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Abstract Sufficient conditions are given for the existence of a unique bounded in the mean
solution to a second-order difference equation with jumps of operator coefficients in a Banach
space. The question of the proximity of this solution to the stationary solution of the corre-
sponding difference equation with constant operator coefficients is studied.
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1 Introduction

Let (�,F , P ) be a complete probability space, X a complex separable Banach space
with norm ‖·‖X and zero element 0X, L(X) the Banach algebra of bounded linear
operators defined on X, and B(X) the σ -algebra of Borel sets in X.

Definition 1. A sequence of X-valued random elements {ξn, n ∈ Z} defined on
(�,F , P ) is called

– bounded in the mean if sup
n∈Z

E‖ξn‖X < +∞;
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– stationary (in the restricted sense) if

∀ m ∈ N ∀ n1, n2, . . . , nm ∈ Z ∀ Q1,Q2, . . . ,Qm ∈ B(X):

P {ξnk+1 ∈ Qk, 1 � k � m} = P {ξnk
∈ Qk, 1 � k � m}.

Consider the difference equation{
ξn+1 − 2ξn + ξn−1 = Aξn + ηn, n ≥ 1,

ξn+1 − 2ξn + ξn−1 = Bξn + ηn, n ≤ 0,
(1)

where A,B are fixed operators belonging to L(X), {ηn, n ∈ Z} is the given bounded
in the mean sequence of X-valued random elements.

Definition 2. A sequence of X-valued random elements {ξn, n ∈ Z} is called a
bounded in the mean solution of equation (1) corresponding to a bounded in the
mean sequence {ηn, n ∈ Z} if the sequence {ξn, n ∈ Z} is bounded in the mean and
equality (1) holds with probability 1 for all n ∈ Z.

The purpose of this article is to obtain sufficient conditions for the operators A,B

under which the difference equation (1) has a unique bounded in the mean solution
{ξn, n ∈ Z} for each bounded in the mean sequence {ηn, n ∈ Z} and also to prove
that E‖ξn − ζn‖X → 0, as n → ∞, where {ζn, n ∈ Z} is the unique bounded in the
mean solution of the difference equation with a constant operator coefficient A

ζn+1 − 2ζn + ζn−1 = Aζn + ηn, n ∈ Z. (2)

Bounded solutions of second-order deterministic difference equations with con-
stant operator coefficients are studied in [3, 8], stationary solutions of the second-
order equation (2) in [3, 2], bounded in the mean solutions of a first-order difference
equation with a jump of the operator coefficient in [5], and bounded solutions of a
deterministic analogue of equation (1) in [6]. Some applications of difference equa-
tions with operator coefficients in the deterministic case are given in [3, 7, 10, 1], and
in the stochastic case in [3, 2, 9] and in references therein.

2 Auxiliary statements

Put X2 =
{(

x(1)

x(2)

)
| x(1), x(2) ∈ X

}
. Then X2 will be a complex separable Banach

space with coordinatewise addition and multiplication by a scalar and with norm

||x||X2 = ||x(1)||X + ||x(2)||X, x =
(

x(1)

x(2)

)
∈ X2. If operators E,F,G,H belong to

L(X), then, as in the case of numerical matrices T =
(

E F

G H

)
defines an operator

belonging to L(X2) by the rule T x =
(

Ex(1) + Fx(2)

Gx(1) + Hx(2)

)
, x =

(
x(1)

x(2)

)
∈ X2.

Consider an operator TA =
(

A + 2I −I

I O

)
, where I and O are the identity

and zero operators in X, respectively. Denote by σ(TA), ρ(TA), r(TA) the spectrum,
resolvent set and spectral radius of the operator TA, respectively. In what follows, we
will use the following statements.
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Lemma 1. The number λ 
= 0 belongs to ρ(TA) if and only if λ + 1

λ
− 2 belongs to

ρ(A).

