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1 Introduction

The statistical inference for diffusion models has been thoroughly studied by now;
see the books [4, 6–8, 10] and references therein.

In this paper, we consider the homogeneous diffusion process given by the stochas-
tic differential equation

dXt = θa(Xt ) dt + b(Xt ) dWt ,

where Wt is a standard Wiener process, and θ is an unknown parameter.
The standard maximum likelihood estimator for the parameter θ constructed by

the observations of X on the interval [0, T ] has the form
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θ̂T =
∫ T

0
a(Xt )

b(Xt )2 dXt∫ T

0
a(Xt )2

b(Xt )2 dt
;

see, for instance, [7, Example 1.37] and [9]. If the equation has a weak solution,

the coefficient a is not identically zero, and the functions 1
b2 , a2

b2 , a2

b4 are locally in-
tegrable, then this estimator is strongly consistent [9, Thm. 3.3]. Moreover, if the
model is ergodic, then this estimator is asymptotically normal [7, Ex. 1.37]. Note that
in the nonergodic case the maximum likelihood estimator θ̂T may have different limit
distributions; some examples can be found in [7, Sect. 3.5].

If the data are the observations of the trajectory {Xt, t ≥ 0} at discrete time
moments t1, t2, . . . , we obtain the discrete-time version of the model. Parameter esti-
mation in such models has been studied since the mid-1980s; see [2, 3, 11]. A review
of this problem and many references can be found in [5] and [13]. For recent results,
see [6, 9, 12].

In this paper, we are interested in the scheme of observations that is called “rapidly
increasing experimental design.” The process X is observed at time moments
ti = i�n, i = 0, . . . , n, such that �n → 0 and n�n → ∞ as n → ∞. One of
possible approaches to parameter estimation is to consider a discretized version of
the continuous-time MLE θ̂T . The most general results in this direction were ob-
tained by Yoshida [14]. He proved the consistency and asymptotic normality of the
discretized MLE in the model, where the process was multidimensional, the drift co-
efficient depended on θ nonlinearly, and the diffusion coefficient also contained an
unknown parameter.

Assume that we observe the process X at discrete time moments tnk = k/n,
0 ≤ k ≤ n1+α , where 0 < α < 1

2 . In this scheme, Mishura [9] proposed the fol-
lowing discretized version of the maximum likelihood estimator:

θ̂n =
∑n1+α

k=0 a(X k
n
)(Xk+1

n
− Xk

n
)/b(X k

n
)2

n−1
∑n1+α

k=0 a(X k
n
)2/b(X k

n
)2

.

She proved its strong consistency in the case where the coefficients a and b are
bounded. The aim of this paper is to establish the asymptotic normality of this es-
timator. Additionally, we assume the ergodicity of the model, but the boundedness of
the coefficients is not required. In comparison with general results of Yoshida [14],
our assumptions are less restrictive. We assume the polynomial growth of the function
1/b instead of the condition infx b(x)2 > 0. Also, we do not assume the smoothness
of the coefficients and the polynomial growth of their derivatives; any Lipschitz con-
tinuous a(x) and b(x) are possible.

The paper is organized as follows. In Section 2, we describe the model and formu-
late the results. In Section 3, some simulation experiments are considered. The proof
of the main theorem is given in Section 4.

2 Model description and main result

Let (Ω,F) be a measurable space. Assume that θ ∈ R is fixed but unknown. Consider
a probability measure Pθ such that F is Pθ -complete.
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Let X solve the equation

Xt = x0 + θ

∫ t

0
a(Xs) ds +

∫ t

0
b(Xs) dWs, (1)

where x0 ∈ R, a, b : R → R are measurable functions, and {Wt, t ≥ 0} is a standard
Wiener process on (Ω,F, Pθ ).

Denote c(x) = a(x)

b(x)2 , d(x) = a(x)2

b(x)2 , ϕθ (x) = exp{−2θ
∫ x

0 c(y) dy}, and Φθ(x) =∫ x

0 ϕθ (y) dy.
Assume that the following conditions hold.

(A1) For some L > 0 and for any x, y ∈ R,∣∣a(x) − a(y)
∣∣ + ∣∣b(x) − b(y)

∣∣ ≤ L|x − y|.
(A2) Φθ(+∞) = −Φθ(−∞) = +∞.

(A3) Gθ := ∫ +∞
−∞

dx

b(x)2ϕθ (x)
< ∞.

