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Abstract A new class of multidimensional locally perturbed random walks called random
walks with sticky barriers is introduced and analyzed. The laws of large numbers and functional
limit theorems are proved for hitting times of successive barriers.
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1 Introduction

A standard random walk formed by partial sums of independent identically dis-
tributed random vectors is one of the most simple, classical and well-studied discrete-
time random processes. Regarded as a Markov chain this process is time-homoge-
neous, meaning that its transition probabilities do not depend on time, and its in-
crements are space-homogeneous meaning that their distributions do not depend on
the current state of the process. There are many various generalizations of this basic
model leading to interesting and far-reaching theories. A whole class of such exten-
sions is provided by a notion of locally perturbed random walks. In a wide sense, a
locally perturbed random walk is a Markov chain whose transition probabilities co-
incide with the transition probabilities of some standard random walk only outside
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a given subset of a state space. The first model of this flavor is due to Harrison and
Shepp [5] who investigated simple random walk on Z with a perturbation at state 0.
That is, if the process is at state x ∈ Z \ {0} it jumps to x ± 1 with probabilities 1/2,
whereas from the state 0 it jumps to ±1 with probability p ∈ [0, 1] \ {1/2}. Their
main result says that the scaling limit of the locally perturbed random walk is a skew
Brownian motion, rather than a standard Brownian motion occurring in the case of a
simple symmetric random walk when p = 1/2. Recent results and generalizations of
this model can be found in [7, 9] and [10].

Another representative of the class of locally perturbed random walks is a planar
random walk in a semi-infinite strip studied in [2]. This model deals with a two-
dimensional random walk on Z

2 which behaves as a standard random walk before
hitting a horizontal line {(x, y) ∈ Z

2 : y = c} and afterwards the walk ‘sticks’
to that line and behaves as a one-dimensional random walk on that line. Thus, the
perturbation in that random walk is due to the presence of an impenetrable barrier that
changes the behavior of the walk when it is reached. In [2] such a process appeared
in the context of statistical analysis of the low inventory problem and, therefore, is of
purely applied nature. The main focus in [2] was put on the analysis of that model
when c → ∞. Motivated by the aforementioned study we introduce and analyze
in this note a new class of multidimensional locally perturbed random walks, which
we call random walks with sticky barriers (RWSB) and which generalizes the model
treated in [2].

Let d ∈ N be an integer which will remain fixed throughout the paper and denotes
the dimension of an underlying space. For a sequence bn := (b

(n)
1 , b

(n)
2 , . . . , b

(n)
d )n∈N

of Nd -valued vectors,2 introduce a sequence of lattice sets

Rn :=
(
[0, b

(n)
1 ] × [0, b

(n)
2 ] × · · · × [0, b

(n)
d ]

)
∩ N

d
0 ,

where N0 := N∪{0}. The random walk with sticky barriers (Sk(n))k∈N0 := (Sk)k∈N0

is a discrete-time Nd
0 -valued random process whose evolution can be described by the

following informal rules (a formal description will be given below):

• is starts at the origin, that is, S0 := 0;

• while staying inside Rn the process (Sk) evolves as the usual random walk with
independent identically distributed (i.i.d.) Nd

0 -valued increments;

• upon hitting one of the half-spaces

H(n)
i,≥ = {(x1, x2, . . . , xd) ∈ N

d
0 : xi ≥ b

(n)
i },

for some i = 1, . . . , d , the i-th coordinate of the process is set to be equal to
b

(n)
i forever, that is, the process ‘sticks’ to the corresponding hyperplane

H(n)
i := {(x1, x2, . . . , xd) ∈ N

d
0 : xi = b

(n)
i },

2Throughout this paper we use bold symbols to indicate multidimensional vectors and/or sets of vectors,
whereas regular font is used for one-dimensional objects.
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and evolves further as another random walk of a smaller dimension with i.i.d.
increments in the hyperplane H(n)

i until it hits the next barrier of the form H(n)
i,≥∩

H(n)
j,≥, for some i 	= j , and so on;

• the process terminates upon hitting the vertex (b
(n)
1 , b

(n)
2 , . . . , b

(n)
d ).

Note that the notion of RWSB is genuinely multidimensional and becomes almost
degenerate when d = 1. Thus, the simplest nontrivial situation occurs in dimension
two and from now on we always assume that d ≥ 2. As has already been mentioned,
in case d = 2 the concept of RWSB (in a slightly simplified variant with b

(n)
2 = ∞)

was proposed in [2] for the statistical analysis of a shared inventory problem with
two types of goods. This model, on the one hand, is rich enough to take into account
peculiarities of a finite inventory, but at the same time is simple enough to allow for
a closed form of many important statistical quantities related to the model, see [2]
for the details. Let us also stress that the model studied here, as well as its particular
case treated in [2], can easily be generalized to the nonlattice settings. That is, one
can easily drop the assumption that the increments are Nd

0-valued and define a RWSB
with state space R

d . Most of the results obtained in this paper hold also in this more
general settings upon necessary amendments.

The rest of the paper is organized as follows. In Section 2 we give a formal speci-
fication of the model by defining the process (Sk)k∈N0 and various related quantities.
The main results are given in Section 3 and divided into three parts: strong laws of
large numbers, asymptotic expansions for expectations and functional limit theorems.
The proofs are given in Section 4. In the Appendix we collected some basic facts from
renewal theory which is the main toolbox for our analysis.

We shall also use the following notational conventions. For a vector x = (x1,

x2, . . . , xd) ∈ N
d
0 we denote by |x| = |x1| + |x2| + · · · + |xd | its Manhattan norm.

We shall also use the notation x · y for the coordinatewise product of vectors, that is,
if y = (y1, y2, . . . , yd) ∈ N

d
0 , then x · y = (x1y1, x2y2, . . . , xdyd).

