= n2

2π

∫
D̃z∩ B̃z

g̃(t) e−n f̃ (t) dt (1 + o(1)). (35)

We intend to apply Proposition 22 to the integral in (35) for F = B̃z. It holds that
D̃z ∩ B̃z is bounded and since the value of the integral is the same if we integrate
over the open set B̃z or its closure, we will continue to work with B̃z. Further, we
have that B̃z contains the origin in its interior, as the interior point z∗∗ of Bz is again
mapped by the continuous function I onto an interior point, which is I(z∗∗) = 0.
Since we have chosen the neighbourhood Bz of z∗∗ small enough for B̃z to not
contain (t1, 1, t3), it holds that

g̃(t) = (1 − t2)
−q

[
(1 − t2)

−1 (detH(I−1(t)1,I
−1(t)3)

)−1/2
]

is also differentiable on D̃z ∩ B̃z as a composition of differentiable functions and
thereby continuous on B̃z. The differentiability of I−1, together with that of �∗

p

shown in the proof of Theorem 11, yields the differentiability (and thereby the conti-
nuity) of f̃ (t) := IS ◦ I−1(t) on B̃z. It holds furthermore that

g̃(0) = (detHz∗)−1/2, (36)

which is positive, since Hz∗ is positive definite on Jp, as discussed in Section 2.
Again, for Bz small enough, it also holds (up to a null set) that B̃z ∩ (R2+ × R) =
B̃z ∩ D̃z, on which we know from Lemma 7 and Lemma 17 that 0 = I(z∗∗) is the
unique infimum of f̃ since

f̃ (0) = IS ◦ I−1(0) = IS(z∗∗) = �∗
p(z∗). (37)

We can see from (34) that all partial derivatives of I−1 are continuously differentiable
in a sufficiently small neighbourhood of 0. Thereby, I−1 is twice continuously dif-
ferentiable in such a neighbourhood. The two-fold continuous differentiability of �∗

p

has already been shown in the proof of Theorem 11. Finally, by Lemma 21 i), it holds
that

∇(x1,x2,y)IS(z∗∗) =
(

∂

∂x1
�∗

p(x1, x2),
∂

∂x2
�∗

p(x1, x2),− 1

y

) ∣∣∣
(x1,x2,y)=z∗∗

=
(

τ(x)1, τ (x)2,− 1

y

) ∣∣∣
(x1,x2,y)=z∗∗
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= (
τ(z∗)1, τ (z∗)2,−1

)
,

from which we can deduce that

∇t f̃ (0) = ∇(x1,x2,y)IS(z∗∗) JtI
−1(0)

= (
τ(z∗)1, τ (z∗)2,−1

) ⎛⎝ 1 qzq zq q
p

0 0 1
0 −1 0

⎞
⎠

=
(

τ(z∗)1, qzqτ (z∗)1 + 1, zq q

p
τ(z∗)1 + τ(z∗)2

)
. (38)

It thereby follows that ∇t f̃ (0) �= 0, as the first two components cannot be equal to
zero simultaneously. But since f̃ (t) attains its infimum on B̃z ∩ (R2+ × R) in t = 0,
it holds that f̃[1,0,0] > 0 and f̃[0,1,0] > 0, as otherwise a step into either direction
t1, t2 would maintain or decrease the value of f̃ , contradicting the unique infimum
property of 0. On the other hand, by the same argument, it has to hold that f̃[0,0,1] = 0
and f̃[0,0,2] > 0, as otherwise a step into either direction t3, (−t3) would maintain or
decrease f̃ , again contradicting the unique infimum property of 0. Hence, we have
shown all conditions for Proposition 22, whereby it follows for the integral in (35)
that

P

(
S(n) ∈ Dz ∩ Bz

)
= n2

2π

∫
D̃z∩ B̃z

g̃(t) e−n f̃ (t) dt (1 + o(1))

= n2

2π

∫
B̃z∩(R2+×R)

g̃(t) e−n f̃ (t) dt (1 + o(1))

= 1√
2πn

g̃(0)

f̃[1,0,0]f̃[0,1,0]
√

f̃[0,0,2]
e−nf̃ (0)(1 + o(1)). (39)

The final term that remains to be calculated explicitly is f̃[0,0,2], as f̃[1,0,0] and f̃[0,1,0]
are given in (38). We start by noting that

∂

∂t3
I−1(t)

