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Abstract Probabilistic properties of vantage point trees are studied. A vp-tree built from a
sequence of independent identically distributed points in [−1, 1]d with the �∞-distance func-
tion is considered. The length of the leftmost path in the tree, as well as partitions over the
space it produces are analyzed. The results include several convergence theorems regarding
these characteristics, as the number of nodes in the tree tends to infinity.
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1 Introduction

A vantage point tree (vp-tree) is a data structure for fast executing of nearest neighbor
search queries in a given metric space. This class of trees was first introduced in 1993
in [17], and is widely used since then. It is not the only class of trees used for nearest
neighbor search, other famous examples being kd-trees [3, 12], ball trees [14] as well
as many other data structures.

Nearest neighbor search is used nowadays in a wide range of tasks. A simple
example of day-to-day usage is geographic search of objects close to a specific loca-
tion. The nearest points search is used in computational geometry, for example, for
identifying intersections, which is a routine task in computer graphics or physics sim-
ulations. Last but not least example we mention here is a similarity search, such as
search for similar images or similar articles.
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Another major field, where the nearest neighbor search is an important tool, is
machine learning. More precisely, it is used in variety of regression models. We refer
the reader to [5] and [7] for a nice introduction to such models. We also refer to
[6], which is a good exposition of ideas behind solving classification problem with
the nearest neighbors search. These models proved useful in areas of classification
such as text categorization, multimedia categorization and search, pattern recognition,
information retrieval and many others. Recent studies have started to combine the
nearest neighbor search and neural networks for better and more stable results, see,
for example, [15].

Although the fast nearest neighbor search is important by itself, as well as an
important ingredient in many algorithms, it and the corresponding data structures are
not fully understood from the mathematical viewpoint. Most of the results describing
the structure of these trees were obtained using empirical methods. For example,
in [9] or [16] vp-trees and their heuristic variations were statistically investigated
on specific datasets. Another approach is to compare different tree structures, for
example, vp-trees and kd-trees, and collate their characteristics on the same datasets,
see [11, 13]. In this paper we use a probabilistic approach to analyze a vp-tree and
some related characteristics, as the number of nodes in the tree goes to infinity.

The structure of this paper is the following. In Section 2 we describe a vp-tree
model and introduce characteristics that we are going to study. Section 3 contains our
main results. In Section 4 we specialize some of the results to a number of partial
cases and analyze them in more details.

2 Random vantage point tree model

Let (X , dist) be an arbitrary metric space. A vp-tree is a binary tree in which each
node T stores two values: an element xT ∈ X called a vantage point and a threshold
τT > 0. One of the most common ways to construct a vp-tree is to do this in a
recursive manner from a sequence of elements x1, x2, . . . . The tree is empty at the
beginning, the first element x1 is always stored in its root and some threshold τ is
assigned. In order to insert the n-th element xn the following recursive procedure is
executed. We start from node T which is a root of the tree. If dist(xT , xn) ≤ τ then
we proceed recursively by adding a new element to the T -th left son, otherwise we
proceed into the right son. When on some step the node is empty, then the value xn is
stored in it and some threshold is assigned.

In this article we study a special class of random vp-trees. More precisely we
consider the metric space ([−1, 1]d , dist) (d ≥ 1) with a max-distance function

dist(x, y) = max
1≤i≤d

|xi − yi |. (1)

We also need to specify the choice of the thresholds. To this end, fix a parameter
τ ∈ (0, 1). The threshold of each node T is given by the rule τT = τh, where h is the
distance from T to the root of the tree plus 1. Another possible option is to pick h as
the number of “left turns” in the path from the root to T plus 1. Let us emphasize that
such a choice of thresholds is quite natural. If one wants to assign thresholds as mean
distances then they will also follow the exponential pattern.
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We define the leftmost path of a vp-tree (or of an arbitrary binary tree) as a path
which starts in the root and always goes into the left son of the current node till
reaching a leaf. Note that for both aforementioned rules of picking a threshold, the
value h is the same for elements of the leftmost path.

The sequence of elements x1, x2, . . . is a sequence of independent uniformly dis-
tributed points on [−1, 1]d and this makes the vp-tree, that we construct, random.

Each node in the leftmost path can be enumerated starting from 1. To understand
how leftmost path is formed and evolves let us associate with each node Th (h ≥ 1) in
this path a part of space Ih ⊂ X , which contains all points x that, if added to the tree
would be saved in left subtree of Th. It is obvious that Ih ⊂ Ih−1 and, furthermore, a
point x is saved in the left subtree of Th if dist(x, xTh

) ≤ τh. This gives

Ih = Ih−1 ∩ Bτh(xTh
), h ≥ 1, (2)

where Bτh(xTh
) is a metric ball of radius τh and center xTh

, that is,

Bτh(xTh
) = {x ∈ X : dist(x, xTh

) ≤ τh}. (3)

Note that by our choice of the metric, dist(x, xTh
) ≤ τh is a d-dimensional cube. The

root T1 of the tree is always a part of the leftmost path, hence we can naturally put
I0 := X = [−1, 1]d which is also a cube. From (2) we conclude that, for all h ≥ 1,
Ih is an intersection of a rectangle and a cube, and hence is a rectangle itself with
edges being parallel to coordinate axes. For such figures it is enough (up to parallel
translations) to store only information about their sizes in each dimension which we
denote by I

(i)
h , 1 ≤ i ≤ d .

