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Abstract Principal Component Analysis (PCA) is a classical technique of dimension reduc-
tion for multivariate data. When the data are a mixture of subjects from different subpopulations
one can be interested in PCA of some (or each) subpopulation separately. In this paper esti-
mators are considered for PC directions and corresponding eigenvectors of subpopulations in
the nonparametric model of mixture with varying concentrations. Consistency and asymptotic
normality of obtained estimators are proved. These results allow one to construct confidence
sets for the PC model parameters. Performance of such confidence intervals for the leading
eigenvalues is investigated via simulations.

Keywords Finite mixture model, principal components, mixture with varying
concentrations, nonparametric estimation, asymptotic normality, confidence interval,
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1 Introduction

Principal components (PC) analysis is a standard technique of dimension reduction
for multivariate data introduced by K. Pearson in 1901 and reinvented by H. Hotelling
in the 1933 ([7], section 1.2). The first PC direction is the direction of the highest
scattering of the data cloud and the first eigenvalue corresponding to it is the variance
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of the data projections on this direction. First two or three PC scores are usually
used to visualize multidimensional data ([4], chapter 9).The orthogonal regression
estimator for coefficients of a linear regression model is represented through the least
PC direction (corresponding to the smallest eigenvalue, see (2.23) in [15]).

Classical PCA is developed for homogeneous samples. Real life statistical data is
often a mixture of observations from different subpopulations with different distribu-
tions of observed variables. Finite mixture models (FMM) are developed to interpret
such data. For parametric (normal) FMM the PCA provides a paradigm which allows
one to describe and analyze multivariate data distribution of each subpopulation sep-
arately in straightforward and intuitive terms. Such an approach is used, e.g., in the R
package mclust [14].

In this paper we consider a modification of PCA for mixtures with varying con-
centrations (MVC). The MVC is a nonparametric finite mixture model in which the
mixing probabilities (the concentrations of the mixture components) vary from ob-
servation to observation. Such models arise naturally in statistical analysis of medical
[9] and sociological [12] data. A technique of neuronal activity analysis based on the
MVC approach is considered in [13]. See also [2] for adaptive estimation and [1] for
adaptive hypotheses testing in MVC models.

In this paper we propose estimators for PC directions and corresponding eigen-
vectors for each component (subpopulation) of the mixture. Asymptotic normality of
these estimators allows one to construct confidence sets for the PC parameters.

The rest of the paper is organized as follows. In Section 2 we give a brief ex-
position of the classical PC analysis. Section 3 contains general description of the
MVC model. In Section 4 we present an estimator for the covariance matrices of
the mixture components and derive its asymptotic normality. Section 5 is devoted to
the estimators of PC directions and eigenvalues and their asymptotic normality. In
Section 6 we apply these results to construction of confidence intervals for the eigen-
values. Section 7 contains results of simulations. The results and further development
are discussed in Section 8. One technical result is placed in the Appendix.

2 Classical principal component analysis

Here and below for any univariate sample x = (x1, . . . , xn),

x̄ = 1

n

n∑
j=1

xj

denotes the sample mean,

S2(x) = 1

n

n∑
j=1

(xj − x̄)2

is the sample variance of x, and |v| denotes the Euclidean norm of v.
Let X=(X1, . . . , Xn) be a sample of d-dimensional vectors Xj =(X1

j , . . . , X
d
j )T ,

j = 1, . . . , n,
uT

X = (uT X1, . . . , uT Xn).
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The first PC direction v1 = v(1;X) of the sample X is the vector in R
d of unit

length such that

S2(vT
1 X) = max{S2(uT

X) : u ∈ R
d, |u| = 1}.

Then, for l = 2, . . . , d the l-th PC direction is the vector vl = v(l;X) of unit length
such that

S2(vT
l X)=max{S2(uT

X) : u ∈ R
d, |u| = 1, uT v(1;X)=0, . . . , uT v(l−1;X) = 0}.

So, the first PC direction is the direction of maximal scattering of a data cloud, the
second one is the direction orthogonal to the first one in which the scattering is max-
imal, and so on.

It is well known that v(1,X), v(2,X), . . . , v(d,X) are the eigenvectors of the
sample covariance matrix Ĉn = Cov(X) corresponding to its eigenvalues

λ(1;X) ≥ λ(2;X) ≥ · · · ≥ λ(d;X),

i.e.
Ĉnv(l;X) = λ(l;X)v(l;X).