∣∣∣
t=0

=
(

zq q
p
(t3 + 1)(q/p)−1

(1 − t2)q
, 1, 0

) ∣∣∣
t=0

=
(

zq p

q
, 1, 0

)
,

and

∂2

∂2t3
I−1(t)

∣∣
t=0 =

(
zq q

p

( q
p

− 1
)
(t3 + 1)(q/p)−2

(1 − t2)q
, 0, 0

) ∣∣∣
t=0

=
(

zqq2

p2 − zqq

p
, 0, 0

)
.
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By Lemma 21 ii), we get that

H(x1,x2,y)IS(z∗∗) =

⎛
⎜⎜⎜⎜⎝

(
H

−1
z∗
)

11

(
H

−1
z∗
)

12
0(

H
−1
z∗
)

21

(
H

−1
z∗
)

22
0

0 0 y−2

⎞
⎟⎟⎟⎟⎠ .

It thereby follows that

f̃[0,0,2] = ∂2

∂2t3
IS ◦ I−1(0)

= ∂

∂t3

[
∇(x1,x2,y)IS(I−1(t))

∂

∂t3
I−1(t)

] ∣∣∣∣
t=0

= ∂

∂t3

[
∇(x1,x2,y)IS(I−1(t))

] ∣∣∣
t=0

∂

∂t3
I−1(0)

+∇(x1,x2,y)IS(z∗∗) ∂2

∂2t3
I−1(0)

=
(

zq q

p
, 1, 0

)
H(x1,x2,y)IS(z∗∗)

(
zq q

p
, 1, 0

)

+
(
τ(z∗)1, τ (z∗)2,−1

)(zqq2

p2 − zqq

p
, 0, 0

)

=
(

zqq

p
, 1, 0

)(
zqq

p

(
H

−1
z∗
)

11
+
(
H

−1
z∗
)

12
,
zqq

p

(
H

−1
z∗
)

21
+
(
H

−1
z∗
)

22
, 0

)

+τ(z∗)1

(zqq2

p2 − zqq

p

)

f̃[0,0,2] = z2qq2

p2

(
H

−1
z∗
)

11
+ 2zqq

p

(
H

−1
z∗
)

12
+
(
H

−1
z∗
)

22

+ τ(z∗)1

(zqq2

p2 − zqq

p

)
. (40)

Plugging the terms from (36), (38) and (40) into the fraction in (39), we get

g̃(0)

f̃[1,0,0]f̃[0,1,0]
√

f̃[0,0,2]
= (detHz∗)−1/2 (τ (z∗)1)

−1 (qzqτ (z∗)1 + 1)−1

×
[
z2qq2

p2

(
H

−1
z∗
)

11
+ 2zqq

p

(
H

−1
z∗
)

12
+
(
H

−1
z∗
)

22
+ τ(z∗)1

(zqq2

p2 − zqq

p

)]−1/2
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=
[

detHz∗
(
τ(z∗)1

)2 (
qzqτ(z∗)1 + 1

)2

×
(

z2qq2

p2

(
H

−1
z∗
)

11
+ 2zqq

p

(
H

−1
z∗
)

12
+
(
H

−1
z∗
)

22
+ τ(z∗)1

zqq(q − p)

p2

)]−1/2

= γ (z)−1, (41)

with γ (z) as in (13). Hence, it follows with (37), (39), and (41) that

P

(
S(n) ∈ Dz ∩ Bz

)
= 1√

2πn γ (z)
e−n�∗

p(z∗) (1 + o(1)). (42)

Combining the representation from (32) with the two integral estimates from (33)
and (42) shows that the integral in the complement of Bz can be neglected and we
have that

P

(
n1/p−1/q‖Z(n)‖q > z

)
= P

(
S(n) ∈ Dz ∩ Bz

)
= 1√

2πn γ (z)
e−n�∗

p(z∗) (1 + o(1)),

which proves our second main result for �n
p-balls.

Appendix

Proof of Lemma 5. Let z > mp,q be such that z∗ = (zq, 1) ∈ Jp. Then

I‖Z‖(z) = inf
t1, t2 > 0

t
1/q
1 t

−1/p
2 = z

�∗
p(t1, t2) = inf

t̃1,t̃2>0: t̃1=z t̃2

�∗
p(t̃

q
1 , t̃

p
2 ) = inf

t̃2>0
�∗

p(zq t̃
q
2 , t̃

p
2 ).