Let Th−1 be currently the last node in the leftmost path. Then the new node Th will
be added to the left of Th−1 if a new point xn falls inside Ih−1. From the properties of
the uniform distribution, conditionally on xn ∈ Ih−1, xn has the uniform distribution
on Ih−1. Taking into account that Ih−1 is a rectangle, we also obtain that xn’s position
inside Ih−1 has the uniform distribution along every dimension i = 1, . . . , d . Thus,
we can write d recursive equations in each dimension for the size of each side of Ih,
which is just a size of an intersection of two segments: a segment of length I

(i)
h−1 and

a segment of radius τh and a center distributed uniformly inside the first segment. We
compute the size I

(i)
h as the distance between right and left endpoints of the intersec-

tion. Let u
(i)
h , h ≥ 1, 1 ≤ i ≤ d , be a family of independent uniformly distributed

random variables on [0, 1]. We have, for h ≥ 1, 1 ≤ i ≤ d ,

I
(i)
h = min{I (i)

h−1, u
(i)
h I

(i)
h−1 + τh} − max{0, u

(i)
h I

(i)
h−1 − τh}

= (u
(i)
h I

(i)
h−1 − max{0, u

(i)
h I

(i)
h−1 − τh})

+ (min{I (i)
h−1, u

(i)
h I

(i)
h−1 + τh} − u

(i)
h I

(i)
h−1)

= (u
(i)
h I

(i)
h−1 + min{0, τh − u

(i)
h I

(i)
h−1})

+ (min{I (i)
h−1, u

(i)
h I

(i)
h−1 + τh} − u

(i)
h I

(i)
h−1)

= min{u(i)
h I

(i)
h−1, τ

h} + min{(1 − u
(i)
h )I

(i)
h−1, τ

h}. (4)
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Making the substitution X
(i)
h := I

(i)
h /τh we obtain the basic recursive formula de-

scribing evolution of Ih in max-distance case:

X
(i)
h = min

{
u

(i)
h X

(i)
h−1

τ
, 1

}
+ min

{
(1 − u

(i)
h )X

(i)
h−1

τ
, 1

}
. (5)

3 Convergence of the length of the leftmost path

3.1 The analysis of the process (Xh)

The process (5) defines sizes of Xh = Ih/τ
h in different dimensions. (Xh)h≥0 can

be considered as a Markov chain over rectangles (with omitting their positions). We
define by |Xh| (or |Ih|) a Lebesgue measure of a corresponding rectangle, which can
be simply computed knowing sizes of each edge

|Xh| =
d∏

i=1

X
(i)
h . (6)

Proposition 3.1. The Markov chain (5) satisfies

1 ≤ X
(i)
h ≤ 2, (7)

for h ≥ 0 and 1 ≤ i ≤ d .

Proof. Let us fix i and prove the statement on h by using induction. For a random
vp-tree I0 = X = B1(0) = [−1, 1]d , hence X

(i)
0 = I

(i)
0 = 2 and the statement holds.

Since min{a, b} ≤ b from (5) we have

X
(i)
h ≤ 1 + 1 = 2. (8)

To show that X
(i)
h ≥ 1 we first note that if any of the minimums in (5) takes value 1,

then the statement holds. On the other hand, if both minimums are less than 1, then

X
(i)
h = u

(i)
h X

(i)
h−1

τ
+ (1 − u

(i)
h )X

(i)
h−1

τ
= X

(i)
h−1

τ
≥ X

(i)
h−1 ≥ 1 (9)

by the inductive assumption, and since τ ∈ (0, 1).

Let us denote by S a set of all possible values the chain (Xh) can visit provided
that X0 = B1(0). Note that S is uncountable.

We shall use the notation of stochastic ordering which we recall for convenience.

Definition 3.2. For two random variables X and Y we say that Y stochastically dom-

inates X and write X
st≤ Y if

P{X ≤ t} ≥ P{Y ≤ t} for all t ∈ R. (10)

The key ingredient for the subsequent analysis is the following theorem which
says that the chain (Xh)h≥0 visits the state B1(0) relatively often.
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Theorem 3.3. Fix α ∈ S and put

Rα := inf{h ≥ 1 : Xh = B1(0) given that X0 = α}.
Then ERα < ∞.

Remark 3.4. We do believe that the counterpart of this theorem holds in arbitrary
metric on [−1, 1]d , however we have not been able to prove it in such generality.

Proof of Theorem 3.3. We rewrite (2) as follows:

Xh+1 = Xh

τ

⋂
B1(u

∗
h+1), (11)

where u∗
h+1 is uniformly distributed inside Xh/τ .

Since the positions of rectangles are not important, the recursive equation (11)
can be also rewritten as

Xh+1 = Xh − uh+1

τ

⋂
B1(0), (12)

where uh+1 is uniformly distributed in Xh.
From Proposition 3.1 it follows that for any state Xh there is a d-dimensional

square with sides 1 inside Xh, or in other words there is always a point x̂h such that
Bδ(x̂h) ⊂ Xh with δ = 1/2.

Let us assume that point uh+1 is chosen inside Bδ(x̂h) and denote

� = dist(uh+1, x̂h) ≤ δ. (13)

From the triangle inequality we obtain

max
y∈∂Bδ(x̂h)

dist(uh+1, y) ≤ � + δ, (14)

min
y∈∂Bδ(x̂h)

dist(uh+1, y) ≥ δ − �, (15)

where ∂B defines the boundary of the set B.
Then, in view of (12), we have

max
y∈∂((Bδ(x̂h)−uh+1)/τ)

dist(0, y) ≤ � + δ

τ
, (16)

and

min
y∈∂((Bδ(x̂h)−uh+1)/τ)

dist(0, y) ≥ δ − �

τ
. (17)

From (16) we have our first property that if �+δ
τ

≤ 1 (or equally � ≤ τ − δ),
then Bδ/τ ((x̂h − uh+1)/τ) ⊂ Xh+1. From (17) we have our second property that if
δ−�

τ
≥ 1 (or equally � ≤ δ − τ ), then Xh+1 = B1(0).