It is well known that under assumption (A1) the stochastic differential equation
(1) has a unique strong solution. This assumption also yields that the functions a(x)

and b(x) satisfy the linear growth condition, that is,∣∣a(x)
∣∣ + ∣∣b(x)

∣∣ ≤ M1
(
1 + |x|) (2)

for some M > 0 and for all x ∈ R.
Assume additionally that

(A4) There exist K > 0 and p ≥ 0 such that∣∣b(x)
∣∣−1 ≤ K

(
1 + |x|p)

.

Then, for some M2 > 0 and for any x ∈ R,∣∣c(x)
∣∣ ≤ M2

(
1 + |x|2p+1), ∣∣d(x)

∣∣ ≤ M2
(
1 + |x|2p+2). (3)

Under assumptions (A2)–(A3), the diffusion process X is positive recurrent; see,
for example, [7, Prop. 1.15]. In this case, it has ergodic properties with the invariant
density given by

μθ(x) = 1

Gθb(x)2ϕθ (x)
, x ∈ R.

Let ξθ denote a random variable with density μθ(x). Then, for any measurable func-
tion h such that Eθ |h(ξθ )| < ∞,

1

T

∫ T

0
h(Xt ) dt →

∫ +∞

−∞
h(x)μθ (x) dx ≡ Eθh(ξθ ) a.s. as T → ∞, (4)

see [7, Thm. 1.16]. Moreover, according to [1, Sect. II.37], the convergence (4) holds
also in L1, that is,

1

T
Eθ

∫ T

0
h(Xt ) dt → Eθh(ξθ ). (5)

Assume that the invariant distribution satisfies the condition

(A5) Eθ |ξθ |r ≡ ∫ +∞
−∞ |x|rμθ (x) dx < ∞ for all r ≥ 0.
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Let 0 < α < 1. Suppose that we observe the process X at discrete time moments
tnk = k/n, 0 ≤ k ≤ n1+α . Consider the estimator

θ̂n =
∑n1+α

k=1 c(Xk−1
n

)�Xn
k

n−1
∑n1+α

k=1 d(Xk−1
n

)
,

where �Xn
k = Xk

n
− Xk−1

n
.

Assume also that

(A6) a is not identically zero.

Then Eθ d(ξθ ) > 0. Note also that by (3) and (A5), Eθ d(ξθ ) < ∞. Now we are
ready to formulate the main result.

Theorem 2.1. Assume that conditions (A1)–(A6) hold. Then

(i) θ̂n
Pθ−→ θ as n → ∞,

(ii) nα/2(θ̂n − θ) ⇒ N(0, 1/Eθ d(ξθ )) as n → ∞.

The proof is given in Section 4.
The following result gives sufficient conditions for consistency and asymptotic

normality in the case where the parameter θ is positive.

Corollary 2.2. Let θ > 0. Assume that conditions (A1), (A4) and (A6) are fulfilled
and, additionally,

lim sup
|x|→∞

c(x) sgn(x) < 0. (6)

Then

(i) θ̂n
Pθ−→ θ as n → ∞,

(ii) nα/2(θ̂n − θ) ⇒ N(0, 1/Eθ d(ξθ )) as n → ∞.

Proof. Note that condition (6), together with (A4), implies that assumptions (A2)–
(A3) are satisfied and, moreover, all polynomial moments of the invariant density are
finite; see [7, p. 3]. Hence, the result follows directly from Theorem 2.1.

If the coefficients are bounded, then the consistency and asymptotic normality of
θ̂n can be obtained without assumption (A5).

Corollary 2.3. Assume that conditions (A1)–(A3) are satisfied, the coefficients a(x)

and b(x) are bounded, and infx∈R |b(x)| > 0. Then

(i) θ̂n
Pθ−→ θ as n → ∞,

(ii) nα/2(θ̂n − θ) ⇒ N(0, 1/Eθ d(ξθ )) as n → ∞.

Sketch of proof. This result can be proved similarly to Theorem 2.1 using the bound-
edness of a(x), b(x), c(x), d(x) instead of the growth conditions (2), (3), and (A4) to-
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gether with the boundedness of moments of the invariant density. In this case, (8) im-
plies the inequality

Eθ (Xt − Xk−1
n

)2m ≤ C(m, θ)n−m

for all m ∈ N and t ∈ [ k−1
n

, k
n
], k = 1, 2, . . . nα . This estimate is used in the proof

instead of Lemmas 4.1–4.2.