2 Formal description of the model

Let n ∈ N be a fixed integer. Denote by Bd := {0, 1}d the set of binary strings of
length d . The vector m = (m1,m2, . . . , md) ∈ Bd represents the already reached
barriers, that is, mi = 0, for some i = 1, . . . , d , if and only if a RWSB, to be
constructed below, did not yet reach the barrier b

(n)
i . Put B′

d := {0, 1}d \{1, 1, . . . , 1}.
Let (�,F ,P) be a fixed probability space, which we assume to be rich enough to
accommodate an array X(m)

k = (X
(m)
k,1 , X

(m)
k,2 , . . . , X

(m)
k,d ), m ∈ B′

d , k ∈ N, of mutually

independent Nd
0-valued random variables. For every fixed m ∈ B′

d , the variables

(X(m)
k )k∈N are assumed to be identically distributed and represent the increments of

the RWSB when it has hit barriers determined by m. A random walk with sticky
barriers is a Markov chain Sk := (Sk,1, Sk,2, . . . , Sk,d), k ∈ N0, that depends on the
parameter n, and which is defined formally by the recursive formula

S0 = 0, Sk+1 := min
{

Sk + X(Ik)
k+1−τ|Ik |(n), bn

}
, k ∈ N0, (1)
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where the minimum is taken coordinatewise, the binary vector

Bd � Ik := I(n)
k =

(
1{Sk,1=b

(n)
1 }, 1{Sk,2=b

(n)
2 }, . . . , 1{Sk,d=b

(n)
d }

)
, k ∈ N0, (2)

represents the barriers already reached before k-th step, and

τ0(n) := 0, τj (n) := inf{k ∈ N0 : |I(n)
k | ≥ j}, j = 1, . . . , d, (3)

are the moments at which (Sk) hits a new barrier.3 Note that, for every fixed n ∈ N,
(Sk) is indeed a Markov chain with the discrete state space Rn and the inhomogeneous
(in space) transition kernel

P{Sk = y|Sk−1 = x} = P{min(x + X(m(x)), bn) = y},
where m(x) :=

(
1{x1=b

(n)
1 }, 1{x2=b

(n)
2 }, . . . , 1{xd=b

(n)
d }

)
, x, y ∈ Rn,

and, for m ∈ Bd , X(m) = (X
(m)
1 , X

(m)
2 , . . . , X

(m)
d ) is a generic copy of the i.i.d.

variables X(m)
k , k ∈ N. By definition, τd(n) is the absorption time when the RWSB

hits bn and stays there forever. Furthermore, without loss of generality we can and do
assume in what follows that, for all k ∈ N and m ∈ Bd ,

P{X(m)
k,j = 0} = 1 for every j = 1, . . . , d such that mj = 1. (4)

Despite a formidable form, formula (1) has a simple interpretation that agrees with
the informal description given in the introduction. Namely, the evolution of (Sk)k∈N0

before the absorption time τd(n) is divided into disjoint parts. For every integer k <

τd(n) there is a unique index i = 0, . . . , d − 1, such that k ∈ [τi(n), τi+1(n)). Thus,
using that Ik = Iτi (n) and |Ik| = i if k ∈ [τi(n), τi+1(n)), and denoting l := k−τi(n),
we can write

Sτi (n)+l+1 = min
{

Sτi (n)+l + X
(Iτi (n))

l+1 , bn

}
, 0 ≤ l ≤ τi+1(n) − τi(n) − 1. (5)

Moreover, by definition of τi+1(n) and in view of assumption (4), the minimum above
can be dropped if 0 ≤ l ≤ τi+1(n) − τi(n) − 2. Thus,

Sτi (n)+l+1 = Sτi (n)+l + X
(Iτi (n))

l+1 , 0 ≤ l < τi+1(n) − τi(n) − 1,

which means that, for every i = 0, . . . , d − 1, the process (Sτi (n)+l − Sτi (n)) is the
standard zero-delayed random walk on the time interval 0 ≤ l < τi+1(n)− τi(n)− 1.
We also emphasize that in our definition of (Sk) the numeration of increments starts
afresh from 1 on each time interval [τi(n), τi+1(n)).

Another useful representation of (Sk) is

Sk = min

⎛⎝d−1∑
i=0

min(τi+1(n),k)−1∑
j=τi (n)

X
(Iτi (n))

j+1−τi (n), bn

⎞⎠ , k ∈ N0. (6)

3The sign ≥ in the definition of τj is used since the RWSB, in principle, could hit several barriers
simultaneously at a single jump. In this case, several consequent τj attain the same value.
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Indeed, (1) yields, for k ≤ τd(n),

Sk = min

⎧⎨⎩
∞∑

j=0

X
(Ij )

j+1−τ|Ij |(n)1{j<k}, bn

⎫⎬⎭
= min

⎧⎨⎩
∞∑

j=0

d−1∑
i=0

1{τi (n)≤j<min(τi+1(n),k)}X
(Ij )

j+1−τ|Ij |(n), bn

⎫⎬⎭
= min

⎧⎨⎩
d−1∑
i=0

∞∑
j=0

1{τi (n)≤j<min(τi+1(n),k)}X
(Iτi (n))

j+1−τi (n), bn

⎫⎬⎭ ,

which is the right-hand side of (6).
Throughout the paper we shall make the following assumptions on the distribution

of X(m) and use the following notation. By E we denote expectation with respect to
the probability measure P. We suppose that, for every m ∈ B′

d , it holds

μ(m) = (μ
(m)
1 , μ

(m)
2 , . . . , μ

(m)
d ) :=

(
EX

(m)
1 ,EX

(m)
2 , . . . ,EX

(m)
d

)
∈ [0,∞)d

and EX
(m)
i > 0 if mi = 0, i = 1, . . . , d; (7)

and
v

(m)
i,i := Var (X

(m)
i ) ∈ (0,∞) if mi = 0, i = 1, . . . , d. (8)