Note that
λ(l;X) = S2(v(l;X)T X).

If all the eigenvalues are different, then the PC directions are defined unambiguously
(up to multiplication by ±1).

Assume that Xj are i.i.d. random vectors with a distribution F , i.e. P{Xj ∈ A} =
F(A) for all Borel sets A ⊆ R

d . Then the PC directions and corresponding eigenval-
ues of the sample can be interpreted as estimators of the true theoretical PC directions
v(l; F) and eigenvalues λ(l; F) which are the eigenvalues and eigenvectors of the co-
variance of a random vector X with the distribution F :

C = C(F ) = E(X − E X)(X − E X)T ,

Cv(l; F) = λ(l; F)v(l; F), l = 1, . . . , d.

These theoretical PC directions possess optimal qualities similar to the sample PC.
E.g., the projection of X on the first PC direction is of maximal variance:

Var(v(1, F )T X) = max{Var(uT X) : u ∈ R
d , |u| = 1}.

3 Mixtures with varying concentrations

Now consider a sample of n subjects taken from M different subpopulations (mixture
components). For the j -th subject the vector of d observed variables is denoted by
Xj = (X1

j , . . . , X
d
j )T . The true number of the component, to which the j -th subject

belongs, is denoted by κj ∈ {1, . . . ,M}. This number is not observed, but one knows
the probabilities

pm
j = pm

j ;n = P{κj = m}, m = 1, . . . , M.
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Distribution of Xj depends on κj :

Fm(A) = P{Xj ∈ A | κj = m}.
So the unconditional distribution of the observed Xj is a mixture of M components’
distributions

P{Xj ∈ A} =
M∑

m=1

pm
j Fm(A). (1)

We assume that (Xj , κj ) are independent for different j = 1, . . . , n. The formula (1)
is called the model of mixture with varying concentrations (MVC model). Note that
the components’ distributions Fm are completely unknown and the concentrations pm

j

are known in this model.
The weighted empirical distribution of the form

F̂m;n(A) =
n∑

j=1

wm
j 1{Xj ∈ A} (2)

can be used to estimate Fm(A). Here wm
j are some weights constructed from the

concentrations pk
j , j = 1, . . . , n, k = 1, . . . ,M . These weights are aimed to pick

out the m-th component and to suppress the influence of all other components on the
estimator.

Investigating the asymptotic behavior of the estimators as the sample size n tends
to infinity we will consider different pm

j and wm
j for different n. Sometimes it will be

denoted by the subscript ;n: pm
j ;n, wm

j ;n, Xj ;n. If this subscript is dropped it means that
we consider here a sample of fixed size n.

Let
pm

;n = (pm
1;n, . . . , p

m
n;n)

T , p;n = (p1
;n, . . . pM

;n),

i.e. p;n denotes a matrix of concentrations with M columns and n rows. Each column
corresponds to a mixture component, each row corresponds to an observation. Similar
notations w;n, wm

;n will be used for the weights.
Suppose that the vectors pm

;n, m = 1, . . . ,M , are linearly independent. Then the

matrix �;n = (pT
;np;n) is nonsingular. We will use the weights

w;n = �−1
;n p;n. (3)

It is shown in [9] that F̂m;n defined by (2) with the weights wm
;n defined by (3) is

a minimax estimator for Fm with respect to the quadratic loss. So the weights (3) are
called the minimax weights.

There can be some other choices of weights in (2). E.g., in [10] an adaptive ap-
proach is proposed which allows to obtain asymptotically optimal estimators of MVC
model parameters. Unfortunately, the adaptive estimators need samples with quite
large number observations to outperform the minimax ones in MVC models. Espe-
cially large samples are needed for multivariate data analysis which is just the case
when PCA is most useful. So, in this paper we will consider estimators with the min-
imax weights only.
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4 Estimation of covariance matrices

In this section we consider estimation of covariance matrices of the mixture compo-
nents. Assume that E[|Xj |2 | κj = m] < ∞ for all m = 1, . . . ,M and let

μ(i; m) = E[Xi
j | κj = m], c(i1, i2; m) = E[Xi1

j X
i2
j − μ(i1; m)μ(i2; m) | κj = m],

(4)

Cm = (c(i1, i2; m))di1,i2=1.