Remark 2.4. For α ∈ (0, 1
2 ), Mishura [9] obtained the a.s. convergence in Corol-

lary 2.3(i) without assumptions (A2)–(A3).

3 Some simulation results

In this section, we illustrate quality of the estimator by simulation experiments. We
consider the diffusion process (1) with drift parameter θ = 2 and initial value x0 = 1
in three following cases:

(1) a(x) = 1 − x, b(x) = 2 + sin x,

(2) a(x) = − arctan x, b(x) = 1,

(3) a(x) = − x

1+x2 , b(x) = 1.

Using the Milstein method, we simulate 100 sample paths of each process and find
the estimate θ̂n for different values of n and α. The average values of θ̂n and the
corresponding standard deviations are presented in Tables 1–3.

Table 1. a(x) = 1 − x, b(x) = 2 + sin x

n

50 100 500 1000 2000 5000
α = 0.1 Mean 3.05812 2.97626 2.73973 2.58453 2.55888 2.53879

Std. dev. 2.06388 2.00007 1.43273 1.34689 1.26920 1.22077

α = 0.5 Mean 2.11065 2.15066 2.08157 2.05626 2.03686 2.03479
Std. dev. 0.62613 0.56038 0.31621 0.28909 0.22875 0.18187

α = 0.9 Mean 2.02509 2.01702 2.02024 2.01308 2.00626 2.00289
Std. dev. 0.27874 0.19589 0.09995 0.06918 0.04850 0.03028

Table 2. a(x) = − arctan x, b(x) = 1

n

50 100 500 1000 2000 5000
α = 0.1 Mean 2.69321 2.66637 2.65053 2.66356 2.59903 2.46685

Std. dev. 2.03142 2.06075 1.82903 1.73034 1.68212 1.50186

α = 0.5 Mean 2.12190 2.10459 2.01048 1.99535 2.01712 1.99517
Std. dev. 0.85304 0.69484 0.48803 0.37807 0.31746 0.25846

α = 0.9 Mean 1.95538 1.97446 1.98035 1.99565 2.00266 2.00290
Std. dev. 0.35057 0.26796 0.12235 0.09050 0.06496 0.04533
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Table 3. a(x) = − x
1+x2 , b(x) = 1

n

50 100 500 1000 2000 5000
α = 0.1 Mean 1.99507 1.99813 1.97122 1.99255 1.98366 1.94811

Std. dev. 2.44248 2.53060 2.17322 2.13403 2.05527 1.80128

α = 0.5 Mean 1.87038 1.87897 1.89022 1.92593 1.94964 1.96624
Std. dev. 1.01932 0.89315 0.54811 0.49005 0.41787 0.33855

α = 0.9 Mean 1.90341 1.92162 2.00240 2.00068 2.00491 1.99347
Std. dev. 0.47656 0.33693 0.18136 0.13173 0.09595 0.07033

4 Proof of Theorem 2.1

In this section, we prove the main theorem and some auxiliary lemmas. In what fol-
lows, C,C1, C2, . . . are positive generic constants that may vary from line to line. If
they depend on some arguments, we will write C(θ), C(m, θ), and so on.

By (1),

�Xn
k = θ

∫ k
n

k−1
n

a(Xt ) dt +
∫ k

n

k−1
n

b(Xt ) dWt

= θa(Xk−1
n

)
1

n
+ θ

∫ k
n

k−1
n

(
a(Xt ) − a(Xk−1

n
)
)
dt + b(Xk−1

n
)�Wn

k

+
∫ k

n

k−1
n

(
b(Xt ) − b(Xk−1

n
)
)
dWt .

Therefore,

θ̂n = θ +
n1+α∑
k=1

(
c(Xk−1

n
)θ

∫ k
n

k−1
n

(
a(Xt ) − a(Xk−1

n
)
)
dt +

a(Xk−1
n

)

b(Xk−1
n

)
�Wn

k

+ c(Xk−1
n

)

∫ k
n

k−1
n

(
b(Xt ) − b(Xk−1

n
)
)
dWt

) / (
1

n

n1+α∑
k=1

d(Xk−1
n

)

)
.