We now state the assumptions on the sequence of barriers (bn). We assume that
there exist pairwise distinct positive numbers ρ1, . . . , ρd such that, for every fixed
λ > 0,

lim
n→∞

b
(
nλ�)
i

b
(n)
i

= λρi , i = 1, . . . , d, (9)

that is, the sequence (b
(n)
i )n∈N is regularly varying with index ρi , for every i =

1, . . . , d . See [1] for the comprehensive information on regularly varying functions
and sequences. Note that without loss of generality we may assume that 0 < ρ1 <

ρ2 < · · · < ρd , since we can always permute the coordinates of all involved vari-
ables to achieve the desired order of indices ρi’s. Thus, from now on we suppose
additionally that

0 < ρ1 < ρ2 < · · · < ρd < ∞. (10)

We shall also occasionally allow the sequence (bn)n∈N to be random. In this case
we shall assume that the barriers and the steps of the corresponding RWSB are in-
dependent and that the limit relation (9) holds almost surely for some deterministic
ρ1, . . . , ρd , which, therefore, can again be arranged in the increasing order.

3 Main results

Let {e1, e2, . . . , ed} denote the standard unit basis of Rd and put

s0 = e0 := 0, sk :=
k∑

j=1

ej , k = 1, . . . , d.
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3.1 Strong laws of large numbers

Our first main result is a uniform strong law of large numbers for the differences
τj − τj−1 and positions of the RWSB upon hitting the barriers.

Theorem 1. Assume that (bn)n∈N ⊂ N
d is a (possibly random) sequence of barriers

such that (9) holds for some deterministic ρj , j = 1, . . . , d , satisfying (10). Suppose

also that (bn)n∈N and (X(m)
k ) are independent. Then, for every j = 1, . . . , d and

a > 0, it holds

sup
t∈(0, a]

∣∣∣∣∣∣τj (
nt�) − τj−1(
nt�)
b

(n)
j

− tρj

μ
(sj−1)

j

∣∣∣∣∣∣ a.s.−→
n→∞ 0, (11)

and

sup
t∈(0, a]

∣∣∣∣∣∣Sτj (
nt�)
b

(n)
j

− tρj

μ
(sj−1)

j

(sd − sj−1) · μ(sj−1)

∣∣∣∣∣∣ a.s.−→
n→∞ 0. (12)

Furthermore,

|I(n)
τj (n)

− sj | a.s.−→
n→∞ 0, (13)

that is, for all j = 1, . . . , d ,

P{ there exists n0 ∈ N such that I(n)
τj (n) = sj for all n ≥ n0} = 1. (14)

Remark 1. The relation (14) says, in essence, that RWSB hits the barriers in a pre-
scribed order: first b

(n)
1 , then b

(n)
2 , and so on. This is not surprising in view of our

assumption (10) on the rate of growth of barriers.

Fix l = 1, . . . , d . Replacing, for j = 1, . . . , l − 1, the denominators in (11) by

b
(n)
l and the limits tρj /μ

(sj−1)

j by zeros, and summing over all j = 1, . . . , l yields
the following corollary, which, in particular, provides the uniform strong law of large
numbers for the absorption time of the RWSB when l = d .

Corollary 1. Under the assumptions on Theorem 1, for l = 1, . . . , d ,

sup
t∈(0, a]

∣∣∣∣∣τl(
nt�)
b

(n)
l

− tρl

μ
(sl−1)

l

∣∣∣∣∣ a.s.−→
n→∞ 0.

In particular, the absorption time satisfies

sup
t∈(0, a]

∣∣∣∣∣τd(
nt�)
b

(n)
d

− tρd

μ
(sd−1)

d

∣∣∣∣∣ a.s.−→
n→∞ 0.

Remark 2. All the claims of Theorem 1 and Corollary 1 hold without the second-
moments assumption (8).



Random walks with sticky barriers 251

3.2 Expectations

The exact calculation of Eτj (n) and ESτj (n) seems to be overly complicated. How-
ever, we have been able to prove the following result.

Proposition 1. For j = 1, . . . , d , it holds

E
(
τj (n) − τj−1(n)|Iτj−1(n) = sj−1

)
= b

(n)
j − E

(
Sτj−1(n),j |Iτj−1(n) = sj−1

)
μ

(sj−1)

j

+ O(1), n → ∞; (15)

and, for l = j, . . . , d ,

E
(
Sτj (n),l − Sτj−1(n),l |Iτj−1(n) = sj−1

)
=

μ
(sj−1)

l

(
b

(n)
j − E

(
Sτj−1(n),j |Iτj−1(n) = sj−1

))
μ

(sj−1)

j

+ O(1), n → ∞. (16)

In particular,

Eτ1(n) = b
(n)
1

μ
(0)
1

+ O(1), n → ∞, (17)

and, for l = 2, . . . , d ,

ESτ1(n),l = μ
(0)
l b

(n)
1

μ
(0)
1

+ O(1), n → ∞. (18)

Note that by (13),

E
(
Sτj−1(n),j |Iτj−1(n) = sj−1

) ≤ ESτj−1(n),j

P{Iτj−1(n) = sj−1} ∼ ESτj−1(n),j , n → ∞,

and ESτj−1(n),j = O(b
(n)
j−1) = o(b

(n)
j ), as n → ∞, for j = 2, . . . , d , as can be easily

checked by the stochastic comparison argument. Thus, we obtain the following.