Proof. Sufficiency. Since (λ+ 1

λ
−2) ∈ ρ(A), the operator 	λ = λ2I −(A+2I )λ+I

has a continuous inverse operator 	−1
λ . Let J be the identity operator in X2. It is easy

to verify that the operator

(TA − λJ )−1 =
(−λ	−1

λ 	−1
λ

−	−1
λ (A + 2I − λI)	−1

λ

)
is a continuous inverse operator to TA − λJ . Therefore, λ ∈ ρ(TA).

Necessity. Let us fix λ ∈ ρ(TA), λ 
= 0. It suffices to prove that the operator 	λ

has a continuous inverse operator.
From the Banach theorem on the inverse operator, it follows that if 	−1

λ does not
exist, then one of the following conditions is satisfied:

(a1) there exists u 
= 0X such that 	λu = 0X;

(a2) there exists v ∈ X such that the operator equation 	λx = v has no solutions.

If condition (a1) is satisfied then (TA − λJ )

(
λu

u

)
=

(
0X

0X

)
. This contradicts

inclusion λ ∈ ρ(TA).
Since λ ∈ ρ(TA), the equation(

A + 2I − λI −I

I −λI

)(
x(1)

x(2)

)
=

(
v

0X

)
(3)

has a solution. Writing the equation 3 coordinatewise, we successively obtain the
equalities x(1) = λx(2), (A+2I −λI)λx(2) −x(2) = v. Hence, the equation 	λx = v

has a solution x = −x(2). Thus, condition (a2) is also not satisfied.

Let S = {z ∈ C | |z| = 1} be the unit circle on the complex plane C.

Lemma 2. σ(TA) ∩ S = ∅ if and only if σ(A) ∩ [−4; 0] = ∅.

Since {λ + 1

λ
− 2 | λ ∈ S} = [−4; 0], Lemma 2 is a direct consequence of

Lemma 1.

Lemma 3. The difference equation (1) has a unique bounded in the mean solution
{ξn, n ∈ Z} for each bounded in the mean sequence {ηn, n ∈ Z} if and only if the
difference equation {

ξn+1 = TAξn + ηn, n ≥ 1,

ξn+1 = TBξn + ηn, n ≤ 0,
(4)

has a unique bounded in the mean solution {ξn, n ∈ Z} for each bounded in the mean
sequence of X2-valued random elements {ηn, n ∈ Z} defined on (�,F , P ).

The proof of Lemma 3 is standard and is omitted here.
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Remark 1. If
{(

ξ
(1)
n

ξ
(2)
n

)
n ∈ Z

}
is a bounded in the mean solution of equation (4)

corresponding to the bounded in the mean sequence
{(

ηn

0X

)
, n ∈ Z

}
, then ξ

(2)
n =

ξ
(1)
n−1 with probability 1 for all n ∈ Z and therefore {ξ (1)

n , n ∈ Z} is a bounded in the
mean solution of equation (1) corresponding to the sequence {ηn, n ∈ Z}.

Denote by Y the Banach space L1(�,X) of all equivalence classes of random
elements ξ : � → X such that ‖ξ‖Y = E‖ξ‖X < +∞. Each operator G belonging
to L(X) induces an operator G̃ belonging to L(Y ) and defined by the rule

∀ ξ ∈ Y : (G̃ξ)(ω) = Gξ(ω), ω ∈ �. (5)

The following lemma is a direct consequence of Definitions 1 and 2.

Lemma 4. The difference equation (4) has a unique bounded in the mean solution
{ξn, n ∈ Z} for each bounded in the mean sequence {ηn, n ∈ Z} if and only if the
deterministic difference equation{

ξn+1 = T̃Aξn + ηn, n ≥ 1,

ξn+1 = T̃Bξn + ηn, n ≤ 0,
(6)

has a unique bounded solution {ξn, n ∈ Z} for each sequence {ηn, n ∈ Z} bounded
in Y 2.

Let W be a complex Banach space. Suppose that the spectrum σ(U) of the op-
erator U ∈ L(W) satisfies the condition σ(U) ∩ S = ∅. Let σ−(U) be the part of
the spectrum σ(U) lying inside the circle S and σ+(U) = σ(U)\σ−(U). In what
follows, we will consider the case when σ−(U) 
= ∅, σ+(U) 
= ∅. Note that all the
results obtained below are also true in the case when one of the sets σ−(U), σ+(U) is
empty, with obvious changes in the formulas obtained.