So, Cm is the covariance matrix of a random vector with the distribution Fm. (The
m-th component covariance).

To estimate μ(i; m) and c(i1, i2; m) one can use weighted means with weights
designed for the estimation of Fm. Say,

μ̂;n(i; m) =
n∑

j=1

wm
j ;nX

i
j , (5)

ĉ;n(i1, i2; m) =
n∑

j=1

wm
j ;nX

i1
j X

i2
j − μ̂;n(i1; m)μ̂;n(i2; m), (6)

Ĉm;n = (ĉ(i1, i2; m))di1,i2=1.

Theorem 1. Assume that

(i) E[|Xj |2 | κj = m] < ∞ for all m = 1, . . . ,M;

(ii) There exists nonsingular limit matrix

�∞ = lim
n→∞

1

n
�;n. (7)

Then Ĉm;n → Cm in probability.

Proof. This theorem is a simple consequence of the theorem 4.2 in [9].

So, under suitable assumptions, Ĉm;n is a consistent estimator for the m-th com-
ponent covariance matrix. To establish its asymptotic normality we need some addi-
tional notations.

Let

〈wk1 wk2pm1pm2〉;n = n

n∑
j=1

w
k1
j ;nw

k2
j ;np

m1
j ;np

m2
j ;n,

〈wk1 wk2pm1pm2〉 = lim
n→∞〈wk1 wk2pm1pm2〉;n,

(8)

〈wk1wk2pm〉;n = n

n∑
j=1

w
k1
j ;nw

k2
j ;np

m
j ;n, 〈wk1wk2 pm〉 = lim

n→∞〈wk1wk2pm〉;n, (9)
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assuming that these limits exist. Then

ηj (i1, i2; k) = X
i1
j X

i2
j − X

i1
j μ(i2; k) − X

i2
j μ(i1; k),

M1(i1, i2; k; m) = E[ηj (i1, i2; k) | κj = m],
M2(i1, i2, i3, i4; k1, k2; m) = E[ηj (i1, i2; k1)ηj (i3, i4; k2) | κj = m],

V (i1, i2, i3, i4; k1, k2) =
M∑

m=1

〈wk1wk2pm〉M2(i1, i2, i3, i4; k1, k2; m)

−
M∑

m1,m2=1

〈wk1 wk2pm1pm2〉M1(i1, i2, ; k1; m1)M1(i3, i4, ; k2; m2).

(10)

Theorem 2. Assume that the following conditions hold.

(i) E[|Xj |4 | κj = m] < ∞ for all m = 1, . . . ,M .

(ii) The matrix �∞ defined by (7) exists and is nonsingular.

(iii) For all m1,m2, k1, k2 = 1, . . . ,M there exist 〈wk1wk2pm1pm2〉 defined by (8).

Then √
n(Ĉm;n − Cm)

W−→ Zm, for m = 1, . . . , M,

where Zm = (z(i1, i2; m))di1,i2=1, m = 1, . . . ,M is a set of matrices with zero mean
entries and the covariance structure

E z(i1, i2; k1)z(i3, i4; k2) = V (i1, i2, i3, i4; k1, k2),

for j1, j2, j3, j4 = 1, . . . , d , k1, k2 = 1, . . . ,M .

Proof. Let

z;n(i1, i2; k) = √
n(ĉ;n(i1, i2; k) − c(i1, i2; k)),

z̃;n(i1, i2; k) = √
n

n∑
j=1

wk
j ;n[ηj (i1, i2; k) − E ηj (i1, i2; k)]. (11)

By somewhat tedious but straightforward algebra one obtains

z;n(i1, i2; k) − z̃;n(i1, i2; k)

=√
n

( n∑
j=1

wk
j ;nX

i1
j − μ(i1; k)

)( n∑
j=1

wk
j ;nX

i2
j − μ(i2; k)

)
.

Observe that

E
[ n∑

j=1

wk
j ;nX

i
j

]
=

n∑
j=1

M∑
m=1

pm
j :nw

k
j ;nμ(i; m) = μ(i; k),

since
∑n

j=1 pm
j :nw

k
j ;n equals 1 if m = k, and 0 otherwise.
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So

E
[ n∑

j=1

wk
j ;nX

i
j − μ(i; k)

]2

=
n∑

j=1

(wk
j ;n)

2 Var Xi
j .

Due to the assumption (ii), supj,n Var Xi
j < ∞. By lemma 1 in [11], supj,n |wk

j ;n| =
O(n−1), so, by the Chebyshev inequality,

n∑
j=1

wk
j ;nX

i
j − μ(i; k) = OP (n−1/2)

and
z;n(i1, i2; k) − z̃;n(i1, i2; k) = oP (1).