Corollary 2. For j = 1, . . . , d , it holds

E
(
τj (n) − τj−1(n)|Iτj−1(n) = sj−1

) ∼ b
(n)
j

μ
(sj−1)

j

, n → ∞; (19)

and, for l = j, . . . , d ,

E
(
Sτj (n),l − Sτj−1(n),l |Iτj−1(n) = sj−1

) ∼ μ
(sj−1)

l b
(n)
j

μ
(sj−1)

j

, n → ∞. (20)
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3.3 Functional limit theorems

Fix 0 < a < b < ∞. In what follows we denote by
d=⇒

n→∞ the convergence in distri-

bution in the Skorokhod space D[a, b] endowed with the standard J1-topology.

Theorem 2. For every j = 1, . . . , d , the following holds true:⎛⎜⎜⎝
τj (
nt�) − τj−1(
nt�) − 1

μ
(sj−1)

j

(b
(
nt�)
j − E(Sτj−1(
nt�),j |An,j−1(a)))

(μ
(sj−1)

j )−3/2(v
(sj−1)

j,j b
(n)
j )1/2

⎞⎟⎟⎠
t∈[a, b]

d=⇒
n→∞ (B(tρj ))t∈[a, b],

(21)

where B = (B(t))t≥0 is the standard Brownian motion and the events An,j−1(a) are
defined in (32) below. Moreover, if 2ρj−1 < ρj , then⎛⎝τj (
nt�) − τj−1(
nt�) − (μ

(sj−1)

j )−1b
(
nt�)
j

(μ
(sj−1)

j )−3/2(v
(sj−1)

j,j b
(n)
j )1/2

⎞⎠
t>0

d=⇒
n→∞ (B(tρj ))t>0 (22)

in the Skorokhod space D(0,∞) endowed with the standard J1-topology.

Remark 3. We do not know whether the conditional expectation

E(Sτj−1(
nt�),j |An,j−1(a))

in the centering in (21) can be replaced by its unconditional counterpart without extra
assumptions. Even though limn→∞ P{An,j−1(a)} = 1, we do not even know whether

E(Sτj−1(n),j |An,j−1(a)) ∼ ESτj−1(n),j , n → ∞,

since we do not have a sufficient control over the behavior of Sτj−1(n) on the comple-
ment event Ac

n,j−1(a).

4 Proofs

Let us introduce some additional notation. For m ∈ B′
d , let

S(m)
0 = 0, S(m)

k = S(m)
k−1 + X(m)

k , k ∈ N,

be a standard zero-delayed random walk. Further, for A ⊂ N
d
0 , set

σ (m)(A) :=
{

inf{k ∈ N0 : S(m)
k ∈ A}, if S(m)

k ∈ A for some k ∈ N0;
+∞, otherwise.

For every fixed m ∈ Bd , let πm : Rd �→ R
d−|m| be the projection mapping which

removes coordinates of x ∈ R
d with indices i = 1, . . . , d such that mi = 1. For

example,

πej
(x1, x2, . . . , xd) = (x1, . . . , xj−1, xj+1, . . . , xd), (x1, x2, . . . , xd) ∈ R

d,
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and
πsj (x1, x2, . . . , xd) = (xj+1, . . . , xd), (x1, x2, . . . , xd) ∈ R

d,

for j = 0, . . . , d .
The following simple observation lies in the core of all subsequent proofs.

Proposition 2. Fix j = 1, . . . , d and let the process (S→j
k )k∈N0 be defined by the

equality

S→j
k := πIτj−1(n)

(Sk+τj−1(n) − Sτj−1(n)), k ∈ N0, j = 1, . . . , d. (23)

Given that {Iτj−1(n) = y} for some y ∈ B′
d , the process (S→j

k ) is a random walk with
(random) sticky barriers in the space Z

d−j+1 with the barrier defined by

b→j
n := πy(bn − Sτj−1(n)), n ∈ N, j = 1, . . . , d. (24)

Proof. Fix j = 1, . . . , d . We are going to show that (S→j
k ) satisfies a version of (1).

Substituting in (1) k �→ k+τj−1(n), subtracting Sτj−1(n) from both sides and applying
the linear mapping πIτj−1(n)

yield

S→j
k+1 = min

(
S→j

k + πIτj−1(n)

(
X

(Ik+τj−1(n))

k+1+τj−1(n)−τ|Ik+τj−1(n)|(n)

)
, b→j

n

)
. (25)

In order to simplify the above expression, put

I→j
k =

(
1{S→j

k,1 =b
→j
n,1 }, 1{S→j

k,2 =b
→j
n,2 }, . . . , 1{S→j

k,d−j+1=b
→j
n,d−j+1}

)
, k ∈ N0,

and note that
πIτj−1(n)

(Ik+τj−1(n)) = I→j
k , k ∈ N0, (26)

as well as
|Ik+τj−1(n)| = |I→j

k | + (j − 1), k ∈ N0. (27)

Similarly to (3), put

τ
→j

0 (n) := 0, τ
→j
i (n) := inf{k ∈ N0 : |I→j

k | ≥ i}, i = 1, . . . , d − j + 1.

In view of (26) it holds

τ
→j
i (n) = inf{k ∈ N0 : |πIτj−1(n)

(Ik+τj−1(n))| ≥ i}
= inf{k ∈ N0 : |Ik+τj−1(n)| ≥ i + j − 1} (27)= τi+j−1(n) − τj−1(n). (28)

Putting things together we see that (25) can be recast as

S→j
k+1 = min

⎛⎝S→j
k + πIτj−1(n)

⎛⎝X
(I→j

k )

k+1−τ
→j

|I→j
k

|
(n)

⎞⎠ , b→j
n

⎞⎠ .
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This shows that (S→j
k ) is indeed a random walk with sticky barriers in the space

Z
d−j+1. It remains to note that given {Iτj−1(n) = y} the increments

πIτj−1(n)

⎛⎝X
(I→j

k )

k+1−τ
→j

|I→j
k

|
(n)

⎞⎠ = πy

⎛⎝X
(I→j

k )

k+1−τ
→j

|I→j
k

|
(n)

⎞⎠ , k ∈ N0, (29)

are independent of the random barrier b→j
n .

