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Abstract The stochastic process of the form

Xt =
∫ t

0
sα

(∫ t

s
uβ(u − s)γ du

)
dWs

is considered, where W is a standard Wiener process, α > − 1
2 , γ > −1, and α+β +γ > − 3

2 .
It is proved that the process X is well-defined and continuous. The asymptotic properties of the
variances and bounds for the variances of the increments of the process X are studied. It is also
proved that the process X satisfies the single-point Hölder condition up to order α +β +γ + 3

2
at point 0, the “interval” Hölder condition up to order min

(
γ + 3

2 , 1
)

on the interval [t0, T ]
(where 0 < t0 < T ), and the Hölder condition up to order min

(
α + β + γ + 3

2 , γ + 3
2 , 1

)
on

the entire interval [0, T ].
Keywords Gaussian Volterra processes, fractional Brownian motion, Hölder continuity,
quasi-helix property
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1 Introduction

Consider the stochastic process of the form

Xt = C(α, β, γ )

∫ t

0
sα

∫ t

s

uβ(u − s)γ du dWs, (1)

where W is a Wiener process, C(α, β, γ ) is a constant.
Our assumptions on the values of powers ensuring the existence and smoothness

of X are

α > −1

2
, γ > −1, and α + β + γ > −3

2
. (2)

The process X from (1) is a representative of the processes of the form

Xt =
∫ t

0
a(s)

∫ t

s

b(u) c(u − s) du dWs, (3)

which are studied in [4]. Here a(s), b(s) and c(s) are measurable functions [0, T ] →
[−∞,∞]. Initially, in this paper we intended to apply the results of [4] to power
functions. However, the results in [4] are directly applicable only if, in addition to (2),
α− + β− + γ − < 3

2 . (Here we use notation x− = max(−x, 0) and x+ = max(x, 0).
The condition above can be rewritten as (0 ∧α)+ (0 ∧β)+ (0 ∧ γ ) > − 3

2 .) It turned
out that for the power kernel we can formulate more specific and weaker conditions
of smoothness and other properties of X that are finer than in the general case.

Note that process (3) belongs to the class of processes with Volterra kernels, i.e.,
the processes of the form

Xt =
∫ t

0
K(t, s) dWs.

Such processes are discussed in [1, 2]. They are the particular case of the processes
with Fredholm kernels, which are studied in [1, 8].

As it is well known, a fractional Brownian motion BH with Hurst index H∈( 1
2 , 1

)
admits the Molchan representation (see [5, Theorem 1.8.3] or [7, Theorem 5.2]):

BH
t = (

H − 1
2

)
cH

∫ t

0
s

1
2 −H

∫ t

s

u
H− 1

2 (u − s)
H− 3

2 du dWs,

where

cH =
(

2H �(1.5 − H)

�(H + 0.5) �(2 − 2H)

)1/2

.

Thus, a fractional Brownian motion is an example of the process of the form (1).
Concerning the related results in this direction, Azmoodeh et al. provide [2] nec-

essary and sufficient conditions for the Hölder continuity of Gaussian processes and,
as an application, for Fredholm processes. They also provide necessary and sufficient
conditions as well as sufficient-only conditions for Volterra processes and for self-
similar Gaussian processes. However, the sufficient-only conditions for self-similar
Gaussian process, which are stated in [2, Proposition 3], are not satisfied for the pro-
cess (1), at least, for some values of parameters α, β and γ that satisfy (2). The
Fredholm representations of Gaussian processes were also considered in [8].
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Table 1. Self-similarity exponents, “waning memory” exponents and maximum order for the
Hölder condition for some well-known Gaussian processes

The process The self-
similarity
exponent

The exponent in asymptotics Hölder condition, up to
orderof E X1Xt of E X1(Xt+1−Xt )

λ1 λ2

Standard fBm,
BH

H 0 ∨ (2H − 1) 2H−2 if H �= 1
2 H

Sub-fractional
Brownian motion
(BH

t − BH−t )/
√

2

H 2H − 1 2H−2 if H �= 1
2 H

Bifractional
Brownian motion
BH,K

HK max(2HK−1,
2H(K−1))

2HK − 2H − 1
or
2HK − 2

HK

if H∈(0, 1)

and K∈(0, 1]
Mixed fBm
B

H1
t + B

H2
t ,

H1 < H2

not
self-similar

0 ∨ (2H2 − 1) 2H2 − 2 H1

Process X

defined in (1)
α+β+γ+ 3

2 β + γ + 1
if β+γ �= −1

β + γ min
(
1, γ+ 3

2 , α+β+γ+ 3
2

)
on [0, T ];(
γ + 3

2

) ∧ 1 on [t0, T ].
For bifractional Brownian motion, the asymptotics is

E B
H,K
1 (B

H,K
t+1 − B

H,K
t ) ∼ HK

2K−1

(
(K−1)t2KH−2H−1 + (2HK−1)t2HK−2

)
as t → ∞,

which gives the value of λ2.

