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Abstract General models of random fields on the sphere associated with nonlocal equations
in time and space are studied. The properties of the corresponding angular power spectrum are
discussed and asymptotic results in terms of random time changes are found.
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1 Introduction

The models of spherical random fields are in great demand in various applied areas
such as geophysics, geodesy, planetary sciences, astronomy, cosmology and others.
In recent years one can observe the growing popularity of stochastic partial differen-
tial equations in modeling space-time random fields. Solutions to stochastic Cauchy
problems for various classes of partial differential equations on the sphere admit exact
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series representations, which is important, in particular, for numerical approximation
of such random fields, since this can be achieved effectively by truncating the corre-
sponding expansions (see, e.g., [2, 8, 18] for the most recent progress on properties
of truncated expansions).

Papers [14, 13] develop the approach to construct time dependent random fields
on the sphere through coordinate-change and subordination. These models of random
fields arise as solutions to partial differential equations with operators of a particular
form and random initial condition represented by a Gaussian random field.

In the present paper we generalize results of paper [14] and consider random fields
arising as solutions to the fractional equations of the form(

γ − �(−�
S

2
1
) + D�

t

)
Xt(x) = 0, x ∈ S

2
1, t > 0, γ ≥ 0, (1.1)

subject to the initial condition X0(x) = T (x), x ∈ S
2
1 = {x ∈ R3 : ‖x‖ = 1}, with

T (x), x ∈ S
2
1, being a square integrable isotropic Gaussian random field.

In the above equation, the generalized Laplace–Beltrami operator �(−�
S

2
1
) is

defined in terms of the transition semigroup of the subordinate rotational Brownian
motion B�

t = BHt , where Ht is a subordinator with the Laplace exponent �. This
covers, in particular, the case of fractional Laplace operator (−�

S
2
1
)α , α ∈ (0, 1).

The time derivative D�
t is the generalized convolution-type derivative associated with

the Bernštein function �, which reduces to the Caputo–Djrbashian (C-D) fractional
derivative ∂β

∂tβ
for �(λ) = λβ , β ∈ (0, 1).

Note that the generalized Laplace–Beltrami operator �(−�
S

2
1
), where � is a

Bernštein function, can be treated by means of the transition semigroup of the subor-
dinate rotational Brownian motion B�

t . This gives the possibility of a deeper insight
into the structure of the solution Xt(x) to Equation (1.1). Namely, such approach per-
mits us to obtain not only the Karhunen–Loève expansion for the solution, but also
its representation as a coordinate-changed random field.

We show that solution to (1.1) is a time-varying random field with the following
representation in terms of spherical harmonics Ylm:

Xt(x) =
∞∑
l=0

+l∑
m=−l

alm l̃(t, γ + �(μl))Ylm(x), x ∈ S
2
1, t > 0, (1.2)

where alm = ∫
S

2
1
X0(x)Y ∗

lm(x)μ(dx). The series expansion (1.2) is associated with

the function � in the folloving way: l̃(t, λ) = E[exp(−λLt)] with L being the inverse
process for the subordinator with the Laplace exponent �. We also represent Xt(x)

as a coordinate-changed random field.
The use of the generalized derivative D�

t allows to construct more general models
of random fields that those in the paper [14], where the C-D fractional derivative was
used.

The equation similar to (1.1) for tangent random fields on the sphere was consid-
ered in the recent paper [4]. Namely, the authors study the equation with the C-D frac-
tional derivative in time, fractional diffusion operator ψ(−�

S
2
1
) = (−�

S
2
1
)α/2(I −
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�
S

2
1
)γ /2, α ∈ (0, 2], α + γ ∈ [0, 2], and driving fractional Brownian noise. The cor-

responding solution is given as an expansion in terms of vector spherical harmonics
with random coefficients represented by stochastic integrals with respect to fractional
Brownian motions.

The paper is organized as follows. Sections 2–3 make necessary preparations and
provide a concise review on the operators used in equations and facts on isotropic
random fields. The main results are stated in Section 4: we give the different repre-
sentations for solutions to (1.1) and discuss their properties.

2 Generalized fractional operators

To define our models of space-time random fields, we will use partial differential
equations with generalized fractional derivatives in time and space variables.

2.1 Generalized fractional Caputo–Djrbashian or convolution-type derivative
We first introduce the generalized fractional operator to act on the time variable.

Let us consider the subordinator H , that is, a nonnegative Lévy process with al-
most surely increasing paths. The process H is characterized by a Lévy measure �

on (0,∞) such that
∫ ∞

0 (1∧ z)�(dz) < ∞ and the corresponding Bernštein function
� (called the Laplace exponent or symbol of H ). That is,

E[exp(−λHt)] = exp(−t�(λ)),

where

�(λ) =
∫ ∞

0

(
1 − e−λz

)
�(dz), λ ≥ 0. (2.1)

In the general case, the expression for Bernštein function (2.1) contains two more
terms, namely, of the form a + bλ, but we consider now the case a = b = 0.