We shall now briefly describe our proof strategy. In accordance with (28), for
every n ∈ N and j = 1, . . . , d ,

τj (n) − τj−1(n) = τ
→j
1 (n), (30)

and, further,
Sτj (n) − Sτj−1(n) = S→j

τ
→j
1 (n)

. (31)

The most important properties of the RWSB (S→j
k )k∈N0 are:

(i) a.s. regular variation of the barriers (b→j
n )n∈N, which will be proved later on,

see formula (38) below;

(ii) the barriers b→j
n , conditional on the event {Iτj−1(n) = y}, are independent of

the increments (29) of (S→j
k )k∈N0 .

In conjunction with the fact that the event {Iτj−1(n) = y} for a particular deterministic
y = sj−1 has probability tending to one, see (32) and (33) below, equations (30)
and (31) demonstrate how to reduce the analysis of τj (n) − τj−1(n) and Sτj (n) −
Sτj−1(n), for arbitrary j = 1, . . . , d , to the analysis of the hitting time of the first

barrier by the RWSB (S→j
k )k∈N0 . In order to quantify the above statement, for every

fixed a > 0, j = 0, . . . , d − 1 and n ∈ N, define events

An,0(a) := �, An,j (a) := {Iτl (
nt�) = sl for all t ≥ a and all l = 1, . . . , j}. (32)

We shall see below that

P{lim inf
n→∞ An,j (a)} = 1, j = 0, . . . , d − 1. (33)

4.1 Proof of Theorem 1

We start by recalling the following consequence of (9), which is called uniform con-
vergence theorem for regularly varying functions, see Theorem 1.5.2 in [1]. If (9)
holds for ρi > 0, then, for every T > 0,

lim
n→∞ sup

λ∈(0,T ]

∣∣∣∣∣b
(
nλ�)
i

b
(n)
i

− λρi

∣∣∣∣∣ = 0, i = 1, . . . , d. (34)

In order to prove Theorem 1 we shall use Proposition 2 and induction on j =
1, . . . , d .
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Base of induction. We shall prove (11), (12) and (13) for j = 1. To this end, recall
the notation

H(n)
i,≥ = {(x1, x2, . . . , xd) ∈ N

d
0 : xi ≥ b

(n)
i }, i = 1, . . . , d, n ∈ N

d,

and note that

τ1(n) = min{σ (0)(H(n)
1,≥), σ (0)(H(n)

2,≥), . . . , σ (0)(H(n)
d,≥)}, n ∈ N. (35)

By the functional strong law of large numbers for the ordinary renewal process ap-
plied to the projections of (S(0)

k ) onto the coordinate axes, see (52) below, in conjunc-
tion with (34),

sup
t∈(0, a]

∣∣∣∣∣∣σ
(0)(H(
nt�)

j,≥ )

b
(n)
j

− tρj

μ
(0)
j

∣∣∣∣∣∣ a.s.−→
n→∞ 0, j = 1, . . . , d, (36)

for all 0 < a < b.
In view of (35), and taking into account (10), we obtain (11) for j = 1. In order

to check (13) we note that

{I(n)
τ1(n) = s1} = {τ1(n) = σ (0)(H(n)

1,≥), σ (0)(H(n)
1,≥) < σ (0)(H(n)

j,≥), j = 2, . . . , d}.

By (36), there exists a (random) n0 ∈ N and an event �′ ⊂ � such that P{�′} = 1
and on �′

σ (0)(H(n)
1,≥)

σ (0)(H(n)
j,≥)

≤ 1/2, n ≥ n0, j = 2, . . . , d.

Thus, (13) follows. For the proof of (12) in case j = 1 we write

Sτ1(n)1{I(n)
τ1(n)

=s1} = min

(
S(0)

σ (0)(H(n)
1,≥)

1{I(n)
τ1(n)

=s1}, bn

)
.

By the functional strong law of large numbers applied to (S(0)
k ), see (52) below, for

every T > 0,

sup
t∈[0, T ]

∣∣∣∣∣∣∣
S(0)


b(n)
1 t�

b
(n)
1

− μ(0)t

∣∣∣∣∣∣∣
a.s.−→

n→∞ 0.

By taking superposition of this relation and (36) with j = 1 we see that, for every
a > 0,

sup
t∈(0, a]

∣∣∣∣∣∣∣
S(0)

σ (0)(H(
nt�)
1,≥ )

b
(n)
1

− μ(0) tρ1

μ
(0)
1

∣∣∣∣∣∣∣
a.s.−→

n→∞ 0. (37)

Taking into account the already proved relation (13) for j = 1, we see that (12) holds
for j = 1.



256 V. Bohun, A. Marynych

Step of induction. By the induction assumption we can pick a (random) n0,j ∈ N

such that Iτj−1(n) = sj−1 for all n ≥ n0,j . According to Proposition 2 for the passage

from j − 1 to j we only need to check that the coordinates of b→j
n are a.s. regu-

larly varying with deterministic indices of regular variation forming an increasing
sequence. For n ≥ n0,j ,

b→j
n = (b

(n)
j − Sτj−1(n),j , . . . , b

(n)
d − Sτj−1(n),d ).

Furthermore, by (12) and using the induction hypothesis, we obtain

b
(
nλ�)
k − Sτj−1(
λn�),k
b

(n)
k − Sτj−1(n),k

= b
(
nλ�)
k − Sτj−1(
λn�),k

b
(n)
k

b
(n)
k

b
(n)
k − Sτj−1(n),k

a.s.−→
n→∞ λρk , k = j, . . . , d, (38)

where we have used that

b
(n)
j−1

b
(n)
k

→ 0, n → ∞, k = j, . . . , d,

in view of (10). The proof of Theorem 1 is complete.
Note that (33) follows immediately from (13).