Let us now fix a constant k = min{k ∈ N : 1+τ
2 τ k−1 ≤ 1

2 }. Since B1/2(x̂h) ⊂ Xh,
we have B 1+τ

2 τk−1(x̂h) ⊂ Xh. Since k ≥ 2, it holds 1+τ
2 τ k−1 < τ . Therefore, if
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uh+1 ∈ Bε1(x̂h) with ε1 = τ − 1+τ
2 τ k−1, which happens with a positive probability,

we will obtain B 1+τ
2 τk−2(x̂h+1) ⊂ Xh+1 from the first property. Repeating this k −

1 times in total, where εi = τ − 1+τ
2 τ k−i > 0, for 1 ≤ i ≤ k − 1, we obtain

that B 1+τ
2

(x̂h+k−1) ⊂ Xh+k−1 and 1+τ
2 > τ . Thus, if uh+k ∈ Bεk

(x̂h+k−1), which

happens with a positive probability, where εk = 1+τ
2 − τ , we get that Xh+k = B1(0)

from the second property. Summarizing, we see that from an arbitrary state α ∈ S

the chain jumps in k steps to the state B1(0) with a positive probability which is
independent of the starting state α. Note that k also only depends on τ .

We split the evolution of the chain into blocks of length k. The state at the end
of each block can be B1(0) with a positive probability, say p, obtained from the
described scheme. We denote by g a number of the first block which ends up in the
state B1(0). Then since actual probability to end up in the state B1(0) at the end of
the block is not less than p we have, for any t ≥ 0,

P{g ≤ t} ≥ P{G ≤ t}, (18)

where G has a geometric distribution with parameter p (number of trials). Or in terms
of stochastic order

g
st≤ G. (19)

Similarly, since the moment Rα of the first visit to state B1(0) (after starting state)
can occur in the middle of each block, we can write

Rα

st≤ kg. (20)

From the properties of stochastic order, inequality also holds for expectations,
hence combining last two comparisons we have

ERα ≤ kEG = k

p
< ∞. (21)

Remark 3.5. We note that in the proof of Theorem 3.3 we did not significantly
use that uh has the uniform distribution, and it works for any absolutely continuous
distribution, since probability for uh to fall inside some Bε(x̂h) is positive and larger
than some fixed positive constant.

Remark 3.6. The process (11) in particular case τ = 1 is called the diminishing
process of Balint Toth. This process was studied in various partial cases including
one-dimensional [1] and multi-dimensional case [10] with B1(0) = [−1, 1]d , as well
as in other metrics [2, 10]. However evolution of this process with τ < 1 differs a lot
and requires an independent study, whilst methods used for τ = 1 cannot be applied
to treat the case τ < 1.

From Theorem 3.3 it follows that the chain (Xh)h≥0 evolves as follows. There is
a special state B1(0), which the chain visits infinitely often and time to return to this
state is a.s. finite and, moreover, has a finite mean. Thus, the whole evolution of Xh

can be split into independent cycles between visiting the state B1(0).
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In order to proceed we need to recall a notion of the Harris chains. For information
about Harris chains and examples we refer the reader to the book [8, Chapter 6]. We
will only present here the required definitions.

Definition 3.7. A Markov chain (Xh)h≥0 on a state space S is a Harris chain if there
are two sets A,B ⊂ S, a positive function q(x, y) ≥ ε > 0 for x ∈ A, y ∈ B, and a
probability measure ρ concentrated on B such that the following two conditions hold:

1. P{inf{h ≥ 0 : Xh ∈ A} < ∞} > 0 for all possible starting states X0 ∈ S;

2. if x ∈ A and C ⊂ B, then P{Xh+1 ∈ C|Xh = x} ≥ ∫
C

q(x, y)ρ(dy).

Definition 3.8. A Harris chain is called recurrent if there is a state α such that
P{inf{h ≥ 1 : Xh = α} < ∞} = 1 when X0 = α.

Definition 3.9. A recurrent Harris chain is aperiodic if the greatest common divisor
of set {h ≥ 1 : P{Xh = α|X0 = α} > 0} is 1.

Proposition 3.10. (Xh)h≥0 is an aperiodic recurrent Harris chain.

Proof. Let us first show that (Xh)h≥0 is a Harris chain. Put A = B = {B1(0)}. From
Theorem 3.3 it follows that P{RX0 < ∞} = 1. Since inf{h ≥ 0 : Xh ∈ A} < ∞} ≤
RX0 for all possible starting states, the first condition holds. For the second part of the
definition we put q(x, y) := p := P{Xh+1 = B1(0)|Xh = B1(0)}. From the proof of
Theorem 3.3, more precisely from the property (17), it follows that p > 0.

To show recurrence of the chain we put α = B1(0). Then from Theorem 3.3
we have that Rα < ∞ almost surely. For the aperiodicity it is enough to note that
P{X1 = α|X0 = α} = p > 0.

Theorem 3.11. The Markov chain (Xh)h≥0 has a stationary distribution I∞ and

lim
n→∞ ‖P{Xh = ·|X0 = B1(0)} − I∞(·)‖T V = 0, (22)

where ‖ · ‖T V denotes the total variance distance.

Proof. From Proposition 3.10 we know that (Xh) is an aperiodic recurrent Harris
chain. By Theorem 6.8.5 in [8, p. 323] this chain has a stationary measure. By Theo-
rem 6.8.8 in [8, p. 324] an aperiodic recurrent Harris chain converges to a stationary
distribution in the total variation distance as (22) if RB1(0) is almost surely finite. The
latter is secured by Theorem 3.3.

3.2 Limit theorems for the length of the leftmost path

Using the results on the behavior of the chain (Xh) we can analyze the length of the
leftmost path of a vp-tree constructed from n random points. Let us introduce the
following random walk

S0 := 0, Sk :=
k−1∑
h=0

Gh k ≥ 1, (23)

where, given the path of (Ih)h≥0, (Gh)h≥0 are conditionally independent random
variables such that the distribution of Gh is geometric on N with parameter |Ih|

2d . This
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sum shows how many points are needed to have the leftmost path of size at least k,
since the new node is added to it when a point xn falls into area of size |Ih| which is,
given (Ih)h≥0, a Bernoulli trial.