We also recall that

�(λ)

λ
=

∫ ∞

0
e−λz�(z)dz, �(z) = �((z,∞)) (2.2)

and � is the so-called tail of the Lévy measure. For details, see the book [6].
Introduce the inverse process associated to H (and, so, associated to �) as

Lt = inf{s ≥ 0 : Hs > t}, t > 0.

L is a nonnegative process with almost surely nondecreasing paths.
We assume that �((0,∞)) = ∞ and, therefore, we focus only on strictly increas-

ing subordinators. For this case, the inverse process L turns out to be a continuous
process. Under the additional assumption that �(z), z ≥ 0, is absolutely continous
function, the inverse process Lt possesses the probability density function l(s, t) for
each t > 0 [23].

Definition 1. Convolution-type derivative associated with the function � given by
(2.1) is defined for an absolutely continuous function u by the formula

D�
t u(t) =

∫ t

0

∂

∂t
u(t − s)�(s)ds. (2.3)
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According to the definition, the generalized fractional operator is characterized
by the Bernštein function �, and thus is associated with the processes H and L intro-
duced above. This operator can be used to study the properties of subordinators and
their inverses and write the governing equations for their densities (see [23]).

In the case where �(λ) = λα , α ∈ (0, 1), we have that

D�
t u(t) = dα

dtα
u(t) = 1

�(1 − α)

∫ t

0

u′(s)
(t − s)α

ds,

where u′ = du/ds, that is, D�
t u(t) coincides with the well-known Caputo–Djrbashian

fractional derivative.
Similarly to the Caputo–Djrbashian fractional derivative, the convolution type

derivative can be characterized (and alternatively defined) by means of its Laplace
transform.

Let M > 0 and w ≥ 0. Let Mw be the set of (piecewise) continuous functions
on [0,∞) of exponential order w such that |u(t)| ≤ Mewt . Denote by ũ the Laplace
transform of u. Then, we define the operator D�

t : Mw 
→ Mw such that∫ ∞

0
e−λtD�

t u(t) dt = �(λ)̃u(λ) − �(λ)

λ
u(0), λ > w, (2.4)

where � is given in (2.1). Since u is exponentially bounded, the integral ũ is abso-
lutely convergent for λ > w. By Lerch’s theorem (see, e.g., [25]) the inverse Laplace
transforms u and D�

t u are uniquely defined. Formula (2.4) can be rewritten as

�(λ)̃u(λ) − �(λ)

λ
u(0) = (λũ(λ) − u(0))

�(λ)

λ
, (2.5)

and thus, D�
t can be regarded as a convolution involving the ordinary derivative and

the inverse transform of (2.2) iff u ∈ Mw ∩ C([0,∞),R+) and u′ ∈ Mw.
The operator D�

t have been introduced and studied in the papers [17, 11, 23].
In Section 4 we study random fields on the sphere governed by equations with

convolution-type derivatives D�
t . The following well-known fact will be important.

Proposition 1. Let L be the inverse process for a subordinator with Bernštein func-
tion �, and assume that �(0,∞) = ∞ and the tail �(s) = �(s,∞) is absolutely
continuous. For the process Lt , t > 0, we have the density l(t, x) = P(Lt ∈ dx)/dx,
t, x > 0, with the Laplace transform

l̃(t, λ) =
∫ ∞

0
e−λxl(t, x)dx = E[e−λL(t)] (2.6)

which satisfies the equation

D�
t l̃(t, λ) = −λl̃(t, λ), (2.7)

thus, l̃(t, λ) is an eigenfunction of the operator D�
t corresponding to the eigenvalue λ.

Proposition 1 was proved by different approaches in [17, 23, 9].
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Remark 1. For L being the inverse process for a stable subordinator, that is,
�(λ) = λα , (2.7) reduces to the well-known fact that the Mittag-Leffler function is an
eigenfunction of the Caputo–Djrbashian fractional derivative. Namely, for the Mittag-

Leffler function Eα(x) =
∞∑

k=0

xk

�(αk+1)
, x ∈ R, it holds ∂α

∂tα
Eα(−tαλ) = −λEα(−tαλ)

(see, e.g., [16]).