4.2 Proof of Proposition 1
We start with an auxiliary lemma.

Lemma 1. Let (ξk, ηk)k∈N be a sequence of independent copies of a random vec-
tor (ξ, η) with finite second moments and such that Eξ > 0. Let f be an arbitrary
function such that limn→∞ f (n) = +∞. Then

lim sup
n→∞

∞∑
k=1

P{ξ1 + · · · + ξk ≤ n, η1 + · · · + ηk ≥ nf (n)} < ∞.

Proof. Pick δ > 0 so small that Eξ − δEη > 0. There exists n0 ∈ N such that
δf (n) ≥ 1, for all n ≥ n0. Thus,

∞∑
k=1

P{ξ1 + · · · + ξk ≤ n, η1 + · · · + ηk ≥ nf (n)}

=
∞∑

k=1

P{ξ1 + · · · + ξk ≤ n, (−δη1) + · · · + (−δηk) ≤ −nδf (n)}

≤
∞∑

k=1

P{ξ1 + · · · + ξk ≤ n, (−δη1) + · · · + (−δηk) ≤ −n}

≤
∞∑

k=1

P{(ξ1 − δη1) + · · · + (ξk − δηk) ≤ 0}.

The last series is convergent by Theorem 1 in [8], since E(ξ − δη)2 < ∞ and Eξ −
δEη > 0.
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Proof of Proposition 1. In view of Proposition 2 we only need to check the case
j = 1. In this case we can write by (35)

Eτ1(n) =
∞∑

k=1

P{τ1(n) ≥ k}

=
∞∑

k=1

P{σ (0)(H(n)
1,≥) ≥ k, σ (0)(H(n)

2,≥) ≥ k, . . . , σ (0)(H(n)
d,≥) ≥ k}

= Eσ (0)(H(n)
1,≥)

−
∞∑

k=1

P{σ (0)(H(n)
1,≥) ≥ k, σ (0)(H(n)

j,≥) < k for some j = 2, . . . , d}.

As it has already been mentioned, the quantity σ (0)(H(n)
1,≥) is the first-passage time

to the set [b(n)
1 ,+∞) for the ordinary one-dimensional random walk. By Lorden’s

inequality, see (51) below, we obtain

Eσ (0)(H(n)
1,≥) = b

(n)
1

μ
(0)
1

+ O(1), n → ∞.

The remaining sum can be estimated as

∞∑
k=0

P{σ (0)(H(n)
1,≥) > k, σ (0)(H(n)

j,≥) ≤ k, for some j = 2, . . . , d}

≤
d∑

j=2

∞∑
k=0

P{σ (0)(H(n)
1,≥) > k, σ (0)(H(n)

j,≥) ≤ k}

=
d∑

j=2

∞∑
k=0

P{S(0)
k,1 < b

(n)
1 , S

(0)
k,j ≥ b

(n)
j }.

By Lemma 1 the last sum is O(1), since b
(n)
j /b

(n)
1 → +∞, as n → ∞, for j =

2, . . . , d .
For the calculation of ESτ1(n) we note that

ESτ1(n) = Emin(S(0)
τ1(n)

, bn) = ES(0)
τ1(n)

− Emax(S(0)
τ1(n)

− bn, 0).

In view of formula (35) τ1(n) is the stopping time with respect to the filtration Fk :=
σ({X(0)

1 , . . . , X(0)
k }), k ∈ N0. Thus, by Wald’s first identity

ES(0)
τ1(n) = μ(0)

Eτ1(n). (39)

It remains to check that, for every l = 2, . . . , d ,

Emax(S
(0)
τ1(n),l − b

(n)
l , 0) = O(1), n → ∞. (40)
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Note that

Emax(S
(0)
τ1(n),l

− b
(n)
l , 0) = E(S

(0)
τ1(n),l

− b
(n)
l )1{τ1(n)=σ (0)(H

(n)
l,≥)}

≤ E(S
(0)

σ (0)(H
(n)
l,≥),l

− b
(n)
l ).

The term under the expectation is the overshoot of a standard one-dimensional ran-
dom walk. Since we assume E(X

(0)
l )2 < ∞, this expectation is bounded, see (54)

below. Combining (39) and (40) we obtain (18).

4.3 Proof of Theorem 2

Throughout the proof we shall frequently use the following simple observation. As-
sume that a sequence of events (Bn) satisfies

lim
n→∞P{Bn} = 1.

Then for an arbitrary event A, it holds

P{A ∩ Bn} = P{A} + o(1) and P{A|Bn} = P{A} + o(1), n → ∞.

We need the following auxiliary result.

Lemma 2. Let a(n) be an arbitrary sequence such that

lim
n→∞

b
(n)
1

a(n)
= 0.

Then, for every j = 2, . . . , d , it holds(
Sτ1(
nt�),j − ESτ1(
nt�),j√

a(n)

)
t>0

d=⇒
n→∞ (�(t))t>0, (41)

where �(t) ≡ 0, for t ≥ 0.

Proof. According to (18) it is enough to check that⎛⎝Sτ1(
nt�),j − (μ
(0)
1 )−1μ

(0)
j b

(
nt�)
1√

a(n)

⎞⎠
t>0

d=⇒
n→∞ (�(t))t>0.