The size (number of nodes) of the leftmost path in terms of Sk can be expressed
as

Ln = max{k ≥ 0 : Sk ≤ n}. (24)

The length of the leftmost path can be simply computed from its size as Ln − 1.

Theorem 3.12. For a random vp-tree the size of the leftmost path Ln satisfies the
following weak law of large numbers, as n → ∞,

Ln

log n

P→ 1

− log τ
. (25)

To prove this theorem we need two lemmas. We note that if X ∼ Geom(a) and
Y ∼ Geom(b), then

X
st≤ Y ⇔ a ≥ b. (26)

Lemma 3.13. For random variables Gk ∼ Geom(
|Ik |
2d ) (k ≥ 0)

1

k
log Gk

P→ − log τ, (27)

as k → ∞.

Proof. We compute the distribution function of 1
k

log Gk . Note that

P

{
1

k
log Gk ≤ x

}
= E

{
P

{
1

k
log Gk ≤ x

∣∣∣Ik

}}
, (28)

and further

P{k−1 log Gk ≤ x|Ik} = P{Gk ≤ exp(kx)|Ik} = 1 − (1 − |Ik|/2d)exp(kx)�. (29)

From Proposition 3.1 we have that

τ k ≤ |Ik| ≤ 2dτ k. (30)

Thus we can bound the probability in (29) by inserting lower and upper bounds of |Ik|.
Thus,

1 − (1 − 2−dτ k)exp(kx)� ≤ P{k−1 log Gk ≤ x|Ik} ≤ 1 − (1 − τ k)exp(kx)�.

Both upper and lower bounds converge, as k → ∞, to{
0, if log τ + x < 0

1, if log τ + x > 0
. (31)

Hence by the standard sandwich argument P{k−1 log Gk ≤ x|Ik} converges to the
same values almost surely. By the dominated convergence theorem, the same holds
for the unconditional probability P

{ 1
k

log Gk ≤ x
}
. This finishes the proof.
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Lemma 3.14. For a random walk Sk described in (23)

1

k
log Sk

P→ − log τ (32)

as k → ∞.

Proof. We write the distribution function of Sk as

P{Sk ≤ x} = E{P{Sk ≤ x|(Ih)0≤h<k}} (33)

and study the conditional probability under the expectation.
Since Sk ≥ Gk−1 we have an upper bound

P{Sk ≤ x|(Ih)0≤h<k} ≤ P{Gk−1 ≤ x|(Ih)0≤h<k}, (34)

and the inequality holds for expectations, that is, the unconditional probability.
Let us recall that, given (Ih)0≤h≤k , the random variables (Gh)0≤h≤k are inde-

pendent. We also have that Gh

st≤ Gk (0 ≤ h < k) since the sequence (|Ih|)h≥0 is
nonincreasing. Thus, we have the bound

k−1∑
h=0

Gh

st≤
k−1∑
h=0

G
(h)
k

st≤ k max
0≤h<k

G
(h)
k = kĜk (35)

where (G
(h)
k )0≤h<k is a set of independent copies of geometrically distributed ran-

dom variables with the parameter τ k/2d , providing Gk

st≤ G
(1)
k , and we put Ĝk :=

max0≤h<k G
(h)
k . Note that the inequality stays for expectations, giving that it holds

for unconditional values of Sk .
We compute the distribution function of Ĝk:

P

{
1

k
log Ĝk ≤ x

}
= P{Ĝk ≤ exp(kx)} =

(
1 − (1 − τ k/2d)exp(kx)�)k

, (36)

and therefore, as k → ∞,

P

{
1

k
log Ĝk ≤ x

}
→
{

0, if log τ + x < 0

1, if log τ + x ≥ 0
. (37)

Now we combine (34) and (35) to obtain

log Gk−1
st≤ log Sk

st≤ log k + log Ĝk. (38)

Dividing everything by k we obtain

k − 1

k

log Gk−1

k − 1

st≤ log Sk

k

st≤ log k

k
+ log Ĝk

k
. (39)

From Lemma 3.13 and (37) sending k → ∞ yields

1

k
log Sk

d→ − log τ. (40)

Convergence in probability is implied from the fact that the limit is a constant.
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Proof of Theorem 3.12. We start by computing the distribution function of Ln

log n
in

any point x > 0 and x �= −1/ log τ :

P

{
Ln

log n
> x

}
= P{Ln > x log n} = P{Sx log n� ≤ n}

= P{log Sx log n� ≤ log n} = P

{
log Sx log n�

log n
≤ 1

}
= P

{
log Sx log n�

x log n
≤ 1

x

}
. (41)

By Lemma 3.14 we have

P

{
log Sx log n�

x log n
≤ 1

x

}
→
{

0, 1/x < − log τ

1, 1/x > − log τ
, (42)

as k → ∞, and therefore

P

{
Ln

log n
≤ x

}
= 1 − P

{
Ln

log n
> x

}
→
{

1, x > −1/ log τ

0, x < −1/ log τ
. (43)

Since the convergence in distribution to a constant implies the convergence in proba-
bility to the same constant, the theorem is proved.

We note that for proving Theorem 3.12 we only used that |Ih|/τh is bounded both
from zero and infinity by some absolute constants. The following results demonstrate
convergence of Ln over subsequences. We first state and prove the result for the ran-
dom walk (Sk). Recall that I∞ is the stationary distribution of the chain
(Ih/τ

h)h≥0.

Lemma 3.15. For a random walk Sk defined by (23), as k → ∞,

τ kSk
d→ G∞, (44)

where G∞ is a random series
∑∞

j=1 ξj . Here (ξj )j≥0 are conditionally independent,

given I∞, random variables such that ξj ∼ Exp(
|I∞|
2d τ j ).