We set tz := (zq t̃
q
2 , t̃

p
2 ), then with (9) it follows that

I‖Z‖(z) = inf
t̃2>0

sup
s∈R2

(〈s, tz〉 − �p(s)
) = inf

t̃2>0

[
〈τ(tz), tz〉 − �p(τ(tz))

]
.

Our goal is to show that the infimum is attained at t∗z := z∗, i.e. at t̃2 = 1. Recall
the definition gt (s) := 〈s, t〉 − �p(s) for t ∈ Jp from Section 2.4. By the definition
of τ(tz) it holds that gtz (s) attains its supremum at τ(tz), thus ∇s gtz (s)

∣∣
s=τ(tz)

=
tz − ∇s�p(s)

∣∣
s=τ(tz)

= 0, which gives

tz = (
zq t̃

q

2 , t̃
p

2

) =
(

∂

∂s1
�p(s)

∣∣
s=τ(tz)

,
∂

∂s2
�p(s)

∣∣
s=τ(tz)

)
. (43)

We now aim to write ∂
∂s2

�p(s) with respect to ∂
∂s1

�p(s) and then use the above
equations. To do so, we firstly want to reformulate �p along the lines of [20, Lemma
5.7]. It holds that

�p(s) := log
∫
R

es1|y|q+s2|y|pfp(y) dy
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= log

(
1

2p1/p�
(
1 + 1

p

) ∫
R

e
s1|y|q− 1

p
(1−ps2)|y|p dy

)
.

The change of variables x = (1 − ps2)
1/py then gives

�p(s) = log

(
(1 − ps2)

−1/p

∫
R

e

s1
(1−ps2)q/p |x|q

fp(x) dx

)

= − 1

p
log(1 − ps2) + log ϕ|X|q

(
s1

(1 − ps2)q/p

)
,

where ϕ|X|q is the m.g.f. of a random variable |X|q with X ∼ Np. Hence,

∂

∂s1
�p(s) = ∂

∂s1

[
log ϕ|X|q

(
s1

(1 − ps2)q/p

)]

= ϕ|X|q
(

s1

(1 − ps2)q/p

)−1
∂

∂s1

[
ϕ|X|q

(
s1

(1 − ps2)q/p

)]

= ϕ|X|q
(

s1

(1 − ps2)q/p

)−1

×
∫
R

(1 − ps2)
−q/p |x|q e

s1
(1−ps2)q/p |x|q

fp(x) dx

= (1 − ps2)
−q/pϕ|X|q

(
s1

(1 − ps2)q/p

)−1

ϕ′|X|q
(

s1

(1 − ps2)q/p

)
,

where ϕ′|X|q
(

s1
(1−ps2)

q/p

)
= ϕ′|X|q (t)

∣∣∣
t= s1

(1−ps2)q/p

. Moreover, with the above we get

that

∂

∂s2
�p(s)

= (1 − ps2)
−1 + ∂

∂s2

[
log ϕ|X|q

(
s1

(1 − ps2)q/p

)]

= (1 − ps2)
−1 + ϕ|X|q

(
s1

(1 − ps2)q/p

)−1
∂

∂s2

[
ϕ|X|q

(
s1

(1 − ps2)q/p

)]

= (1 − ps2)
−1

+ ϕ|X|q
(

s1

(1 − ps2)q/p

)−1 ∫
R

qs1

(1 − ps2)(q+p)/p
|x|q e

s1
(1−ps2)q/p |x|q

fp(x) dx

= (1 − ps2)
−1

+ qs1

(1 − ps2)(q+p)/p
ϕ|X|q

(
s1

(1 − ps2)q/p

)−1

ϕ′|X|q
(

s1

(1 − ps2)q/p

)
= (1 − ps2)

−1
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+ qs1

1 − ps2
(1 − ps2)

−q/p ϕ|X|q
(

s1

(1 − ps2)q/p

)−1

ϕ′|X|q
(

s1

(1 − ps2)q/p

)

= (1 − ps2)
−1 + qs1(1 − ps2)

−1 ∂

∂s1
�p(s). (44)

Plugging in the identities from (43) into (44) it follows for s = (
τ(tz)1, τ (tz)2

)
:

t̃
p
2 = (1 − pτ(tz)2)

−1 + qτ(tz)1(1 − pτ(tz)2)
−1 zq t̃

q
2 . (45)

Using this, we can calculate the derivative of �∗
p(tz) in t (we write t instead of t̃2 for

notational brevity), where τ(tz) is considered as a function in t as well. It holds that

∂

∂t
�∗

p(tz) = ∂

∂t
�∗

p(zq tq, tp)