Fix 0 < a < b and denote the quantity within the parentheses on the left-hand side
of the last relation by S̃1(n, j, t). We have

P{(S̃1(n, j, t))t∈[a, b] ∈ ·} = P{(S̃1(n, j, t))t∈[a, b] ∈ ·|An,1(a)}P{An,1(a)}
+ P{(S̃1(n, j, t))t∈[a, b] ∈ ·|Ac

n,1(a)}P{Ac
n,1(a)},

where An,1(a) is defined by (32) with j = 1, and Ac
n,1(a) denotes the complement of

An,1(a). Since
lim

n→∞P{An,1(a)} = 1,
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in view of (33), we see that, as n → ∞,

P{(S̃1(n, j, t))t∈[a, b] ∈ ·} = P{(S̃1(n, j, t))t∈[a, b] ∈ ·|An,1(a)} + o(1).

Clearly,

P{(S̃1(n, j, t))t∈[a, b] ∈ ·|An,1(a)}

= P

⎧⎨⎩
⎛⎝min(S

(0)
τ1(
nt�),j , b

(
nt�)
j ) − (μ

(0)
1 )−1μ

(0)
j b

(
nt�)
1√

a(n)

⎞⎠
t∈[a, b]

∈ ·
∣∣∣An,1(a)

⎫⎬⎭
= P

⎧⎪⎨⎪⎩
⎛⎜⎝min(S

(0)

σ (0)(H(
nt�)
1,≥ ),j

, b
(
nt�)
j ) − (μ

(0)
1 )−1μ

(0)
j b

(
nt�)
1

√
a(n)

⎞⎟⎠
t∈[a, b]

∈ ·
∣∣∣An,1(a)

⎫⎪⎬⎪⎭ .

Thus, in view of (37),

P{(S̃1(n, j, t))t∈[a, b] ∈ ·|An,1(a)}

= P

⎧⎪⎨⎪⎩
⎛⎜⎝S

(0)

σ (0)(H(
nt�)
1,≥ ),j

− (μ
(0)
1 )−1μ

(0)
j b

(
nt�)
1

√
a(n)

⎞⎟⎠
t∈[a, b]

∈ ·
∣∣∣An,1(a)

⎫⎪⎬⎪⎭ + o(1)

= P

⎧⎪⎨⎪⎩
⎛⎜⎝S

(0)

σ (0)(H(
nt�)
1,≥ ),j

− (μ
(0)
1 )−1μ

(0)
j b

(
nt�)
1

√
a(n)

⎞⎟⎠
t∈[a, b]

∈ ·

⎫⎪⎬⎪⎭ + o(1).

The claim now follows from the continuous mapping theorem. Indeed, as a conse-
quence of Donsker’s invariance principle,⎛⎜⎝S

(0)


b(n)
1 u�,j − μ

(0)
j b

(n)
1 u

√
a(n)

⎞⎟⎠
u≥0

d=⇒
n→∞ (�(u))u≥0, (42)

whereas, by formula (46) below,(
σ (0)(H(
nt�)

1,≥ ) − (μ
(0)
1 )−1b

(
nt�)
1√

a(n)

)
t>0

d=⇒
n→∞ (�(t))t>0. (43)

Applying the continuous mapping

D(0,∞) × D(0,∞) × D(0,∞) � (f, g, h) �→ f ◦ h + g ∈ D(0,∞)

to the relations (42), (43) and (36) (with j = 1), we obtain (41).
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Proof of Theorem 2. We shall first prove that⎛⎝τj (
nt�) − τj−1(
nt�) − (μ
(sj−1)

j )−1(b
(
nt�)
j − Sτj−1(
nt�),j )

(μ
(sj−1)

j )−3/2(v
(sj−1)

j,j b
(n)
j )1/2

⎞⎠
t>0

d=⇒
n→∞ (B(tρj ))t>0 (44)

with the random term Sτj−1(
nt�),j in the centring instead of its conditional expectation
E(Sτj−1(
nt�),j |An,j−1(a)).

We argue as in the proof of Lemma 2. Fix 0 < a < b. Denote the left-hand side
of (44) by τ̃n,j (t) and write

P{(̃τn,j (t))t≥a ∈ ·} = P{(̃τn,j (t))t≥a ∈ ·|An,j−1(a)}P{An,j−1(a)}
+ P{(̃τn,j (t))t≥a ∈ ·|Ac

n,j (a)}P{Ac
n,j (a)},

where An,j−1(a) is defined by (32). By (33)

lim
n→∞P{An,j−1(a)} = 1,

and, thereupon,

P{(̃τn,j (t))t≥a ∈ ·}

= P

⎧⎨⎩
⎛⎝τ

→j
1 (
nt�) − (μ

(sj−1)

j )−1(b
(
nt�)
j − Sτj−1(
nt�),j )

(μ
(sj−1)

j )−3/2(v
(sj−1)

j,j b
(n)
j )1/2

⎞⎠
t≥a

∈ ·
∣∣∣An,j−1(a)

⎫⎬⎭
+ o(1), n → ∞.

According to Proposition 2 and taking into account (38), only the case j = 1 has to
be checked, that is, we need to prove that(

τ1(
nt�) − (μ
(0)
1 )−1b

(
nt�)
1

(μ
(0)
1 )−3/2(v

(0)
1,1b

(n)
1 )1/2

)
t≥a

d=⇒
n→∞ (B(tρ1))t≥a. (45)

In view of (13), (45) is equivalent to(
σ (0)(H(
nt�)

1,≥ ) − (μ
(0)
1 )−1b

(
nt�)
1

(μ
(0)
1 )−3/2(v

(0)
1,1b

(n)
1 )1/2

)
t≥a

d=⇒
n→∞ (B(tρ1))t≥a, (46)

which is a simple consequence of the continuity of composition operation applied to
the functional limit theorem for the renewal process, see (53) below, and the uniform
convergence (34) for j = 1. This finishes the proof of (44).