Then

θ̂n − θ = n−α(An + Bn + En)

Dn

, (7)

where

Dn = n−1−α
n1+α∑
k=1

d(Xk−1
n

),

An =
n1+α∑
k=1

c(Xk−1
n

)θ

∫ k
n

k−1
n

(
a(Xt ) − a(Xk−1

n
)
)
dt,
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Bn =
n1+α∑
k=1

a(Xk−1
n

)

b(Xk−1
n

)
�Wn

k ,

En =
n1+α∑
k=1

c(Xk−1
n

)

∫ k
n

k−1
n

(
b(Xt ) − b(Xk−1

n
)
)
dWt .

Lemma 4.1. Let assumptions (A1)–(A3) and (A5) be fulfilled. Then for every m ∈ N,
there exists a constant C(m, θ) > 0 such that

Eθ (Xt − Xk−1
n

)2m ≤ C(m, θ)n−m+1+α.

for all n ∈ N, 1 ≤ k ≤ n1+α , and t ∈ [ k−1
n

, k
n
].

Proof. By (1) and the inequality (a + b)2m ≤ 22m−1(a2m + b2m),

Eθ (Xt − Xk−1
n

)2m

≤ 22m−1
(

θ2mEθ

(∫ t

k−1
n

a(Xs) ds

)2m

+ Eθ

(∫ t

k−1
n

b(Xs) dWs

)2m)
.

Using the Burkholder–Davis–Gundy inequality, we obtain

Eθ (Xt − Xk−1
n

)2m

≤ 22m−1
(

θ2mEθ

(∫ t

k−1
n

a(Xs) ds

)2m

+ C(m)Eθ

(∫ t

k−1
n

b(Xs)
2 ds

)m)
.

By Jensen’s inequality,

Eθ (Xt − Xk−1
n

)2m ≤ 22m−1
(

θ2m
(
t − k−1

n

)2m−1Eθ

∫ t

k−1
n

a(Xs)
2m ds

+ C(m)
(
t − k−1

n

)m−1Eθ

∫ t

k−1
n

b(Xs)
2m ds

)
. (8)

Further, we have

Eθ (Xt − Xk−1
n

)2m ≤ 22m−1
(

θ2mn1−2mEθ

∫ nα

0
a(Xs)

2m ds

+ C(m)n1−mEθ

∫ nα

0
b(Xs)

2m ds

)
.

Now it remains to note that by (2) and (5) the integrals n−α
∫ nα

0 a(Xs)
2m ds and

n−α
∫ nα

0 b(Xs)
2m ds have bounded expectations.

Lemma 4.2. Under assumption (A1), for every m ∈ N, there exists a constant
C(m, θ) > 0 such that

Eθ (Xt − Xk−1
n

)2m ≤ C(m, θ)n−mEθ

(
1 + |Xk−1

n
|2m

)

for all n ∈ N, 1 ≤ k ≤ n1+α , and t ∈ [ k−1
n

, k
n
].
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Proof. By (8),

Eθ (Xt − Xk−1
n

)2m

≤ C1(m, θ)n1−m

(
Eθ

∫ t

k−1
n

a(Xs)
2m ds + Eθ

∫ t

k−1
n

b(Xs)
2m ds

)
.

Using assumption (A1) and (2), we get

Eθ

∫ t

k−1
n

a(Xs)
2m ds ≤ 22m−1Eθ

∫ t

k−1
n

((
a(Xs) − a(Xk−1

n
)
)2m + a(Xk−1

n
)2m

)
ds

≤ 22m−1LEθ

∫ t

k−1
n

(Xs − Xk−1
n

)2m ds

+ 22m−1M
(
t − k−1

n

)
Eθ

(
1 + |Xk−1

n
|2m

)
.

The same estimate holds for Eθ

∫ t
k−1
n

b(Xs)
2m ds. Therefore,

Eθ (Xt − Xk−1
n

)2m ≤ C2(m, θ)n1−m

∫ t

k−1
n

Eθ (Xs − Xk−1
n

)2m ds

+ C2(m, θ)n−mEθ

(
1 + |Xk−1

n
|2m

)
,

and the result follows from the Gronwall lemma.

Lemma 4.3. Assume that conditions (A1)–(A3) and (A5) are fulfilled. Then for any
m ≥ 1, 1 ≤ i ≤ 2m, and 0 ≤ j ≤ 2m, there exists C(m, θ) > 0 such that

n1+α∑
k=1

∫ k
n

k−1
n

Eθ

(|Xk−1
n

− Xt |i |Xt |j
)
dt ≤ C(m, θ)nα− i(m−α)

2m+2 .