Proof. Let us write the characteristic function of τ kSk:

Eeitτ kSk = E

[
E

(
eitτ kSk |(Ih)0≤h<k

)]
= E

⎡⎣k−1∏
j=0

|Ij |/2d

e−itτ k − (1 − |Ij |/2d)

⎤⎦
=E

⎡⎣k−1∏
j=0

|Ij |/2d

1 − itτ k + O(τ 2k) − (1 − |Ij |/2d)

⎤⎦
=E

⎡⎣k−1∏
j=0

|Ij |/2d

|Ij |/2d − itτ k + O(τ 2k)

⎤⎦
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=E

⎡⎣k−1∏
j=0

1

1 − 2d itτ k−j τ j

|Ij | + O( τ 2k

|Ij | )

⎤⎦
=E

⎡⎣ k∏
j=1

1

1 − 2d itτ j τk−j

|Ik−j | + O( τk

|Ik−j | )O(τk)

⎤⎦
=E

⎡⎣ M∏
j=1

1

1 − 2d itτ j τk−j

|Ik−j | + O(τk)
·

k∏
j=M+1

1

1 − 2d itτ j τk−j

|Ik−j | + O(τk)

⎤⎦
=E

[
Ak,M(t) · Bk,M(t)

]
, (45)

where 1 ≤ M < k is a fixed parameter and O( τk

|Ik−j | ) = O(1) by Proposition 3.1.
From Theorem 3.11 the convergence in total variance implies the convergence

in distribution, the convergence of modules is also implied considering specifics of
given rectangles. Thus, for every fixed M as k → ∞ we have

Ak,M(t)
d→

M∏
j=1

1

1 − 2d itτ j /|I∞| . (46)

Let us show now that, for any ε > 0,

lim
M→∞ lim sup

k→∞
P{|Ak,M(t)Bk,M(t) − Ak,M(t)| ≥ ε} = 0. (47)

By Markov’s inequality

P{|Ak,M(t)Bk,M(t) − Ak,M(t)| ≥ ε} ≤ E|Ak,M(t)||Bk,M(t) − 1|
ε

. (48)

At first we want to show that Bk,M(t) converges to 1 by separately showing that
module and argument of the complex value converge. We have

|Bk,M(t)|2 =
k∏

j=M+1

1

(1 + O(τk))2 + (2d tτ j τk−j

|Ik−j | + O(τk))2
, (49)

log |Bk,M(t)|2 = −
k∑

j=M+1

log

[
(1 + O(τk))2 +

(
2d tτ j τ k−j

|Ik−j | + O(τk)

)2
]

= −
k∑

j=M+1

log

[
1 + O(τk) + 22d t2τ 2j

(
τ k−j

|Ik−j |
)2

+ O(τk)

]

= −
k∑

j=M+1

[
22d t2τ 2j

(
τ k−j

|Ik−j |
)2

+ O(τk) + O(τ 4j ) + O(τ 2j+k) + O(τ 2k)

]

= −
k∑

j=M+1

[
O(τ 2j ) + O(τk)

]
.

(50)
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The expansion for logarithm holds starting with some large enough M . We also used
Proposition 3.1 which shows that τ k−j /|Ik−j | is bounded by nonrandom constants,
which also do not dependent on k − j . We note that for a fixed t , the constants in the
remainders O(τ 2j ) and O(τk) are uniform, that is, do not depend on j , k. Thus, we
can write

lim
M→∞ lim sup

k→∞

k∑
j=M+1

[
O(τ 2j ) + O(τk)

]
= 0 a.s. (51)

For the argument we write

argBk,M(t) = −
k∑

j=M+1

Arg

(
1 − 2d itτ j τ k−j

|Ik−j | + O(τk)

)

=
k∑

j=M+1

⎡⎢⎢⎣ 2d tτ j τk−j

|Ik−j |√
1 + 22d t2τ 2j

(
τk−j

|Ik−j |
)2

+ O(τ 3j ) + O(τk)

⎤⎥⎥⎦
=

k∑
j=M+1

[
O(τj ) + O(τk)

]
. (52)

The expansion for the principal argument holds starting from some large enough M .
Arguing as before we can write

lim
M→∞ lim sup

k→∞
argBk,M(t) = 0 a.s. (53)

We also showed in process that starting from some large enough k and M the
quantity |Bk,M(t)| is bounded by a nonrandom constant B > 0 on every stochastic
path. Since |Ak,M(t)Bk,M(t)| = 1, then |Ak,M(t)| is also bounded by some constant
A > 0. Thus, we can write

E|Ak,M(t)||Bk,M(t) − 1|
ε

≤ AE|Bk,M(t) − 1|
ε

. (54)

We already showed that

lim
M→∞ lim sup

k→∞
|Bk,M(t) − 1| = 0 a.s.

Since |Bk,M(t) − 1| ≤ 1 + B, then by the dominated convergence theorem

lim
M→∞ lim

k→∞E|Bk,M(t) − 1| = 0. (55)

Combining pieces together we obtain (47).
By Theorem 3.2 in [4, p. 28] we have that as k → ∞

eitτ kSk
d→ lim

M→∞

M∏
j=1

1

1 − 2d itτ j /|I∞| =
∞∏

j=1

1

1 − 2d itτ j /|I∞| . (56)
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Elements of the sequence (eitτ kSk )k≥0 are uniformly integrable as characteristic
functions, so expectations also converge as k → ∞,

Eeitτ kSk → E

∞∏
j=1

1

1 − 2d itτ j /|I∞| , (57)

and the limiting value here is a characteristic function of G∞ which finishes the
proof.

Theorem 3.16. For any fixed T > 0,

LT τ−n� − n
d→ L(T )∞ (58)

as n → ∞ and the distribution function of L
(T )∞ is given by

P{L(T )∞ ≤ m} = 1 − P{G∞ ≤ T τm} (59)

for any m ∈ Z with G∞ defined in Lemma 3.15.