It remains to check that, for every j = 1, . . . , d ,⎛⎜⎝Sτj−1(
nt�),j − E(Sτj−1(
nt�),j |An,j−1(a))√
b

(n)
j

⎞⎟⎠
t≥a

d=⇒
n→∞ (�(t))t≥a. (47)
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For j = 1 this is trivial, since the numerator is identically zero in this case. Assume
that j ≥ 2 and write

Sτj−1(
nt�),j − E(Sτj−1(
nt�),j |An,j−1(a))√
b

(n)
j

=
j−1∑
l=1

(Sτl(
nt�),j − Sτl−1(
nt�),j ) − E

(
(Sτl(
nt�),j − Sτl−1(
nt�),j )

∣∣∣An,j−1(a)
)

√
b

(n)
j

=
j−1∑
l=1

S→l

τ→l
1 (
nt�),j−l+1

− E

(
S→l

τ→l
1 (
nt�),j−l+1

∣∣∣An,j−1(a)

)
√

b
(n)
j

. (48)

We shall show that every summand here converges to (�(t))t≥a , as n → ∞. Note
that, for j > l,

b
(n)
l − Sτl−1(
nt�),j

b
(n)
j

a.s.−→
n→∞ 0. (49)

For j = 2, . . . , d and l = 1, . . . , j − 1, we can write using (31)

P{(Sτl (
nt�) − Sτl−1(
nt�))t≥a ∈ ·} = P{(S→l

τ→l
1 (
nt�))t≥a ∈ · , An,j−1(a)} + o(1).

By Proposition 2 on the event An,j−1(a) ⊆ An,l(a) the process (S→l

τ→l
1 (
nt�))t≥a is a

RWSB with a structure specified therein. Since

lim
n→∞P{An,j−1(a)} = 1,

taking into account (49) we can apply Lemma 2 with a(n) = b
(n)
j to obtain, for j > l,

P

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝S→l

τ→l
1 (
nt�),j−l+1

− E

(
S→l

τ→l
1 (
nt�),j−l+1

∣∣∣An,j−1(a)

)
√

b
(n)
j

⎞⎟⎟⎠
t≥a

∈ ·
∣∣∣An,j−1(a)

⎫⎪⎪⎬⎪⎪⎭
→ P

{
(�(t))t≥a ∈ ·} , n → ∞.

Note that the conditional expectation pops up because we apply Lemma 2 with respect
to the conditional probability measure P{·|An,j−1(a)}. Therefore, all summands in
the right-hand side of (48) converge to (�(t))t≥a , as n → ∞. This proves (47) and
finishes the proof of (21). If 2ρj−1 < ρj , then (22) holds, since

lim
n→∞ sup

t∈[a,b]
E(Sτj−1(
nt�),j |An,j−1(a))√

b
(n)
j

≤ lim
n→∞ sup

t∈[a,b]
ESτj−1(
nt�),j

P{An,j−1(a)}
√

b
(n)
j

= 0,

which follows from ESτj−1(
nt�),j = O(b
(n)
j−1), as n → ∞. The proof of Theorem 2

is complete.
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A Appendix

For the ease of reference we collect here some classical renewal-theoretic results
which have been used throughout the proofs. Section 6.2 of the recent book [6] is an
excellent source on this topic.

Let (ξk)k∈N be a sequence of independent copies of a nonnegative random vari-
able ξ . Put

m := Eξ > 0, v2 := Var ξ > 0,

and, further, T0 := 0,

Tk := ξ1 + ξ2 + · · · + ξk, k ∈ N, ν(t) := inf{k ∈ N0 : Tk > t}, t ≥ 0.

The function

U(t) := Eν(t) =
∞∑

k=0

P{Tk ≤ t}, t ≥ 0,

is called the renewal function. Note that ν(t) is the stopping time with respect to the
natural filtration of (Tk)k∈N0 . In particular, by Wald’s identity

t ≤ ETν(t) = mU(t), t ≥ 0.

If m ∈ (0,∞), then

U(t) ∼ t

m
, t → ∞. (50)

If, further, Eξ2 < ∞, then

t

m
≤ U(t) ≤ t

m
+ Eξ2

m2 , t ≥ 0. (51)

The relation (50) is called elementary renewal theorem, see, for example, Eq. (6.4) in
[6]. The upper estimate in (51) is called Lorden’s inequality, see [3] for a short proof.

An easy consequence of the standard strong law of large numbers for (Tn) is the
strong law of large numbers for (ν(t)), that is,

ν(t)

t

a.s.−→
t→∞

1

m
.

By Theorem 4 in [4] both strong laws can be strengthen to the uniform strong laws of
large numbers that read as follows. Under the sole assumption m < ∞, it holds

sup
u∈[0, T ]

∣∣∣∣T
tu�
t

− um

∣∣∣∣ a.s.−→
t→∞ 0 and sup

u∈[0, T ]

∣∣∣∣ν(tu)

t
− u

m

∣∣∣∣ a.s.−→
t→∞ 0, (52)

for every fixed T > 0.
In the proof of Theorem 2 we have also used the following functional central limit

theorem for (ν(t))t≥0. If v2 ∈ (0,∞), then(
ν(ut) − (ut)/m

v
√
m−3t

)
u≥0

d=⇒
t→∞ (B(u))u≥0, (53)

in the space D[0,∞) endowed with the J1-topology, where B = (B(u))u≥0 is the
standard Brownian motion. This result (in a more general form) can be found, for
example, in [6, Section 3.3.3].
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The quantity Tν(t) − t is called overshoot at t ≥ 0. By Lorden’s inequality, if
Eξ2 < ∞, then

0 ≤ E(Tν(t) − t) = mEν(t) − t ≤ Eξ2

m
, t ≥ 0, (54)

where we have used Wald’s identity for the first equality.
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