Proof. Applying the Hölder inequality and Lemma 4.1, we get

Eθ

(|Xk−1
n

− Xt |i |Xt |j
) ≤ (

Eθ |Xk−1
n

− Xt |2m+2) i
2m+2

(
Eθ |Xt |

j (2m+2)
2m+2−i

) 2m+2−i
2m+2

≤ C1(m, θ)n− (m−α)i
2m+2

(
Eθ |Xt |

j (2m+2)
2m+2−i

) 2m+2−i
2m+2 .

Then

n1+α∑
k=1

∫ k
n

k−1
n

Eθ

(|Xk−1
n

− Xt |i |Xt |j
)
dt

≤ C1(m, θ)n− (m−α)i
2m+2

∫ nα

0

(
Eθ |Xt |

j (2m+2)
2m+2−i

) 2m+2−i
2m+2 dt.

By Jensen’s inequality we have

∫ nα

0

(
Eθ |Xt |

j (2m+2)
2m+2−i

) 2m+2−i
2m+2 dt ≤ nα

(
n−α

∫ nα

0
Eθ |Xt |

j (2m+2)
2m+2−i dt

) 2m+2
2m+2−i

.

By (5) the expression in brackets is bounded. This completes the proof.
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Lemma 4.4. Assume that conditions (A1)–(A3) and (A5) are fulfilled. Then

(i) for any m = 0, 1, 2, . . . ,

n−1−α
n1+α∑
k=1

X2m
k−1
n

L1−→ Eθ ξ
2m
θ as n → ∞;

(ii) if, additionally, (A4) holds, then

Dn
L1−→ Eθ d(ξθ ) as n → ∞.

Proof. (i) In the case m = 0, the result is trivial. Let m ≥ 1. By (5) we have

n−α

∫ nα

0
X2m

t dt
L1−→ Eθ ξ

2m
θ as n → ∞.

Hence, it suffices to prove that

Fn := Eθ

∣∣∣∣n−α

∫ nα

0
X2m

t dt − n−1−α
n1+α∑
k=1

X2m
k−1
n

∣∣∣∣

= n−αEθ

∣∣∣∣
n1+α∑
k=1

∫ k
n

k−1
n

(
X2m

t − X2m
k−1
n

)
dt

∣∣∣∣
converges to zero as n → ∞. By the inequality |x| ≤ |x − y| + |y|,

∣∣x2m − y2m
∣∣ ≤ |x − y|

2m−1∑
i=0

|x|i |y|2m−1−i ≤
2m∑
i=1

Ci |x − y|i |y|2m−i . (9)

Therefore,

Fn ≤
2m∑
i=1

Cin
−α

n1+α∑
k=1

∫ k
n

k−1
n

Eθ

(|Xk−1
n

− Xt |i |Xt |2m−i
)
dt,

and, by Lemma 4.3,

Fn ≤ C(m, θ)

2m∑
i=1

Cin
− i(m−α)

2m+2 → 0 as n → ∞.

(ii) For arbitrary x and y,

d(x) − d(y) = a(x)2

b(x)2
− a(y)2

b(y)2

= (
a(x) − a(y)

)( a(x)

b(x)2
+ a(y)

b(x)b(y)

)

− (
b(x) − b(y)

)( a(x)a(y)

b(x)2b(y)
+ a(x)a(y)

b(x)b(y)2

)
.

By (A1), (A4), and (2),
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∣∣d(x) − d(y)
∣∣ ≤ C|x − y|(1 + |x|2p+1 + (

1 + |x|p)(
1 + |y|p+1)

+ (
1 + |x|2p+1)(1 + |y|p+1) + (

1 + |x|p+1)(1 + |y|2p+1)).
(10)

The rest of the proof can be done similarly to part (i) using estimate (10) instead
of (9).

Lemma 4.5. Under the assumptions of Theorem 2.1,

(i) n−α/2|An| Pθ−→ 0 as n → ∞,

(ii) n−α/2|En| Pθ−→ 0 as n → ∞.