Proof. Since LT τ−n� − n takes values only on Z, we study the distribution function
only over integer values. For fixed T > 0 and m ∈ Z we have

P{LT τ−n� − n > m} = P{LT τ−n� > n + m} = P{Sn+m ≤ T τ−n�}
= P{τn+mSn+m ≤ τn+mT τ−n�}. (60)

From Lemma 3.15 and the fact that τnT τ−n� → T as n → ∞ we obtain

lim
n→∞P{τn+mSn+m ≤ τn+mT τ−n�} = P{G∞ ≤ T τm}, (61)

which finishes the proof.

4 One-dimensional convergence

In this section we analyze the random recursive equation (5). Sending h → ∞ in (5)
we formally obtain the stochastic fixed-point equation for the limit X∞ of X

(i)
h :

X∞
d= min{τ−1uX∞, 1} + min{τ−1(1 − u)X∞, 1}, (62)

where u is a uniformly distributed random variable on [0, 1]. Let us show, using the
contraction method, that X

(i)
h converges to X∞, as h → ∞.

Theorem 4.1. The function

f (X, u) = Law

(
min

{
uX

τ
, 1

}
+ min

{
(1 − u)X

τ
, 1

})
(63)

is a strict contraction in the space of probability measures on [1, 2] endowed with
the �1-minimal metric, where u is a uniformly distributed random variable on [0, 1]
independent of a random variable X taking values in [1, 2].
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Definition 4.2. The �1-minimal metric between two random variables X and Y is
given by

�1(X, Y ) = infE|X̂ − Ŷ |, (64)

where the infimum is taken over all pairs of random variables (X̂, Ŷ ) such that X̂ ∼ X

and Ŷ ∼ Y .

Proof of Theorem 4.1. Similarly to the proof of Proposition 3.1 it can be checked
that if X takes values in [1, 2], the same holds also for f (X, u).

We prove the contraction property in two steps.
Step 1. We compute the �1-minimal distance between f (x, u1) and f (y, u2) for fixed
nonrandom numbers x, y ∈ [1, 2]. We have

�1(f (x, u), f (y, u)) = infE|f (x, u1) − f (x, u2)|. (65)

Since the infimum is taken over all possible dependencies between u1 and u2, we
may pick u1 = u2 = u. Then

�1(f (x, u1), f (y, u2)) ≤
∫

[0,1]
|f (x, u) − f (y, u)|du. (66)

Let us assume for the time being that there is α ∈ (0, 1) such that∫
[0,1]

|f (x, u) − f (y, u)|du ≤ α|x − y|. (67)

Step 2. We compute the �1-minimal distance between f (X, u1) and f (Y, u2). Com-
bining the above estimates, we obtain

�1(f (X, u1), f (Y, u2)) ≤ αE|X̂ − Ŷ |, (68)

for arbitrary pair (X̂, Ŷ ) such that X̂ ∼ X and Ŷ ∼ Y . Passing to the infimum over
all such pairs, we obtain

�1(f (X, u1), f (Y, u2)) ≤ α�1(X, Y ) (69)

for some constant α ∈ (0, 1), which is the definition of contraction.
It remains to prove (67). At first we divide f into sum of two functions.

f (x, u) = f1(x, u) + f2(x, u), (70)

where

f1(x, u) = min

{
uX

τ
, 1

}
=
{

ux
τ

, u < τ
x

1, u ≥ τ
x

(71)

and f2(x, u) = min{ (1−u)X
τ

, 1}.
We compute the following integral under the condition x ≤ y:∫ 1

0
|f1(x, u) − f1(y, u)|du =

∫ τ/y

0

(uy

τ
− ux

τ

)
du
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+
∫ τ/x

τ/y

(
1 − ux

τ

)
du +

∫ 1

τ/x

(1 − 1)du

=
∫ τ/y

0

u

τ
(y − x)du +

∫ τ/x

τ/y

du −
∫ τ/x

τ/y

x

τ
du

= y − x

τ

u2

2

∣∣∣τ/y

0
+
(

τ

x
− τ

y

)
− x

τ

u2

2

∣∣∣τ/x

τ/y

= y − x

2τ

τ 2

y2 +
(

τ

x
− τ

y

)
− x

2τ

(
τ 2

x2 − τ 2

y2

)
= τ(y − x)

2y2 + τ

x
− τ

y
− τ

2x
+ τx

2y2

= τx(y − x) + 2τy2 − 2τxy − τy2 + τx2

2xy2

= −τxy + τy2

2xy
= τ

2

y − x

xy
. (72)

Similarly if y ≤ x we obtain that∫ 1

0
|f1(x, u) − f1(y, u)|du ≤ τ

2

x − y

xy
, (73)

which results in ∫ 1

0
|f1(x, u) − f1(y, u)|du ≤ τ

2

|x − y|
xy

. (74)

Now we estimate the same integral for f2, where

f2(x, u) =
{

1, 1 − u ≥ τ
x

(1−u)x
τ

, 1 − u < τ
x

. (75)

In the integral we make a substitution v = 1 − u:∫ 1

0
|f2(x, u) − f2(y, u)|du =

∫ 1

0
|f2(x, 1 − v) − f2(y, 1 − v)|dv, (76)

where we instantly obtain the same estimation as (74), since f2(x, 1 − v) = f1(x, v).
Finally,∫
[0,1]

|f (x, u) − f (y, u)|du ≤
∫ 1

0
|f1(x, u) − f1(y, u)|du

+
∫ 1

0
|f2(x, u) − f2(y, u)|du

≤τ

2

|x − y|
xy

+ τ

2

|x − y|
xy

= τ
|x − y|

xy
≤ τ |x − y|,

(77)
which proves (67) with α = τ .
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Corollary 4.3. The stochastic fixed-point equation (62) has the unique solution X∞
in the space of probability measures on [1, 2] and X

(i)
h

d→ X∞, as h → ∞, for every
fixed i = 1, . . . , d .