So it is enough to prove the statement of the Theorem for z̃;n(i1, i2; k) instead of
z;n(i1, i2; k). Asymptotic normality of the set (z̃;n(i1, i2; k), i1, i2 = 1, . . . , d, k =
1, . . . ,M) can be proved applying the Central Limit Theorem with the Lindeberg’s
condition by the same way as in Theorem 4.3. in [9].

Let us calculate the limit covariance. Observe that

E ηj (i1, i2; k) =
M∑

m=1

pm
j ;nM1(i1, i2; k; m)

and

E ηj (i1, i2; k1)ηj (i3, i4; k2) =
M∑

m=1

pm
j ;nM2(i1, i2, i3, i4; k1, k2; m).

So

E z̃;n(i1, i2; k1)z̃;n(i3, i4; k2) =

= n

n∑
j=1

w
k1
j ;nw

k2
j ;n E ηj (i1, i2; k1)ηj (i3, i4; k2)

− n

n∑
j=1

w
k1
j ;nw

k2
j ;n E ηj (i1, i2; k1) E ηj (i3, i4; k2)

=
M∑

m=1

〈wk1 wk2pm〉;nM2(i1, i2, i3, i4; k1, k2; m)

−
M∑

m1,m2=1

〈wk1wk2pm1pm2〉;nM1(i1, i2, ; k1; m1)M1(i3, i4, ; k2; m2).

Note that, since
∑M

m=1 pm
j ;n = 1, assumption (iii) implies that

〈wk1wk2 pm〉;n =
M∑

k=1

〈wk1wk2 pmpk〉;n → 〈wk1wk2pm〉 =
M∑

k=1

〈wk1wk2pmpk〉
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as n → ∞. So

E z̃;n(i1, i2; k1)z̃;n(i3, i4; k2) → V (i1, i2, i3, i4; k1, k2).

The Theorem is proved.

To apply this theorem for the construction of confidence interval or hypotheses
testing one needs an estimator for the asymptotic covariances V (i1, i2, i3, i4; k1, k2).
To obtain it, let us consider

η̂j ;n(i1, i2; k) = X
i1
j X

i2
j − X

i1
j μ̂;n(i2; k) − X

i2
j μ̂;n(i1; k).

Observe that, under the assumptions of Theorem 2,

M̂1;n(i1, i2; k; m) =
n∑

j=1

wm
j ;nη̂j ;n(i1, i2; k)

and

M̂2;n(i1, i2, i3, i4; k1, k2; m) =
n∑

j=1

wm
j ;nη̂j ;n(i1, i2; k1)η̂j ;n(i3, i4; k2)

are consistent estimators to M1(i1, i2; k; m) and M2(i1, i2, i3, i4; k1, k2; m) respec-
tively. So

V̂;n(i1, i2, i3, i4; k1, k2) =
M∑

m=1

〈wk1 wk2pm〉;nM̂2;n(i1, i2, i3, i4; k1, k2; m)

−
M∑

m1,m2=1

〈wk1wk2 pm1pm2〉;nM̂1;n(i1, i2, ; k1; m1)M̂1;n(i3, i4, ; k2; m2).

(12)

is a consistent estimator to V (i1, i2, i3, i4; k1, k2).

5 Principal components for mixtures

We define the principal components directions of the k-th mixture component as the
eigenvectors of Ck . Let λ(1; k) > λ(2; k) > · · · λ(d; k) be the eigenvalues of Ck and
v(l; k) = (v1(l; k), . . . , vd(l; k))T be the corresponding eigenvectors:

Ckv(l; k) = λ(l; k)v(l; k). (13)

In what follows we assume that all the eigenvalues of Ck are simple (i.e. there are d

different eigenvalues) and |v(l; k)| = 1. Then these vectors are defined unambigu-
ously up to the sign multiplier ±1: if (13) holds for v(l; k) then −v(l; k) also satisfy
it.