From the theorem on the spectral decomposition of an operator in a Banach space
(see, for example, [3, p. 8]) it follows that the space W is represented as a direct
sum W = W−(U)+̇W+(U) of subspaces W−(U),W+(U), for which the following
conditions are satisfied:

the subspaces W−(U),W+(U) are invariant under the operator U ;

the restrictions U−, U+ of the operator U to the subspaces W−(U),W+(U) have the
spectra σ−(U), σ+(U), respectively;

the spectral radii of the operators U−, U−1+ satisfy the inequalities

r(U−) < 1, r
(
U−1+

)
< 1. (7)

3 The bounded in the mean solutions of the difference equation (1)

The following theorem is one of the main results of this article.

Theorem 1. Let the operators A,B satisfy the following conditions:
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(i1) σ (A) ∩ [−4; 0] = ∅, σ (B) ∩ [−4; 0] = ∅;

(i2) X2 = X2−(TA)+̇X2+(TB).

Then the difference equation (1) has a unique bounded in the mean solution {ξn, n ∈
Z} for each bounded in the mean X-valued sequence {ηn, n ∈ Z}.
Proof. Condition (i1) and Lemma 2 imply that σ(TA) ∩ S = ∅, σ (TB) ∩ S = ∅.
Also, using condition (i2) and Theorem 2 from [5], we conclude that the difference
equation (4) has a unique bounded in the mean solution {ξn, n ∈ Z} for every bounded
in the mean sequence {ηn, n ∈ Z}. Therefore the assertion of the theorem holds by
Lemma 3.

Remark 2. In paper [6] it was established that if, in addition, the space X is finite-
dimensional and the matrices of the operators A,B have the Jordan normal form in
the same basis, then condition (i1) implies condition (i2).

Example 1. In the complex Euclidean space X = C
2, consider the operators A =(

1/2 0
0 4/3

)
, B =

(
1/2 0

−5/6 4/3

)
. It is easy to verify that σ(A) = σ(B) = {1/2, 4/3},

σ(TA) = σ(TB) = {1/2, 2, 1/3, 3}. It follows from the proof of Lemma 1 that if

λ 
= 0, then Au = (λ + 1

λ
− 2)u if and only if TA

(
λu

u

)
= λ

(
λu

u

)
. Consequently,

X2−(TA),X2+(TB) are, respectively, the linear spans of the eigenvectors

⎛⎜⎝1
0
2
0

⎞⎟⎠,

⎛⎜⎝0
1
0
3

⎞⎟⎠
and

⎛⎜⎝2
2
1
1

⎞⎟⎠,

⎛⎜⎝0
3
0
1

⎞⎟⎠ of the operators TA, TB . These four vectors are linearly independent.

Therefore, for the operators A,B, conditions (i1) and (i2) of Theorem 1 are satisfied.

Example 2. Let A be the operator from Example 1 and

B = 1

21

(
14 · 17 + 15 · 50 −64 · 15

64 · 17 −(14 · 15 + 17 · 50)

)
.

Then σ(B) = {4/3,−100/21}, σ (TB) = {1/3, 3,−3/7,−7/3} and also X2−(TA),

X2+(TB) are the linear spans of the eigenvectors

⎛⎜⎝1
0
2
0

⎞⎟⎠,

⎛⎜⎝0
1
0
3

⎞⎟⎠ and

⎛⎜⎝3
3
1
1

⎞⎟⎠,

⎛⎜⎝−7 · 15
−7 · 17
3 · 15
3 · 17

⎞⎟⎠ of

the operators TA, TB , respectively. Since these four vectors are linearly dependent,
condition (i2) of Theorem 1 is not satisfied.