2.2 Generalized fractional Laplacian on the sphere
Let f ∈ L2(S2

1) = L2(S2
1, μ), where μ is the Lebesgue measure on the unit sphere S2

1:

μ(dx) = μ(dϑ, dϕ) = dϕ dϑ sin ϑ

with x ∈ S
2
1 being represented as x = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ), ϑ ∈ [0, π],

ϕ ∈ [0, 2π).
The set of spherical harmonics {Ylm : l ≥ 0, m = −l, . . . ,+l} represents an

orthogonal basis for the space L2(S2
1). Recall that for a fixed integer l the spherical

harmonics

Ylm(ϑ, ϕ) =
√

2l + 1

4π

(l − m)!
(l + m)!Qlm(cos ϑ)eimϕ

(or linear combinations of them) solve the eigenvalue problem


S

2
1
Ylm = −μl Ylm, l ≥ 0, |m| ≤ l, (2.8)

for the spherical Laplace (Laplace–Beltrami) operator


S

2
1

= 1

sin2 ϑ

∂2

∂ϕ2 + 1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ

)
, ϑ ∈ [0, π], ϕ ∈ [0, 2π). (2.9)

The eigenvalues are given by μl = l(l + 1).
The spherical harmonics are written in terms of the associated Legendre functions

Qlm(z) = (−1)m(1 − z2)m/2 dm

dzm
Ql(z),

the Legendre polynomials Ql are given by the Rodrigues formula

Ql(z) = 1

2l l!
dl

dzl
(z2 − 1)l . (2.10)

For f ∈ L2(S2
1) we have the representation

f (x) =
∞∑
l=0

l∑
m=−l

flmYlm(x), x ∈ S
2
1,

which holds in the L2 sense, where

flm =
∫
S

2
1

f (x)Y ∗
lm(x) μ(dx) =

∫ 2π

0

∫ π

0
f (ϑ, ϕ)Y ∗

lm(ϑ, ϕ) sin ϑ dϑ dϕ,

|m| ≤ l, l = 0, 1, 2, . . . . (2.11)

(see, e.g., the Peter–Weyl representation theorem on the sphere in [21]).
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The angular power spectrum of f is defined as

fl =
∑
|m|≤l

|flm|2 =
∑
|m|≤l

∣∣∣∣ ∫
S

2
1

f (x)Y ∗
lm(x)μ(dx)

∣∣∣∣2

, l = 0, 1, 2, . . . . (2.12)

We next define the generalized fractional Laplace operators on the sphere follow-
ing [13, 14]. Let F(t), t ≥ 0, be a Lévy subordinator with the Laplace exponent

�(λ) = bλ +
∫ ∞

0

(
1 − e−λz

)
M(dz), b ≥ 0, λ ≥ 0,

with M being the corresponding Lévy measure.
Let Bt , t ≥ 0, be a Brownian motion on the unit sphere S

2
1. Its transition density

can be written as follows (see [26]):

Pr{x + Bt ∈ μ(dy)}/μ(dy) = Pr{Bt ∈ μ(dy) |B0 = x}/μ(dy)

=
∞∑
l=0

+l∑
m=−l

e−tμl Ylm(y)Y ∗
lm(x). (2.13)

Consider the initial-value problem{
∂u

∂t
= �S2

1
u, x ∈ S2

1, t > 0,

u(x, 0) = f (x),
(2.14)

for f ∈ L2(S2
1). The solution to the above problem can be written as follows:

u(x, t) = Ptf (x) = Ef (x + Bt) =
∫

S2
1

f (y)P r{x + Bt ∈ μ(dy)}

=
∞∑
l=0

+l∑
m=−l

e−tμl Ylm(x)flm, (2.15)

that is, the solution is given by the transition semigroup of the rotational Brownian
motion Bt , t > 0, with values in S2

1.
In [13] the following operator acting on f ∈ L2(S2

1) was introduced:

�(−�S2
1
)f (x) :=

∫ ∞

0
(Pt f (x) − f (x)) M(dt). (2.16)

It was shown in [13] (see also [14]) that

�(−�S2
1
)Ylm(x) = −�(μl)Ylm(x), (2.17)

thus, the spherical harmonics are the eigenfunctions of the operator �(−�S2
1
) with

the eigenvalues −�(μl). This was shown by direct calculations using the semigroup
approach and the spectral representation of �(−�S2

1
) (or Phillips representation)

in (2.16).
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Basing on (2.17), the action of the operator �(−�S2
1
) can be also defined by

means of a series representation as given below.
Let us consider the space of functions

Hs(S2
1) =

{
f ∈ L2(S2

1) :
∞∑
l=0

(2l + 1)2sfl < ∞
}

, (2.18)

where fl is the angular spectrum of f (see (2.12)). The Sobolev space Hs(S2
1) is the

closure of the set of all spherical harmonics with respect to the norm

‖f ‖s,2 =
∑
l≥0

(2l + 1)2sfl.

For further discussion, the interested reader can consult [15], [5, page 35].