To avoid the ambiguity, we adopt the following rule for choosing the sign of an
eigenvector. Consider v = maxi=1,...,d |vi(l; k)| and i0 = min{i : |vi(l; k)| = v}.
We choose as the PC direction the version of v(l; k) for which vi0(l; k) > 0.
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Natural estimators for λ(l; k) and v(l; k) are the eigenvalues and eigenvectors
of Ĉk;n. Let λ̂;n(l; k) denote the l-th (in the decreasing order) eigenvalue of Ĉk;n.
To choose the sign of the corresponding estimated eigenvector v̂;n(l; k) = (v̂1

;n(l; k),

. . . , v̂d
;n(l; k))T we need somewhat more complicated algorithm than in the case of

v(l; k).
Let εn > 0 be some sequence such that εn → 0 as n → ∞. Consider v̂;n =

maxi=1,...,d |v̂i
;n(l; k)| and î0 = min{i : |v̂i (l; k)| ≥ v̂;n − εn}. Then we choose the

sign of v̂;n(l; k) so that v̂
î0
;n > 0.

Let E be the unit d × d-matrix and A+ denotes the Moore–Penrose inverse of a
matrix A.

Theorem 3. Assume the following.

(i) E[|Xj |4 | κj = m] < ∞ for all m = 1, . . . ,M .

(ii) The matrix �∞ defined by (7) exists and is nonsingular.

(iii) For all m1,m2, k1, k2 = 1, . . . ,M there exist 〈wk1wk2pm1pm2〉 defined by (8).

(iv) All the eigenvalues of Ck are simple.

(v) εn → 0,
√

nεn → ∞ as n → ∞.

Then

√
n(λ̂;n(l; k)) − λ(l; k))

W−→ vT (l; k)Zkv(l; k), (14)
√

n(v̂;n(l; k)) − v(l; k))
W−→ (Ck − λ(l; k)E)+Zkv(l; k), (15)

as n → ∞, for all l = 1, . . . , d , where Zk is defined in Theorem 2.

Remark. The weak convergence in (14)–(15) is simultaneous. I.e. the common dis-
tribution of the set of LHS for l = 1, . . . , d in (14)–(15) converges to the common
distribution of RHS. Moreover, if assumption (iv) holds for some set of k, then the
convergence is simultaneous for these k.

Proof. Consider the l-th eigenvalue λl(C) of a symmetric matrix C ∈ R
d×d as a

function of C. Since all the eigenvalues of Ck are simple, there exists a neighborhood
Nk of Ck at which λl(C) is continuous. It is well known that this is a continuously
differentiable function of C. There exist also two versions ±vl (C) of the l-th eigen-
vector of C each of which is continuously differentiable in Nk . We choose the version
vl(C) for which vl(Ck) = v(l, k).

Consider a continuously differentiable parametric family Ct , t ∈ (a, b) ⊂ R, of
d × d symmetric matrices with simple eigenvalues. Differentiating the equations

Ctvl (Ct ) = λl(Ct )vl (Ct )

and
(vl (Ct ))

T vl (Ct ) = 1,
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one obtains

d

dt
λl(Ct ) = (vl(Ct ))

T

(
d

dt
Ct

)
vl (Ct ), (16)

d

dt
vl(Ct ) = (Ct − λl(Ct )E)+

(
d

dt
Ct

)
vl(Ct ) (17)

(Theorem 8.9 in [8]). By the Taylor expansion

λ̂;n(l; k)) − λ(l; k) = λl(Ĉk;n) − λl(Ck)

=
d∑

i,j=1

(
∂

∂c(i, j ; k)
λl(Ck)

)
(ĉ;n(i, j ; k) − c(i, j ; k)) + o(|Ĉk;n − Ck|).

Applying (16) with t = c(i, j ; k) we obtain

√
n(λ̂;n(l; k)) − λ(l; k)) = (v(l; k))T

√
n(Ĉk;n − Ck)v(l; k) + o(|Ĉk;n − Ck|).

By Theorem 2 this implies (14).
Proceeding by the same way with (17) in view we obtain

√
n(vl (Ĉk;n) − vl(Ck))

W−→ (Ck − λ(l; k)E)+Zkv(l; k).