4 Proximity of components of the bounded in the mean solutions of the differ-
ence equations (1) and (2) for n → ∞

First, consider the deterministic analogs of equations (1) and (2). Let U,V be fixed
operators belonging to L(W). In what follows, we need the following statements.
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Theorem 2 (See Theorem 1 in [3, p. 9]). The difference equation

un+1 = Uun + yn, n ∈ Z, (8)

has a unique bounded solution {un, n ∈ Z} for each sequence {yn, n ∈ Z} bounded
in W if and only if σ(U) ∩ S = ∅.

Remark 3. It follows from the proof of Theorem 2 that if σ(U) ∩ S = ∅ then
the unique bounded solution of equation (8) corresponding to the bounded sequence
{yn, n ∈ Z} has the form{

un =
∞∑

j=0

U
j
−P U− yn−1−j −

−1∑
j=−∞

U
j
+P U+ yn−1−j , n ∈ Z

}
, (9)

where P U− , P U+ are the projectors in W onto the subspaces W−(U) and W+(U), re-
spectively. Due to inequalities (7), the series in (9) converge.

Theorem 3 (See Theorem 1 in [4]). Assume that the following conditions are ful-
filled:

(j1) σ (U) ∩ S = ∅, σ (V ) ∩ S = ∅;

(j2) W = W−(U)+̇W+(V ).

Then the difference equation{
xn+1 = Uxn + yn, n ≥ 1,

xn+1 = V xn + yn, n ≤ 0,
(10)

has a unique bounded solution {xn, n ∈ Z} for each sequence {yn, n ∈ Z} bounded
in W .

Remark 4. It was also shown in [4] that for equation (10) under conditions (j1), (j2)
for each n ≥ 1 the element xn of the unique bounded solution {xn, n ∈ Z} corre-
sponding to a bounded sequence {yn, n ∈ Z} can be obtained as follows. Let P 0−, P 0+
be projectors in W onto the subspaces W−(U),W+(V ), respectively, corresponding
to the representation W = W−(U)+̇W+(V ). Put

∀ n ≥ 1 : P n+ = Un P 0+ U−n+ P U+ , P n− = IW − P n+, (11)

where IW is the identity operator in W . Then

∀ n ≥ 1 : xn = P n−1− yn−1 + U−P n−2− yn−2 + · · · + Un−2− P 1−y1

+
0∑

j=−∞
Un−1− P 0− V

|j |
− P V− yj −

∞∑
j=n

P n−1+ U
n−1−j
+ P U+ yj . (12)

Conditions (j1), (j2) ensure the existence of the projectors P U± , P V± , P 0±, and also,
taking into account inequalities (7), the convergence in the norm in W of the series
from (12) and the boundedness of the sequence {xn, n ∈ Z}.
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The next theorem shows how close the solutions of equations (8) and (10) are, as
n → ∞.

Theorem 4. Let conditions (j1), (j2) of Theorem 3 be satisfied. Then there exist con-
stants ρ ∈ (0; 1), C > 0, n0 ∈ N depending only on the operators U,V and such
that for each sequence {yn, n ∈ Z} bounded in W , for bounded solutions {un, n ∈ Z}
and {xn, n ∈ Z} of equations (8) and (10) corresponding to the sequence {yn, n ∈ Z},
the following estimate holds:

∀ n ≥ n0 : ‖xn − un‖W ≤ Cρn sup
n∈Z

‖yn‖W . (13)

Proof. From (7) it follows that the spectral radii of the operators U−, U−1+ , V− are
less than one. Therefore, there exist constants ρ ∈ (0, 1), m0 ∈ N such that

∀ m ≥ m0 : max
(‖Um− ‖, ‖U−m+ ‖, ‖V m− ‖) ≤ ρm. (14)

Fix a bounded sequence {yn, n ∈ Z} and, for n ≥ m0 +2, estimate ‖un −xn‖W using
(9), (12). Since P 0− is a projector onto W−(U), then if we also use (11), we get

∀ 0 ≤ k ≤ n − 2 : ‖Uk−P U− yn−1−k − Uk−P n−1−k− yn−1−k‖W

= ‖Uk−
(
P U− − IW + P n−1−k+

)
yn−1−k‖W = ‖Uk−

(
P n−1−k+ − P U+

)
yn−1−k‖W

= ‖Uk−
(
Un−1−kP 0+U

−(n−1−k)
+ − Un−1−kU

−(n−1−k)
+

)
P U+ yn−1−k‖W

= ‖ − Uk−Un−1−kP 0−U
−(n−1−k)
+ P U+ yn−1−k‖W

= ‖Un−1− P 0−U
−(n−1−k)
+ P U+ yn−1−k‖W .