Definition 2. Let f ∈ Hs(S2
1) and s > 5/4. Then

�(−�S2
1
)f (x) :=

∞∑
l=0

+l∑
m=−l

flmYlm(x)�(μl). (2.19)

Note that since � is the symbol of a subordinator, as l → ∞, we have that
�(l)/ l → 0 (we write �(l) < l for large l) and as l → 0, �(l) → 0. The series
in (2.19) converges absolutely and uniformly. This can be proved by considering that
fl < l−2s with s > 5/4 (indeed, f ∈ Hs(S2

1)) and for the harmonic eigenfunction
we have: ‖Ylm‖∞ < l1/2 ([24]). Since �(μl) < l2 we have the claimed convergence.
For more details, see [14, 13].

3 Isotropic random fields on the unit-radius sphere

Let us consider a real-valued, zero-mean, isotropic Gaussian random field T (x),
x ∈ S

2
1, that is, we assume ET (x) = 0, ET 2(x) < ∞, and for any g ∈ SO(3)

(the special group of rotations in R
3) we have: ET (gx1)T (gx2) = ET (x1)T (x2),

x, x1, x2 ∈ S
2
1.

For the field T we can write the spectral representation

T (x) =
∞∑
l=0

+l∑
m=−l

almYlm(x) =
∞∑
l=0

Tl(x), (3.1)

where
alm =

∫
S2

T (x)Y ∗
lm(x)μ(dx) (3.2)

are random Fourier coefficients, Ylm(x) are spherical harmonics. Convergence in (3.1)
holds in the mean square sense, both with respect to L2(dP × μ(dx)) and L2(dP )

for fixed x ∈ S
2
1, μ(dx) is the Lebesgue measure on the unit sphere S

2
1 (see, e.g.,

[21, 22]):

lim
L→∞ E

∥∥∥T (x) −
L∑

l=0

+l∑
m=−l

almYlm(x)

∥∥∥2

L2(S2
1)

= lim
L→∞ E

[ ∫
S2

(
T (x) −

L∑
l=0

+l∑
m=−l

almYlm(x)
)2

μ(dx)
]

= 0
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and

lim
L→∞ E

(
T (x) −

L∑
l=0

+l∑
m=−l

almYlm(x)

)2

= 0.

Remark 2. The representation (3.1) can be deduced as a consequence of the stochas-
tic Peter–Weyl theorem and holds, more generally, for square integrable strictly isotro-
pic random fields, that is, random fields with finite dimensional distributions invariant

with respect to rotations g ∈ SO(3): {T (x1), . . . , T (xn)} d= {T (gx1), . . . , T (gxn)},
where

d= denotes equality in distribution (see, e.g., [21]).

The coefficients (3.2) are zero-mean Gaussian complex random variables such
that

E[alma∗
l′m′ ] = δl′

l δm′
m Cl = δl′

l E|alm|2, (3.3)

where Cl , l ≥ 0, is the angular power spectrum of the random field T which fully
characterizes, under Gaussianity, the dependence structure of T . As usual, we denote
by δb

a the Kronecker delta and “∗” stands for complex conjugation. For a real-valued
random field T , it holds:

alm = (−1)mal −m, l ≥ 1, −l ≤ m ≤ l,

due to the property of the spherical harmonics Y ∗
lm(x) = (−1)mYl −m(x). We refer

to the book by Marinucci and Peccati [21] for a thorough presentation of results
concerning this field.

In analogy with (2.18) one can also introduce the space of processes

Hs(S2
1) =

{
T as in (3.1) with

∑
lm

(μl)
s E[|alm|2] < ∞

}
. (3.4)

Notice that the summability condition in (3.4) can be written as∑
l≥0

(μl)
s (2l + 1)

4π
Cl < ∞ (3.5)

by taking into consideration (3.3). We also notice that H2(S2
1) ⊂ L2(S2

1) and in
particular, the summability condition for T can be written as

Cl ∼ l−θ , with θ > 2. (3.6)

(We use here the usual notation g ∼ f meaning that g(z)
f (z)

→ 1 as z → ∞.) The
space of processes (3.4) is just a characterization of processes introduced in analogy
with the characterization of functions in the space (2.18). The link between spaces
is given by (3.5) under the assumption (3.6). We underline that such a condition is
sufficient for summability (see, e.g., [8]). For the sake of simplicity, further on we
assume that (3.6) holds true. We recall that other types of asymptotic behaviors are
also possible.

The decay of the angular power spectrum is connected to the smoothness of the
covariance. Sample Hölder continuity and sample differentiability was discussed in
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[19] (see Theorem 4.7). The authors also provided a deep discussion about summabil-
ity of the angular power spectrum and the formalization in terms of weighted Sobolev
space.