Even though we consider the process X on the interval [0, T ], it can be defined by
(1) on the infinite interval [0,∞). Compare X with other Gaussian process such as
fractional Brownian motion BH , sub-fractional Brownian motion {(BH

t −BH−t )/
√

2,

t ≥ 0}, bifractional Brownian motion BH,K , and mixed fractional Brownian mo-
tion BH1 + BH2 , 0 < H1 < H2 < 1 (the processes of this kind are studied in [6]).
Here BH is a fractional Brownian motion on R, BH1 and BH2 are two independent
fractional Brownian motions with different Hurst indices. All these processes ex-
cept BH1 + BH2 are self-similar. We compare the self-similarity exponents, orders
of the Hölder continuity on a finite interval, and exponents λ1 and λ2 in the asymp-
totics E X1Xt � tλ1 and E X1 (Xt+1 − Xt) � tλ2 as t → +∞. The results are
shown in Table 1. The process X defined in (1) is a fractional Brownian motion for
α = 1

2 − α, β = H − 1
2 , γ = H − 3

2 and C(α, β, γ ) = (H − 1
2 )cH , H ∈ ( 1

2 , 1
)
.

Otherwise, the process X does not coincide with other processes mentioned in Ta-
ble 1.

In the present paper we are going to prove that the process X has a modifica-
tion that satisfies the Hölder condition, and to find the upper bound for its order. To
that end, we study the asymptotics of the variances of increments of the process X,
construct bounds for them, and obtain the so-called generalized quasi-helix property.

For the technical simplicity, in what follows we put C(α, β, γ ) = 1 and consider
a process of the form

Xt =
∫ t

0
sα

∫ t

s

uβ(u − s)γ du dWs. (4)
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Here is a small remark on the notation. We adopt common definitions of asymp-
totic equivalence and negligibility. Notation f (t) ∼ g(t) means that f (t) = c1(t)g(t)

for some function c1(t) → 1, while f (t) = o(g(t)) means that f (t) = c0(t)g(t) for
some function c0(t) → 0.

The paper is organized as follows. In Section 2 we prove that, under condi-
tions (2), the process (1) is well-defined and self-similar. In Section 3 we study
asymptotic properties of variances and covariances of the increments of the process
X. In Section 4 we find the set of parameters for which the process X has station-
ary increments. Quasi-helix properties of the process X are studied in Section 5; the
continuity and the Hölder condition are proved in Section 6. Auxiliary results are
obtained in Appendix (Section A).

2 Existence and self-similarity of Gaussian Volterra processes with power-type
kernels

2.1 Well-posedness of the process X

For the process defined in (4), the Volterra kernel equals

K(t, s) = sα

∫ t

s

uβ(u − s)γ du.

Therefore,

K(kt, ks) = kαsα

∫ kt

ks

uβ(u − ks)γ du

= kα+β+γ+1sα

∫ t

s

vβ(v − s)γ dv = kα+β+γ+1K(t, s). (5)

Thus, the function K(t, s) is homogeneous of degree α + β + γ + 1.

Theorem 1. Let T > 0. Consider the process X defined by (4) with exponents α, β

and γ satisfying (2). Then

sup
t∈(0,T ]

∫ t

0
K(t, s)2 ds < ∞. (6)

So, the process {Xt, t ∈ [0, T ]} is well-defined and has bounded variance.

Proof. For any fixed t > 0, function K(t, s) is continuous in s on (0, t]. Let us apply
Lemma 4 and consider three cases.