It is rather similar to (15), but recall that v̂;n(l; k)) = ±vl(Ĉk;n). Observe that
vl(Ĉk;n)− vl (Ck) = OP (1/

√
n), while 1/

√
n = o(εn). So our sign choosing rule for

v̂;n(l; k) will choose the right sign with probability tending to 1 as n → ∞:

P{v̂;n(l; k) = vl (Ĉk;n)} → 1 as n → ∞.

Theorem is proved.

6 Confidence intervals for eigenvalues

Theorem 3 can be applied to testing hypotheses on PC directions of different mixture
components. It also allows one to construct confidence sets for PC directions and
eigenvalues. As an example we consider construction of a confidence interval for one
eigenvalue λ(l; k) of the k-th mixture component covariance matrix Ck .

By Theorem 3

√
n(λ̂;n(l; k) − λ(l; k))

W−→ N(0, S2(l, k)),

where

S2(l, k) = Var vT (l; k)Zkv(l; k)

=
d∑

i1,i2,i3,i4=1

vi1(l; k)vi2(l; k)vi3(l; k)vi4(l; k)V (i1, i2, i3, i4; k, k). (18)
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An estimator Ŝ2
;n(l; k) for S2(l; k) can be obtained by replacing vi(l; k) and

V (i1, i2, i3, i4; k, k) by their consistent estimators v̂i
;n(l; k) and V̂;n(i1, i2, i3, i4; k, k).

It is obvious that Ŝ2
;n(l; k) is consistent under the assumptions of Theorem 3.

So, if S2(l, k) > 0, then

√
n

Ŝ;n(l; k)
(λ̂;n(l; k) − λ(l; k))

W−→ N(0, 1).

Let xα/2 be the standard normal quantile of level 1 − α/2,

λ±
;n(l; k) = λ̂;n(l; k) ± xα/2

Ŝ;n(l; k)√
n

.

Then
lim

n→∞ P{λ(l; k) ∈ [λ−
;n(l; k), λ+

;n(l; k)]} = 1 − α.

I.e. [λ−
;n(l; k), λ+

;n(l; k)] is an asymptotic confidence interval for λ(l; k) with the sig-

nificance level α if the assumptions of Theorem 3 hold and S2 > 0. The last assump-
tion is not too restrictive. In the Appendix we present a simple condition under which
it holds.

7 Results of simulations

To evaluate the finite-sample behavior of the proposed technique, we performed a
small simulation study. Confidence intervals for the largest eigenvalue λ(1; k) with
the nominal significance level α = 0.05 were calculated on data simulated from the
tree-component MVC model. In each experiment there were B = 1000 simulations
for each sample size n = 250, 500, . . . , 10000.

For each mixture component we present the coverage frequency of the intervals,
i.e. the number of confidence intervals which covered the true λ(1; k) divided by B.

In all the experiments the concentrations pj ;n = (p1
j ;n, p

2
j ;n, p

3
j ;n) were gener-

ated as independent vectors uniformly distributed on the simplex {p : pm ≥ 0,m =
1, . . . , 3, p1 + p2 + p3 = 1}.

The observations Xj = (X1
j , X

2
j , X

3
j ) were three-dimensional.

In the first experiment the distribution of Xj was Gaussian in each mixture com-
ponent Fm ∼ N(μm, Cm), where

μ1 =
⎛
⎝1

0
2

⎞
⎠ , μ2 =

⎛
⎝0

0
0

⎞
⎠ , μ3 =

⎛
⎝1

2
3

⎞
⎠ (19)

and

C1 =
⎛
⎝ 1 −0.5 0.1

−0.5 2 0.4
0.1 0.4 3

⎞
⎠ , C2 =

⎛
⎝2 0 0

0 1 0
0 0 0.5

⎞
⎠ , C3 =

⎛
⎝5 1 1

1 2 1
1 1 0.5

⎞
⎠ . (20)
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Table 1. Coverage probabilities of the first experiment

Components
n first second third

250 0.973 0.872 0.956
500 0.969 0.925 0.952

1000 0.962 0.968 0.953
2500 0.952 0.966 0.951
5000 0.948 0.941 0.956

10000 0.955 0.960 0.953

Table 2. Coverage probabilities of the second experiment

Components
n first second third

250 0.971 0.839 0.959
500 0.961 0.879 0.964

1000 0.964 0.919 0.955
2500 0.954 0.925 0.945
5000 0.943 0.932 0.945

10000 0.950 0.921 0.947

The simulation results are presented on Table 1. It seems that the coverage proba-
bilities of obtained confidence intervals are satisfactory for practical purposes if the
sample size n is greater then 1000.