Let us take an isotropic Gaussian random field introduced above as initial condi-
tion for the fractional Cauchy problem

∂u(t, x)

∂t
+ �(−�S2

1
)u(t, x) = 0, u(0, x) = T (x), (3.7)

where the fractional operator is introduced in Section 2.2, with � being the Laplace
exponent of the subordinator F . In [13] it was shown that solution to (3.7) is given by

u(t, x) =
∞∑
l=0

+l∑
m=−l

e−�(μl)t almYlm(x) = E[T (x + BFt )|FT ],

where FT is the σ -field generated by T and B is a rotational Brownian motion on the
sphere S

2
1 time-changed by the subordinator F .

Generalization of (3.7) by means of the use of the Caputo–Djrbashian fractional
derivative with respect to time was studied in [14]. In the next section we study the
further generalization using the convolution-type derivative defined in Section 2.1.

4 Models of random fields on the sphere

4.1 Nonlocal equations

Let us introduce now models of random fields on the sphere driven by equations with
fractional operators. We consider fractional operators in time and space associated
with Bernštein functions � and �, respectively, as defined in Section 2 above.

We suppose that the function � corresponds to the subordinator H , L is its inverse
process possessing the density l with Laplace transform l̃ as introduced in Proposi-
tion 1 in (2.6). In what follows, we assume that the conditions of Proposition 1 are
valid.

As the initial condition for the fractional equations in the theorems below we
consider the real-valued, zero-mean, isotropic Gaussian random field T (x), x ∈ S

2
1,

with the spectral representation (3.1).

Theorem 1. The solution in L2(dP × dλ) to the fractional equation(
γ − �(−�

S
2
1
) + D�

t

)
Xt(x) = 0, x ∈ S

2
1, t ≥ 0, γ > 0, (4.1)

with the initial condition X0(x) = T (x) is a time-dependent random field on the
sphere S

2
1 written as

Xt(x) =
∞∑
l=0

+l∑
m=−l

alm l̃(t, γ + �(μl))Ylm(x), (4.2)

where

alm =
∫
S

2
1

X0(x)Y ∗
lm(x)μ(dx). (4.3)
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Proof. The proof follows the similar lines of those of the proof of Theorem 1 in [14].
In fact, the proof is deduced basing on the common method of separation of variables,
the essential component of which is the knowledge of eigenfunctions for the operators
involved into the equation. We present the main steps.

For the generalized D-C convolution-type derivative we have (see Proposition 1):

D�
t l̃(t, λ) = −λ l̃(t, λ), λ > 0, (4.4)

with l̃(t, λ) being the Laplace transform of the inverse subordinator Lt defined in
(2.6).

For the generalized Laplace operator �(−�
S

2
1
), we know that

�(−�
S

2
1
)Ylm(x) = −�(μl)Ylm(x). (4.5)

This fact was shown in [14] by direct calculations by using the semigroup approach
and the spectral representation (2.16) of the operator �(−�

S
2
1
). Note that we can also

deduce from the result by Dautray and Lions (see [12], pp. 116–120) that the operator
�(−�

S
2
1
) has the eigenvalues �(μl) and (4.5) holds.

Thus, assuming that (4.2) holds true, we have that

(
γ − �(−�

S
2
1
)
)

Xt(x) =
∞∑
l=0

+l∑
m=−l

al,m (γ + �(μl)) l̃(t, γ + �(μl))Ylm(x).

(4.6)

On the other hand, using (4.4), we obtain

D�
t Xt (x) = −

∞∑
l=0

+l∑
m=−l

al,m (γ + �(μl)) l̃(t, γ + �(μl))Yl,m(x). (4.7)

By summing up (4.6) and (4.7), we obtain (4.1) as claimed.

We now show that a solution to the fractional equation (4.1) can be represented
as a coordinate-changed random field. Introduce the time dependent random field on
S

2
1,

Tt (x) =
∞∑
l=0

∑
|m|≤l

alme−tμl Ylm(x), x ∈ S
2
1, t ≥ 0.

Let L be the inverse process associated with the function � as introduced above,
F being the subordinator with the Bernštein function �.

Define τt = FLt (FLt = F ◦ Lt ) as the composition of F and L.