Proof. (i) By the Cauchy–Schwarz inequality we have

Eθ |An| ≤ |θ |
n1+α∑
k=1

∫ k
n

k−1
n

Eθ

∣∣c(Xk−1
n

)
(
a(Xt ) − a(Xk−1

n
)
)∣∣ dt

≤ |θ |
n1+α∑
k=1

∫ k
n

k−1
n

(
Eθ c(Xk−1

n
)2) 1

2
(
Eθ

(
a(Xt ) − a(Xk−1

n
)
)2) 1

2 dt.

Using (A1), (3), and Lemma 4.2, we get

Eθ |An| ≤ C1|θ |
n1+α∑
k=1

∫ k
n

k−1
n

(
Eθ

(
1 + |Xk−1

n
|4p+2)) 1

2
(
Eθ (Xt − Xk−1

n
)2) 1

2 dt

≤ C2(θ)n−1/2
n1+α∑
k=1

∫ k
n

k−1
n

(
Eθ

(
1 + |Xk−1

n
|4p+4))1/2

dt

= C2(θ)n−3/2
n1+α∑
k=1

(
Eθ

(
1 + |Xk−1

n
|4p+4))1/2

≤ C2(θ)nα−1/2
(

n−1−α

n1+α∑
k=1

Eθ

(
1 + |Xk−1

n
|4p+4))1/2

.

By Lemma 4.4 the expression n−1−α
∑n1+α

k=1 Eθ (1 + |Xk−1
n

|4p+4) is bounded. There-

fore,
n−α/2Eθ |An| ≤ C3(θ)n

1
2 (α−1) → 0 as n → ∞.

(ii) We have

En =
∫ nα

0
h(t, ω) dWt ,

where

h(t, ω) =
n1+α∑
k=1

c(Xk−1
n

)
(
b(Xt ) − b(Xk−1

n
)
)
1[ k−1

n
, k
n
)
(t).
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Then

EθE
2
n = Eθ

∫ nα

0
h(t, ω)2 dt =

n1+α∑
k=1

∫ k
n

k−1
n

Eθ

(
c(Xk−1

n
)2(b(Xt ) − b(Xk−1

n
)
)2)

dt.

Similarly to (i), we can estimate EθE
2
n ≤ C4(θ)nα−1. Therefore, n−α/2|En| L2−→ 0 as

n → ∞.

Lemma 4.6. Under the assumptions of Theorem 2.1,

(i) n−αBn
Pθ−→ 0 as n → ∞,

(ii) n−α/2Bn ⇒ N(0, Eθ d(ξθ )) as n → ∞.

Proof. (i) Let us prove the convergence in L2. We have

Bn = B ′
n + B ′′

n ,

where

B ′
n =

∫ nα

0

a(Xt )

b(Xt )
dWt , B ′′

n =
n1+α∑
k=1

∫ k
n

k−1
n

(a(Xk−1
n

)

b(Xk−1
n

)
− a(Xt )

b(Xt )

)
dWt .

Then by (5) we have

Eθ

(
n−α/2B ′

n

)2 = n−αEθ

∫ nα

0

a(Xt )
2

b(Xt )2
dt = n−αEθ

∫ nα

0
d(Xt ) dt → Eθ d(ξθ ) (11)

as n → ∞. Hence, n−αB ′
n

L2−→ 0 as n → ∞.
Arguing as in the proof of Lemma 4.5 (ii), we obtain

Eθ

(
B ′′

n

)2 =
n1+α∑
k=1

∫ k
n

k−1
n

(a(Xk−1
n

)

b(Xk−1
n

)
− a(Xt )

b(Xt )

)2

dt.

Further,

a(x)

b(x)
− a(y)

b(y)
= a(x)

b(x)b(y)

(
b(y) − b(x)

) + 1

b(y)

(
a(x) − a(y)

)
.

Therefore, by (2) and assumption (A4),

a(x)

b(x)
− a(y)

b(y)
≤ 2a(x)2

b(x)2b(y)2

(
b(y) − b(x)

)2 + 2

b(y)2

(
a(x) − a(y)

)2

≤ C(x − y)2(1 + |x|2p+2|y|2p + |y|2p
)
.

Similarly to the proof of Lemma 4.4, we get the convergence

n−αEθ

(
B ′′

n

)2 → 0 as n → ∞. (12)

(ii) According to [7, Theorem 1.19], it follows from (11) that n−α/2B ′
n ⇒ N(0,

Eθ d(ξθ )) as n → ∞. Taking into account the convergence (12), we obtain the result.

Now the statement of Theorem 2.1 follows from (7) and Lemmas 4.4–4.6.
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