Case 1. If β + γ < −1, then due to Lemma 4∫ t

s

uβ(u − s)γ du ∼ Csβ+γ+1 as s → 0+ ,

whence
K(t, s) ∼ Csα+β+γ+1



Gaussian Volterra processes with power-type kernels. Part I 317

as s → 0+, where C > 0 is a constant. Relations (2) imply that α + β + γ + 1 > − 1
2

whence
∫ t

0 K(t, s)2 ds < ∞.
Case 2. Let β + γ = −1, then due to Lemma 4∫ t

s

uβ(u − s)γ du ∼ ln(t/s) as s → 0+ ,

whence
K(t, s) ∼ sα ln(t/s) = o

(
s(α−1)/3)

as s → 0+ because α−1
3 < α. Taking into account that α−1

3 > − 1
2 , we get that∫ t

0 K(t, s)2 ds < ∞.
Case 3. If β + γ > −1, then due to Lemma 4∫ t

s

uβ(u − s)γ du → Ctβ+γ+1 as s → 0+,

whence
K(t, s) ∼ C2s

αtβ+γ+1

as s → 0+. Since α > − 1
2 , we get that

∫ t

0 K(t, s)2 ds < ∞.
In either case, (6) holds true. Indeed, due to (5),∫ t

0
K(t, s)2 ds = t2α+2β+2γ+2

T 2α+2β+2γ+2

∫ t

0
K

(
T ,

T s

t

)2

ds

= t2α+2β+2γ+3

T 2α+2β+2γ+3

∫ T

0
K(T , u)2 du

with 2α + 2β + 2γ + 3 > 0. Hence, the supremum in (6) is attained for t = T and
the inequality in (6) holds true. Due to (6), the process X in (1) is well-defined and
has the bounded variance.

2.2 Self-similarity of the process X

Proposition 1. Process X defined by (4) with exponents α, β and γ satisfying (2) is
self-similar with exponent H = α + β + γ + 3

2 .

Proof. According to (5), the covariance function of X is self-similar in the sense that

cov(Xks,Xkt ) =
∫ min(ks,kt)

0
K(kt, u)K(ks, u) du

= k

∫ min(s,t)

0
K(kt, tv)K(ks, tv) dv

= k2H

∫ min(s,t)

0
K(t, v)K(s, v) dv = k2H cov(Xs,Xt ). (7)

Notice that the process X is zero-mean and Gaussian. Together with (7), it implies
that the process X is self-similar with exponent H .
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3 Asymptotic properties of incremental variances

Let X be a process defined by (4) with α, β and γ satisfying (2).
Then its increments can be represented as

Xt2 − Xt1 =
∫ t1

0
K(t2, s) dWs +

∫ t2

t1

K(t2, s) dWs −
∫ t1

0
K(t1, s) dWs

=
∫ t1

0
(K(t2, s) − K(t1, s)) dWs +

∫ t2

t1

K(t2, s) dWs

=
∫ t1

0
sα

∫ t2

t1

uβ(u − s)γ du dWs +
∫ t2

t1

sα

∫ t2

s

uβ(u − s)γ du dWs

=
∫ t2

0
sα

∫ t2

max(s,t1)

uβ(u − s)γ du dWs, 0 ≤ t1 < t2. (8)

Thus, the variance of the increment is equal to

var(Xt2 − Xt1) =
∫ t2

0
s2α

(∫ t2

max(s,t1)

uβ(u − s)γ du

)2

ds

=
∫∫∫

D

s2αuβ(u − s)γ vβ(v − s)γ ds du dv > 0, (9)

where D = {(s, u, v) ∈ R
3 : 0 < s ≤ max(t1, s) < min(u, v) ≤ max(u, v) ≤ t2}.

The set D has a mirror symmetry, and the integrand on the right-hand side of (9) is
a symmetric function under the permutation of u and v. Therefore, the integrals over
two symmetric to each other halves of the set D are equal:∫∫∫

{(s,u,v)∈D : u≤v}
s2αuβ(u − s)γ vβ(v − s)γ ds du dv

=
∫∫∫

{(s,u,v)∈D : u≥v}
s2αuβ(u − s)γ vβ(v − s)γ ds du dv.

Hence,

var(Xt2 − Xt1) = 2
∫∫∫

{(s,u,v)∈D : u≤v}
s2αuβ(u − s)γ vβ(v − s)γ ds du dv

= 2
∫ t2

t1

uβ

∫ t2

u

vβ

∫ u

0
s2α(u − s)γ (v − s)γ ds dv du. (10)

Proposition 2. Let the process X admit representation (4), where α, β and γ satisfy
relations (2). Then for t0 > 0 the asymptotic behavior of var(Xt2 −Xt1) as (t1, t2) →
(t0, t0) is as follows:

var(Xt2 − Xt1) ∼ t
2α+2β
0 |t2 − t1|2γ+3 B(γ+1, −2γ−1)

(γ + 1) (2γ + 3)
if γ < −1

2
, (11)
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var(Xt2 − Xt1) ∼ t
2α+2β
0 (t2 − t1)

2 ln

(
t0

|t2 − t1|
)

if γ = −1

2
,

var(Xt2 − Xt1) ∼ t
2α+2β+2γ+1
0 (t2 − t1)

2 B(2α+1, 2γ+1) if γ > −1

2
.