E[e−ξτt ] = E[e−ξγLt−�(ξ)Lt ] = l̃(t, ξγ + �(ξ)), t ≥ 0, ξ ≥ 0. (4.8)

Let us define the random fields on the sphere S
2
1,

Yt (x) = E[Tτt (x)|FT ], Zt (x) = E[T (x + Bτt )|FT ], (4.9)
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where FT is the σ -field generated by T and B is a rotational Brownian motion on the
sphere S

2
1. The random field Y is a time-changed random field, whereas the random

field Z is obtained by a random change of the coordinates of T . We remark that

Yt (x) =
∫ ∞

0
Ts(x) P(τt ∈ ds), Zt (x) =

∫
S

2
1

T (y)Px(Bτt ∈ μ(dy)). (4.10)

Theorem 2. Let us consider the solution Xt(x), x ∈ S
2
1, t ≥ 0, to Equation (4.1) with

γ = 0 and the random fields (4.9), and let FT be the σ -field generated by X0 = T

on S
2
1. Then the following representation in L2(dP × dλ) holds true:

Xt(x) = E
[
T (x + BF◦Lt )

∣∣FT

]
, t ≥ 0, (4.11)

or equivalently

Xt(x) = E
[
TF◦Lt (x)

∣∣FT

]
, t ≥ 0. (4.12)

Proof. From (2.15) we have that EYlm(x + Bt) = e−tμl Ylm(x) (see [13]) and there-
fore

E[T (x + Bτt )|FT ] =
∑
lm

almE[Ylm(x + Bτt )|FT ]

=
∑
lm

almE[e−μlτt ]Ylm(x) = E[Tτt (x)|FT ],

that is, the representation (4.2) in L2(dP × dλ) and the right-hand sides of Equa-
tions (4.11) and (4.12) coincide. On the other hand, we can write:

Zt(x) = E[T (x + Bτt )|FT ] = E
[∑

lm

almYlm(x + Bτt )|FT

]
=

∑
lm

almE[Ylm(x + Bτt )] =
∑
lm

almYlm(x)Ee−μlτt

=
∑
lm

almYlm(x )̃l(t, �(μl)) = Xt(x).

In the calculations above we used that alm are measurable w.r.t. FT , Bτt is independent
of FT , E[Ylm(x + Bτt )] = Ylm(x)Ee−μlτt (see [13]), and Ee−μlτt = Ee−μlF (Lt ) =
Ee−�(μl)Lt = l̃(t, �(μl)). The proof is concluded.

Remark 3. In the case where Lt is an inverse stable subordinator, that is, �(s) = sβ ,
the derivative D�

t becomes the C-D fractional derivative, l̃(t, μ) is given by the
Mittag-Leffler function l̃(t, μ) = Eβ(−tβμ), Theorem 1 reduces to first part of The-
orem 1 in [14]. From Theorem 2 it follows that some correction is needed for the
second part of Theorem 1 in [14]. Namely, the representation (3.9) therein should be
stated for γ = 0. Indeed, if γ �= 0, the same arguments as in the above proof of
Theorem 2 and the use of (4.8) will lead to the expression of Zt(x) in the following
form: Zt(x) = ∑

lm almYlm(x )̃l(t, μlγ + �(μl)). This expression differs form the
representation (4.2) for Xt(x) if γ �= 0.
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Remark 4. One particular case is � = �, that is, both space and time derivatives in
Equation (4.1) are related to the same Bernštein function.

Remark 5. Equation (4.1) can be considered, in particular, with the following frac-
tional diffusion operator

ψ(−�
S

2
1
) := (−�

S
2
1
)α/2(I − �

S
2
1
)γ /2, (4.13)

where ψ(t) := tα/2(1 + t)γ /2, α ∈ (0, 2], γ > 0, and the representation (4.2)
holds true. It should be noted that there is a Lévy subordinator with Laplace exponent
ψ(t) (see Theorem 2 in [3]). For the fractional operator (4.13) the eigenvalues are
ψ(μl) = μ

α/2
l (1 + μl)

γ/2 (see [12], pp. 119–120). Therefore, the representation of
the solution of the form (4.2) holds with such ψ(μl) inserted instead of �(μl).

Equation (4.1) can be considered for more general functions �, not only for
Bernštein functions. Indeed, the proof relies on two main facts given by (4.4) and
(4.5), that is, we need to know the eigenfunctions and eigenvalues for the operators.
However, if � is a Bernštein function, then it is possible to have a deeper insight into
the structure of the field Xt(x) and obtain not only its Karhunen–Loève expansion,
but also its representation as a coordinate-changed random field as stated in Theo-
rem 2.

Remark 6. The random field (4.2) obtained as solution to the fractional Cauchy prob-
lem (4.1) can serve to construct more involved models, in particular, can be used as an
initial condition for fractional SPDE (see, e.g., [2]). Possible further extensions can
be also achieved via introducing into the model (4.1) a driving (fractional) Brownian
noise, similarly to the studies undertaken in [2, 4].

Example. Consider the tempered stable subordinator H , with the Bernštein function

�(λ) = (λ + β)α − βα, α ∈ (0, 1), β > 0. (4.14)

The corresponding Lévy measure and its tail are given by the formulas

�(dz) = 1

�(1 − α)
αe−βzz−α−1dz; �(z) = 1

�(1 − α)
αβα�(−α, z),

correspondingly, where �(−α, z) = ∫ ∞
z

e−vv−α−1dv is the incomplete Gamma
function.