Remark 4.4. We obtained the same result as in the previous section without resort
to geometric interpretation but with explicit usage of the distribution of sequence of
points x1, x2, . . . . It also allowed us to deduce the stochastic fixed-point equation
for X∞. Recall that I∞ is a rectangle with edges being parallel to coordinate axes,
its sizes in all dimensions can be given by (X

(1)∞ , . . . , X
(d)∞ ), where (X

(i)∞ )1≤i≤d are
independent copies of X∞.

It turns out that the distribution of X∞ can be found explicitly using the stochas-
tic fixed-point equation (62) by directly computing its distribution function F(t) =
P{X∞ < t}. The solution depends heavily on the parameter τ .

We start with a rather simple and special example τ ≤ 1/2.
For t ∈ [1, 2] we write

P{X∞ < t} = P

{
min

{
uX∞

τ
, 1

}
+ min

{
(1 − u)X∞

τ
, 1

}
< t

}
= P

{
1 + 1 < t,

uX∞
τ

≥ 1,
(1 − u)X∞

τ
≥ 1

}
+ P

{
uX∞

τ
+ (1 − u)X∞

τ
< t,

uX∞
τ

< 1,
(1 − u)X∞

τ
< 1

}
+ P

{
uX∞

τ
+ 1 < t,

uX∞
τ

< 1,
(1 − u)X∞

τ
≥ 1

}
+ P

{
1 + (1 − u)X∞

τ
< t,

uX∞
τ

≥ 1,
(1 − u)X∞

τ
< 1

}
. (78)

The first term is obviously 0, since we assume t ≤ 2. The second term is also 0 since
events {uX∞

τ
< 1} and { (1−u)X∞

τ
< 1} cannot occur at the same time for τ ≤ 1/2.

And the last two terms are symmetrical.

P{X∞ < t} = 2P

{
uX∞

τ
+ 1 < t,

uX∞
τ

< 1,
(1 − u)X∞

τ
≥ 1

}
= 2P

{
uX∞

τ
+ 1 < t,

(1 − u)X∞
τ

≥ 1

}
= 2P

{
u <

τ(t − 1)

X∞
, u ≤ X∞ − τ

X∞

}
= 2P

{
u <

τ(t − 1)

X∞

}
. (79)

Here in the second equality we used that the event {uX∞
τ

+ 1 < t} implies the event

{uX∞
τ

< 1}. And in the last equality we used that the event {u <
τ(t−1)
X∞ } includes the

event {u ≤ X∞−τ
X∞ } since τ t < 1 ≤ X∞. Finally,

P{X∞ < t} = 2P

{
u <

τ(t − 1)

X∞

}
= 2E

(
P

{
τ(t − 1)

X∞
> u

} ∣∣X∞
)
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= 2E

(
τ(t − 1)

X∞

)
= 2τE

1

X∞
(t − 1). (80)

And we also have a special state X∞ = 2:

P{X∞ = 2} = P

{
1 + 1 = 2,

uX∞
τ

≥ 1,
(1 − u)X∞

τ
≥ 1

}
= P

{
u ≥ τ

X∞
, u ≤ 1 − τ

X∞

}
= 1 − 2τE

1

X∞
. (81)

From (80) and (81) we see that X∞ is a combination of the uniform distribution
on [1, 2) and an atom at point 2. We only need to compute a constant E 1

X∞ .

E
1

X∞
= 1

2
P{X∞ = 2} +

∫ 2

1

1

t
dP{X∞ < t}

= 1

2

(
1 − 2τE

1

X∞

)
+
∫ 2

1

2τE 1
X∞

t
dt

= 1

2

(
1 − 2τE

1

X∞

)
+ 2τE

1

X∞
(log 2 − log 1). (82)

We solve (82) for an unknown E
1

X∞ and obtain that

E
1

X∞
= 1

2τ(1 − 2 log 2 + 1/τ)
. (83)

On Figure 1 the reader can see simultaneous plots of just obtained theoretical
values of F(t) and statistical values. We refer to statistical values as an empirical
cumulative distribution function obtained from values of X

(i)
h taken in 10000 consec-

utive iterations of the process (5).
From now on we assume that τ > 1/2. We begin as in previous case but write all

possibilities for minimums separately.
The situation X∞ = 2 is possible only when both minimums are 1.

P{X∞ = 2} = P

{
1 + 1 = 2, 1 ≤ uX∞

τ
, 1 ≤ (1 − u)X∞

τ

}
= P

{
τ

X∞
≤ u ≤ X∞ − τ

X∞
, X∞ ≥ 2τ

}
=
∫

[2τ,2]

(
1 − τ

x

)
dF(x) −

∫
[2τ,2]

τ

x
dF(x)

= 1 − F(2τ) − 2τ

∫
[2τ,2]

1

x
dF(x)

= 1 − F(2τ) − 2τ

(
E

1

X∞
−
∫

[1,2τ)

1

x
dF(x)

)
. (84)

When X∞ < 2 there are two possibilities that only one of the minimums in (62)
is 1, and both of these situations are symmetrical, so we compute only one of the
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Fig. 1. Plot of theoretical and statistical values of the distribution function F(t) of X∞ with
τ = 0.4

probabilities:

P

{
uX∞

τ
+ 1 < t,

uX∞
τ

< 1,
(1 − u)X∞

τ
≥ 1

}
= P

{
u <

τ(t − 1)

X∞
, X∞ ≥ τ t

}
+ P

{
u ≤ X∞ − τ

X∞
, X∞ < τt

}
=
∫

[τ t,2]
τ(t − 1)

x
dF (x) +

∫
[1,τ t]

(
1 − τ

x

)
dF(x)

= τ(t − 1)

(
E

1

X∞
−
∫

[1,τ t)

1

x
dF(x)

)
+ F(τ t) − τ

∫
[1,τ t)

1

x
dF(x). (85)

And the last possibility of X∞ < 2 is when both minimums are less than 1.