In the second experiment we used the same parameters for the model as in the
first one, except the covariance of the second component. Here we put C2 = E (unit
matrix). Surely, this model does not satisfy the assumptions of Theorem 3, since the
first eigenvalue of C2 is not simple. The results are presented on Table 2. It seems
that the confidence interval for the second component’s largest eigenvalue is unsatis-
factory even for n = 10000. The intervals for the first and third components preform
satisfactory for n larger then 1000.

8 Discussion

We proposed a technique for estimation of PC directions and eigenvalues by obser-
vations from MVC. Asymptotic normality of the estimators is proved. This opens
possibilities for constructing confidence sets and testing hypotheses on PC structure
of different mixture components. Results of simulations confirm applicability of the
asymptotic results for samples of moderate size.

Now let us discuss some challenges which were not answered in this study.
1. To apply Theorem 3 for statistical analysis of real life data, one needs to be sure

that the assumption (iv) of this theorem holds. Is it possible to verify the hypotheses
A: all the eigenvalues of Ck are simple by some statistical test? Note, that in this test
A must be an alternative to the null H0: there exists an eigenvalue of Ck of degree
higher then 1. Of course, such test cannot be based on the confidence sets derived
by Theorem 3, since it does not hold under H0. A possible alternative is to use a
bootstrap technique for such testing.
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2. It is sometimes useful in cluster analysis applications to consider FMMs with
growing number of components (clusters) as the sample size n tends to infinity [5].
Similar approach is also beneficial in signal processing [3]. In this case one expects
nonparametric convergence rates in theorems similar to Theorem 3. Another general-
izations of Theorem 3 are possible if the dimension of the observations space d → ∞
as n → ∞.

3. There are many alternatives to PCA as a dimension reduction technique, e.g.,
Projection Pursuit (PP) or Independent Components Analysis [6]. Some of them, such
as the PP based on the maximization of kurtosis can be modified for application to
MVC data similarly to the PCA modification considered in this study. It would be
interesting to analyze efficiency of these modifications both theoretically and in real
life data analysis.

We hope that further study will clarify answers on these questions.

A Appendix

Here we will obtain conditions under which S2(l; k) defined by (18) is strictly posi-
tive.

Let vect be a function which stacks its arguments into a long vector:

vect(zij , i, j = 1, . . . , d) = z = (z1, . . . , zd2
) where zi+d(j−1) = zij .

Let us fix k ∈ 1, . . . ,M and define ηj (k) = vect(ηj (i1, i2; k), i1, i2 = 1, . . . d).

Theorem 4. Let the assumptions of Theorem 3 hold. If for some m ∈ 1, . . . , M

det Cov[ηj |κj = m] = 0,

then S2(l; k) > 0 for all l = 1, . . . , d .

Proof. Let

z=vect(z(i1, i2; k), i1, i2 =1, . . . , d), v=vect(vi1(l; k)vi2(l; k), i1, i2 =1, . . . , d).

By (18)
S2(l; k) = vT Cov[z]v.

It is obvious that |v| = 0. So, to obtain S2(l; k) > 0 we need only to show that
Cov[z] > 0.

Let em = E[ηj | κj = m], then

Cov[z] = L1 + L2,

where

L1 =
M∑

m=1

〈(wk)2pm〉
(
E[ηjη

T
j | κj = m] − emeT

m

)
,

L2 =
M∑

m=1

〈(wk)2pm〉emeT
m −

M∑
m1,m2=1

〈(wk)2pm1pm2〉em1eT
m2

.
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Observe that L2 = limn→∞
∑n

j=1(w
k
j ;n)

2Lj,2, where

Lj,2 = Cov(ζ j ),

ζ j is a random vector which attains values em with probabilities pm
j ;n. So Lj ;2 ≥ 0

and L2 ≥ 0.
Then

L1 =
n∑

j=1

〈(wk)2pm〉 Cov[ηj | κj = m] ≤ 〈(wk)2pm0〉 Cov[ηj | κj = m0] > 0,

due to the assumpton of the Theorem and the fact that 〈(wk)2pm0〉 > 0 (see [12]).
Summarizing we obtain

Cov[z] > 0

which implies the statement of the Theorem.
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