The generalized C-D convolution-type derivative (2.3) for �, given by (4.14),
becomes

D�
t u(t) = αβα

�(1 − α)

∫ t

0

∂

∂t
u(t − s)�(−α, s)ds. (4.15)

We can consider Equation (4.1) with such derivative in time, and then in the repre-
sentation of the solution (4.2) we will have the Laplace transform l̃(t, λ) of the density
of the inverse tempered stable subordinator, the formula of which is given, e.g., in [1].
As we can see from the results below, l̃(t, λ) appears also in the expressions for the
moments of the fields (4.2). Therefore, we obtain the model of random fields on the
sphere with different representation and different properties than that considered in
[14].
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The next result gives expressions for the higher-order moments of the solution
(4.2).

Proposition 2. For n ∈ N, the higher-order moments of (4.2) are given by

E[(Xt (x))n] =
∞∑

l1=0

· · ·
∞∑

ln=0

( n∏
j=1

l̃(t, γ + �(μlj ))
)√∏n

j=1(2lj + 1)

(4π)n
E[al10 · · · aln0].

(4.16)

Proof. We follow the proof of Proposition 1 in [13]. We have

E[(Xt (x))] =
∞∑

l1=0

· · ·
∞∑

ln=0

E

⎡⎣ n∏
j=1

Tlj (x) l̃(t, γ + �(μlj ))

⎤⎦ ,

where

E

⎡⎣ n∏
j=1

Tlj (x)

⎤⎦ =
+l1∑

m1=−l1

· · ·
+ln∑

mn=−ln

E[al1m1 · · · alnmn]
n∏

j=1

Ylj mj
(x).

Since the random field T is isotropic, we take advantage of the property that Tl(x)
law=

T (xN) where xN = (0, 0) is the North Pole and that Ylm(xN) = 0 for m �= 0 and
Yl0(xN) = √

(2l + 1)/4π (see [24]). We obtain that

E

⎡⎣ n∏
j=1

Tlj (x)

⎤⎦ =
√∏n

j=1(2lj + 1)

(4π)n
E[al10 · · · aln0].

By collecting all pieces together we get the claimed result.

Note, that E[(Xt (gx))n] = E[(Xt (x))n], ∀ g ∈ SO(3).

4.2 Angular power spectrum

Under isotropy, the harmonic coefficients {alm : l ≥ 0, |m| ≤ l} appearing in (3.1)
are such that the power spectrum {Cl = E|alm|2 : l ≥ 0} associated with the random
field T depends uniquely on the frequency l. The variance of T can be written as

E[T (x)]2 =
∞∑
l=0

2l + 1

4π
Cl for all x ∈ S

2
1, (4.17)

and thus, to ensure E[T (x)]2 < ∞, we can require, in particular, the power spectrum
to be such that Cl ∼ l−θ as l → ∞ with θ > 2. As we can see from (4.17), the
correlation structure of T is strictly related to the collection {Cl : l ≥ 0} of the
angular power spectrum.

An interesting review on the characterization of random fields on the sphere S
d ,

d ≥ 2, is given in [7]. The authors consider the Karhunen–Loève expansion in terms
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of spherical harmonics and Gegenbauer polynomials and discuss questions of inte-
grability and path-continuity in the (space) fractional case. Many authors focuse on
the connection between covariance structure, summability and regularity (see, e.g.,
[19] and references therein). Our next theorem is concerned with subordination of
random fields.

Theorem 3. For the representation (4.2) of the solution to (4.1) the following propo-
sitions hold:

(i) X0 ∈ Hs(S2
1), s > 3.

(ii) ∀ t ≥ 0

E[(Xt (x))2] =
∑

l

2l + 1

4π
Cl(t) =

∑
l

C∗
l (t), (4.18)

where C∗
l (t) ∼ (�(t))2l−θ−3, θ > 2, t > 0, if Cl ∼ l−θ , as l → ∞.

(iii) For the angular power spectrum we have that, for t ≥ 0, l ≥ 0, |m| ≤ l,

Cl(t) = E|alm(t)|2 ≤ Cl sup
σ∈(0,1)

�(1 + σ) (γ + �(μl))
−σ E[(Lt )

−σ ].

(iv) For x, y ∈ S2
1, t, s ≥ 0, for all g ∈ SO(3), we have that

E[Xt(gx)Xs(gy)] =
∑

l

2l + 1

4π
Cl (̃l(t, γ+�(μl))

)
(̃l(s, γ+�(μl))

)
Ql(〈x, y〉),

where Ql is given by (2.10), 〈x, y〉 = cos d(x, y) with d(x, y) being the spher-
ical distance between the points x, y.