= ∂

∂t

[〈tz, τ (tz)〉 − �p(τ(tz))
]

= ∂

∂t

[
zq tqτ (tz)1 + tpτ (tz)2 − �p(τ(tz))

]

= zqqtq−1τ(tz)1 + zq tq
∂

∂t
τ (tz)1 + ptp−1τ(tz)2 + tp

∂

∂t
τ (tz)2

− ∂

∂t
�p(τ(tz))

= zqqtq−1τ(tz)1 + zq tq
∂

∂t
τ (tz)1 + ptp−1τ(tz)2 + tp

∂

∂t
τ (tz)2

−Jt (τ (tz))∇s�p(s)
∣∣
s=τ(tz)

= zqqtq−1τ(tz)1 + zq tq
∂

∂t
τ (tz)1 + ptp−1τ(tz)2 + tp

∂

∂t
τ (tz)2

− ∂

∂t
τ (tz)1

∂

∂s1
�p(s)

∣∣
s=τ(tz)

− ∂

∂t
τ (tz)2

∂

∂s2
�p(s)

∣∣
s=τ(tz)

.

We now use the identity from (43), which yields

∂

∂t
�∗

p(tz) = zqqtq−1τ(tz)1 + zq tq
∂

∂t
τ (tz)1 + ptp−1τ(tz)2 + tp

∂

∂t
τ (tz)2

− ∂

∂t
τ (tz)1z

q tq − ∂

∂t
τ (tz)2t

p

= zqqtq−1τ(tz)1 + ptp−1τ(tz)2. (46)

Reformulating the identity in (45) yields
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tp = (1 − pτ(tz)2)
−1 + qτ(tz)1(1 − pτ(tz)2)

−1 zq tq

⇔ (1 − pτ(tz)2)t
p−1 − t−1 = zq tq−1qτ(tz)1. (47)

Thus, if we set ∂
∂t

�∗
p(ta) = 0, we get from (46) and (47) that

∂

∂t
�∗

p(tz) = 0 ⇔ 0 = zqqtq−1τ(tz)1 + ptp−1τ(tz)2

⇔ 0 = (1 − pτ(tz)2)t
p−1 − t−1 + ptp−1τ(tz)2

⇔ t = 1.

Hence, the infimum of �∗
p over ∂Dz is attained at t∗z = (zq, 1) = z∗ Since �∗

p is
strictly convex (see properties of the Legendre–Fenchel transform), this minimum is
unique. Thereby, our claim is proven.

Proof of Lemma 7. Let z > mp,q be such that z∗ = (zq, 1) ∈ Jp. Furthermore, set
z∗∗ := (zq, 1, 1) and IS(t) := [�∗

p(t1, t2) − log(t3)], t ∈ R
3. We use the definitions

of I‖Z‖ and IU , together with Lemma 5, to get that

I‖Z‖(z) = inf
z = t

1/q
1 t

−1/p
2 t3

t1, t2 > 0, t3 ∈ (0, 1]

IS(t)

= inf
z = z1z2

z1 > 0, z2 ∈ (0, 1]

⎡
⎢⎣ inf

t1, t2 > 0

t
1/q
1 t

−1/p
2 = z1

�∗
p(t1, t2) + IU(z2)

⎤
⎥⎦

= inf
z = z1z2

z1 > 0, z2 ∈ (0, 1]

[
�∗

p(z
q
1 , 1) − log(z2)

]
.

By the same arguments as in the proof of Lemma 17, we know that I‖Z‖(z) =
�∗

p(zq, 1) is strictly convex in z on Jp with a unique root in mp,q . Hence, it fol-
lows that for z > mp,q with z ∈ Jp the function I‖Z‖(z) = �∗

p(zq, 1) is strictly
increasing in z. Since z2 ≤ 1, z = z1z2, and 1 < q, we have z

q
1 ≥ z > mp,q , meaning

that �∗
p(z

q

1 , 1) is strictly increasing in z1. Furthermore, we can see that − log(z2) is
strictly decreasing in z2. Hence, rewriting z1 with respect to z2 then gives

I‖Z‖(z) = inf
z1 = z/z2
z2 ∈ (0, 1]

[
�∗

p

(( z

z2

)q

, 1
)

− log(z2)

]
,

which is strictly decreasing in z2. Thus, choosing z2 = 1 gives z1 = z and

I‖Z‖(z) = IS(z∗∗) = �∗
p(z∗),

finishing the proof.
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