P

{
uX∞

τ
+ (1 − u)X∞

τ
< t,

uX∞
τ

< 1,
(1 − u)X∞

τ
< 1

}
= P

{
X∞ − τ

X∞
< u <

τ

X∞
, x < τ t

}
=
∫

[1,τ t]
τ

x
dF(x) −

∫
[1,τ t]

(1 − τ

x
)dF (x)

= 2τ

∫
[1,τ t]

1

x
dF(x) − F(τ t). (86)

We combine (85) and (86) and get the following for t ∈ [1, 2]:

P{X∞ < t} = P

{
uX∞

τ
+ (1 − u)X∞

τ
< t,

uX∞
τ

< 1,
(1 − u)X∞

τ
< 1

}
+ 2P

{
uX∞

τ
+ 1 < t,

uX∞
τ

< 1,
(1 − u)X∞

τ
≥ 1

}
= F(τ t) + 2τ(t − 1)

(
E

1

X∞
−
∫

[1,τ t)

1

x
dF(x)

)
. (87)
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Now we will show how to retrieve exact values for probability (87). On step 1 we
consider that t ∈ [1, 1/τ ], then τ t < 1 and from (87) one gets:

P{X∞ < t} = 0 + 2τ(t − 1)

(
E

1

X∞
− 0

)
= 2τ(t − 1)E

1

X∞
. (88)

We also compute the derivative

dF(t) = 2τE
1

X∞
dt. (89)

We repeat the procedure by computing probabilities and the derivatives for t ∈
[1/τ, 1/τ 2] and so on following intervals by using results from previous intervals.
More generally, let us compute an interval on step k when t ∈ [1/τk−1, 1/τk].

We have τ t ∈ [1/τk−2, 1/τk−1] which means that F(τ t) is a value from previous
interval and we can use it. We also have an integral part in (87):∫

[1,τ t)

1

x
dF(x) =

∫ 1/τ

1

1

x
dF(x) +

∫ 1/τ 2

1/τ

1

x
dF(x) + · · · +

∫ τ t

1/τk−2

1

x
dF(x) (90)

where the integrals are taken by using computed derivatives on first k − 1 intervals
respectively.

At some k we have 1/τk > 2 so we stop computing intervals. We have only one
unknown variable E

1
X∞ . We compute this value directly by using computed proba-

bilities and solve an equation for it.

Example 4.5. Let us compute X∞ when 1/τ < 2 ≤ 1/τ 2 (k = 2). We also have that
2τ ≤ 1/τ .

When t ≤ 1/τ , we have

P{X∞ < t} = 2τ(t − 1)E
1

X∞
, dF (t) = 2τE

1

X∞
dt. (91)

When t ≥ 1/τ ,∫
[1,τ t]

1

x
dF(x) =

∫ τ t

1

2τE 1
X∞

x
dx = 2τE

1

X∞
log(τ t). (92)

After plugging (91) and (92) into (87) we obtain

P{X∞ < t} = F(τ t) + 2τ(t − 1)

(
E

1

X∞
− 2τE

1

X∞
log(τ t)

)
= 2τ(τ t − 1)E

1

X∞
+ 2τ(t − 1)E

1

X∞
− 4τ 2(t − 1) log(τ t)

= 2τE
1

X∞
(t + τ t − 2τ t log(τ t) + 2τ log(τ t) − 2), (93)

and the derivative is

dF(t) = 2τE
1

X∞

(
1 + τ − 2τ(1 + log(τ t)) + 2τ

1

t

)
. (94)
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Finally, we also return to a special case value X∞ = 2 which was computed at
the beginning in (84):

P{X∞ = 2} = 1 − F(2τ) − 2τ

(
E

1

X∞
−
∫

[1,2τ)

1

x
dF(x)

)
= 1 − P{X∞ < 2}

= 1 − 2τE
1

X∞
(2 + 2τ − 4τ log(2τ) + 2τ log(2τ) − 2)

= 1 − 4τ 2
E

1

X∞
(1 − log(2τ)). (95)

We only need to compute the constant E 1
X∞ :

E
1

X∞
= 1

2

(
1 − 4τ 2

E
1

X∞
(1 − log(2τ))

)
+
∫ 1/τ

1

2τE 1
X∞

x
dx

+
∫ 2

1/τ

2τE 1
X∞ (1 + τ − 2τ(1 + log(τ t)) + 2τ 1

t
)

x
dx

= 1

2

(
1 − 4τ 2

E
1

X∞
(1 − log(2τ))

)
+
∫ 1/τ

1

2τE 1
X∞

x
dx

+ 2τE
1

X∞

(∫ 2

1/τ

1 + τ − 2τ

x
dx +

∫ 2

1/τ

−2τ log τx

x
dx +

∫ 2

1/τ

2τ

x2 dx

)

= 1

2

(
1 − 4τ 2

E
1

X∞
(1 − log(2τ))

)
+
∫ 1/τ

1

2τE 1
X∞

x
dx + 2τE

1

X∞
∗

∗
(

(1 − τ)(log 2 − log(1/τ)) − τ(log2(2τ) − log2(τ/τ)) − 2τ

(
1

2
− τ

))
= 1

2

(
1 − 4τ 2

E
1

X∞
(1 − log(2τ))

)
− 2τE

1

X∞
log(τ )

+ 2τE
1

X∞

(
(1 − τ) log(2τ) − τ log2(2τ) + 2τ

(
τ − 1

2

))
. (96)

By solving this equation for an unknown E
1

X∞ we obtain:

E
1

X∞
= 1

2(1 − 4τ 3 + 4τ 2 + 2τ 2 log2(2τ) + 2τ log(τ ) − 2τ log(2τ))
. (97)

As the end of the example, Figure 2 shows plots of theoretical and statistical
values of F(t) with τ lying in the studied range.

Finally, without computing theoretical values of the distribution function, we want
to show how it further evolves with increasing τ by showing only its statistical values
on Figure 3 with τ = 0.9.
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