Therefore denoting by C1 the maximum of the squared norms of the operators P 0±,
P U± , P V± we obtain

∀ 0 ≤ k ≤ n − 1 − m0 : ‖Uk−P U− yn−1−k − Uk−P n−1−k− yn−1−k‖W

≤ ρn−1ρn−1−kC1‖y‖∞, (15)

∀ n − m0 ≤ k ≤ n − 2 : ‖Uk−P U− yn−1−k − Uk−P n−1−k− yn−1−k‖W

≤ ρn−1C1 max
1≤j≤m0−1

‖U−j
+ ‖ · ‖y‖∞. (16)

Here ‖y‖∞ = sup
n∈Z

‖yn‖W .

From (11) and the properties of the projectors it follows that

∀ k ≥ 0 : ‖U−1−k+ P U+ yn+k − P n−1+ U−1−k+ P U+ yn+k‖W

= ‖(Un−1U−n+1+ P U+ − Un−1P 0+U−n+1P U+
)
U−1−k+ P U+ yn+k‖W

= ‖Un−1− P 0−U−n−k+ P U+ yn+k‖W ≤ ρn−1ρn+kC1‖y‖∞. (17)

Also ∥∥∥∥∥∥
∞∑

j=n−1

U
j
−P U− yn−1−j‖W ≤ C1‖y

∥∥∥∥∥∥∞

ρn−1

1 − ρ
, (18)
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0∑

j=−∞
Un−1− P 0−V |j |P V− yj

∥∥∥∥∥∥
W

≤ ρn−1C1‖y‖∞
(

m0 max
0≤k≤m0−1

‖V k−‖ + ρm0

1 − ρ

)
. (19)

Note that the constants in (15)–(19) depend only on the operators U and V .
It follows from representations (9), (12) and inequalities (15)–(19) that estimate

(13) is true.

From Theorem 1 with A = B it follows that when σ(A) ∩ [−4; 0] = ∅ holds,
the difference equation (2) has a unique bounded in the mean solution {ζn, n ∈ Z}
for each bounded in the mean sequence {ηn, n ∈ Z}. It also follows from the results
established in [4] that if σ(TA) ∩ S = ∅, σ(TB) ∩ S = ∅, X2 = X2−(TA)+̇X2+(TB),
then σ(T̃A) = σ(TA), σ(T̃B) = σ(TB), Y 2 = Y 2−(T̃A)+̇Y 2+(T̃B), where the operators
T̃A, T̃B are defined according to (5). Therefore, applying Theorem 4 to the difference
equation (6) and then using Lemmas 3, 4, Theorem 1 and Remark 1, we conclude that
the following theorem holds.

Theorem 5. Let the conditions of Theorem 1 be satisfied. Then there exist constants
ρ ∈ (0, 1), C > 0, n0 ∈ N depending only on the operators A and B and such that
for each bounded in the mean sequence of X-valued random elements {ηn, n ∈ Z}
for bounded in the mean solutions {ξn, n ∈ Z} and {ζn, n ∈ Z} of equations (1) and
(2) the following estimate holds:

∀ n ≥ n0 : E‖ξn − ζn‖X ≤ Cρn sup
n∈Z

E‖ηn‖X. (20)

Note that when the sequence {ηn, n ∈ Z} is, in addition, stationary, then the
corresponding solution {ζn, n ∈ Z} of equation (2) is also stationary. According to
(20), in this case, the elements of the solution to equation (1) are close to the stationary
sequence {ζn, n ∈ Z} when n → ∞, despite the jump in the operator coefficient in
(1).
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