Proof. (i) For the process Xt(x) introduced in the previous section we have that∣∣∣∣ (γ − �(−�
S

2
1
)
)

Xt(x)

∣∣∣∣ ≤
∑
lm

|al,m||γ + �(μl)||̃l(t, γ + �(μl))||Yl,m(x)|

≤
∑
lm

|al,m||γ + �(μl)||Yl,m(x)|

≤ |γ |
∑
lm

|al,m||Yl,m(x)| +
∑
lm

|al,m||�(μl)||Yl,m(x)|

and (recall that |Ylm| ≤ l1/2)∑
lm

E|al,m|2|Yl,m(x)|2 ≤
∑

l

2l + 1

4π
l Cl,

∑
lm

E|al,m|2|�(μl)|2|Yl,m(x)|2 ≤
∑

l

2l + 1

4π
|�(μl)|2 l Cl.

Thus, from (2.19), (3.5) we obtain
(
γ − �(−�

S
2
1
)
)
Xt(x) ∈ H2s(S2

1), 2s > 6.
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(ii)

E[(Xt (x))2] =
∑
l≥0

2l + 1

4π

(̃
l(t, γ + �(μl))

)2
Cl

is finite if ∀ t ,
(̃
l(t, γ + �(μl))

)2
Cl ∼ l−θ(γ ), with θ(γ ) > 2.

The angular power spectrum of Xt(x) can be written as

Cl(t) = ∣∣E[e−(γ+�(μl))Lt ]∣∣2
Cl

from which we get the Laplace transform

ϕ(λ, l) :=
∫ ∞

0
e−λt

√
Cl(t) dt = �(λ)

λ

√
Cl

γ + �(μl) + �(λ)
. (4.19)

If
√

Cl/�(μl) → d� ≥ 0 as l → ∞, then

ϕ(λ, l) → �(λ)

λ
d� =

∫ ∞

0
e−λt

(
d��(t)

)
dt as l → ∞,

where � has been defined in (2.2). Since �(μl) → ∞ as l → ∞, we get that

ϕ(λ, l) ∼ �(λ)

λ

√
Cl

�(l2)
=

∫ ∞

0
e−λt

( √
Cl

�(l2)
�(t)

)
dt.

Thus, we conclude that, for t > 0,

Cl(t) ∼
(

�(t)

�(l2)

)2

Cl.

(iii) We notice that

E[e−qLt ] =
∫ 1

0
P(e−qLt > s)ds ≤

∫ 1

0

E[f (e−qLt )]
f (s)

ds

for f nonnegative and nondecreasing in the set {e−qLt > s}. By choosing f (s) =
(− ln s)−σ , σ ∈ (0, 1), s ∈ (0, 1), we obtain

E[e−qLt ] ≤ E[(qLt )
−σ ]

∫ 1

0

ds

(− ln s)−σ
= q−σ �(1 + σ)E[(Lt )

−σ ].

From (4.19) we get the result.
(iv) The expression for the covariance is derived following the same arguments as in
[14], Theorem 3.

Remark 7. Let us consider the special case �(λ) = λβ and �(ξ) = ξα . First, we
have

Cl(t) ≤ �(1 + σ) (γ + (μl)
α)−σ E[(Lt )

−σ ]Cl.
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Since ∫ ∞

0
e−λtE[(Lt )

−σ ] dt = (�(λ))σ

λ
�(1 − σ) = �(1 − σ) λβσ−1,

we obtain that E[(Lt )
−σ ] = �(1−σ)

�(1−βσ)
t−βσ . Thus, ∀ t > 0,

Cl(t) ≤ Cl sup
σ

σπ

sin σπ
(γ + (μl)

α)−σ t−βσ

�(1 − βσ)
, l ≥ 0.

Remark 8 (High-resolution or high-frequency analysis). The convergence rate of
(4.17) depends on Cl , in particular, on the high-frequency behaviour of Cl and there-
fore, on the high-frequency resolution of T . In (3.1), Tl(x) = ∑

|m|≤l almYlm(x)

represents the l-th frequency component of T , and in real data, we get more and more
information (or resolution) as l increases. In physical experiments, when we mea-
sure, e.g., the CMB radiation, the power spectrum of the spherical random fields T

is usually unknown and we are interested in the empirical counterpart of the angu-
lar power spectrum (see [21]) Ĉl = 1

2l+1

∑+l
m=−l |alm|2. Thus, we may be interested

in the high-frequency consistency of {Ĉl : l ≥ 0} or the high-frequency ergodicity
of T . In the high-frequency analysis, the behavior of angular power spectrum of the
fields considered in this paper depends on � and � and, therefore, we introduce a
large class of models in which many important practical aspects can be captured.
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