Proof. Without loss of generality, assume that 0 < t1 < t2. Consider three cases.
Case 1. Let γ < − 1

2 . Due to (10),

var(Xt2 − Xt1) = 2
∫ t2

t1

uβ

∫ t2

u

vβ

∫ u

0
s2α(u − s)γ (v − s)γ ds dv du

= 2
∫ t2

t1

∫ t2

u

uβvβ

∫ u

0
(s2α − u2α) (u − s)γ (v − s)γ ds dv du

+ 2
∫ t2

t1

u2α+β

∫ t2

u

vβ

∫ u

0
(u − s)γ (v − s)γ ds dv du. (12)

According to Lemma 5,

lim
(u,v)→(t0,t0)

u<v

uβvβ

∫ u

0
(s2α − u2α) (u − s)γ (v − s)γ ds

= t
2β
0

∫ t0

0
(s2α − t2α

0 ) (t0 − s)2γ ds,

where the integral on the right-hand side is finite.
Therefore,

2
∫ t2

t1

∫ t2

u

uβvβ

∫ u

0
(s2α − u2α) (u − s)γ (v − s)γ ds dv du

∼ 2
∫ t2

t1

∫ t2

u

dv du t
2β
0

∫ t0

0
(s2α − t2α

0 ) (t0 − s)2γ ds

= (t2 − t1)
2 t

2β
0

∫ t0

0
(s2α − t2α

0 ) (t0 − s)2γ ds (13)

as (t1, t2) → (t0, t0).
With Lemma 2.2, (ii) from [7], we come to

2
∫ t2

t1

u2α+β

∫ t2

u

vβ

∫ u

0
(u − s)γ (v − s)γ ds dv du

= 2
∫ t2

t1

u2α+β

∫ t2

u

vβ(v − u)2γ+1
∫ v/(v−u)

1
(t − 1)γ tγ dt dv du

= 2
∫ t2

t1

u2α+β

∫ t2

u

vβ(v − u)2γ+1
∫ u/v

0
sγ (1 − s)−2γ−2 ds dv du.

Since

lim
(u,v)→(t0,t0)

t1<t2

u2α+βvβ

∫ u/v

0
sγ (1 − s)−2γ−2 ds = t

2α+2β
0 B(γ+1, −2γ−1),
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(here we use the condition γ < − 1
2 ),

2
∫ t2

t1

u2α+β

∫ t2

u

vβ

∫ u

0
(u − s)γ (v − s)γ ds dv du

∼ 2
∫ t2

t1

∫ t2

u

(v − u)2γ+1 dv du t
2α+2β
0 B(γ+1, −2γ−1)

= (t2 − t1)
2γ+3 t

2α+2β
0 B(γ+1, −2γ−1)

(γ + 1) (2γ + 3)
(14)

as (t1, t2) → (t0, t0).
The right-hand side of (13) is negligible comparing to the right-hand side of (14).

Hence, according to (12), (13), (14),

var(Xt2 − Xt2) ∼ (t2 − t1)
2γ+3 t

2α+2β
0 B(γ+1, −2γ−1)

(γ + 1) (2γ + 3)

as (t1, t2) → (t0, t0).
Case 2. Let γ = − 1

2 . Relations (12) and (13) still hold true:

var(Xt2 − Xt1)

= 2
∫ t2

t1

∫ t2

u

uβvβ

∫ u

0
(s2α − u2α) (u − s)−1/2(v − s)−1/2 ds dv du

+ 2
∫ t2

t1

u2α+β

∫ t2

u

vβ

∫ u

0
(u − s)−1/2(v − s)−1/2 ds dv du, (15)

2
∫ t2

t1

∫ t2

u

uβvβ

∫ u

0
(s2α − u2α) (u − s)−1/2(v − s)−1/2 ds dv du

∼ 2 (t2 − t1)
2 t

2β
0

∫ t0

0

s2α − t2α
0

t0 − s
ds (16)

as (t1, t2) → (t0, t0). It is easy to see that∫ t2

t1

u2α+β

∫ t2

u

vβ

∫ u

0
(u − s)−1/2(v − s)−1/2 ds dv du

∼ t
2α+2β
0

∫ t2

t1

∫ t2

u

∫ u

0
(u − s)−1/2(v − s)−1/2ds dv du (17)

as (t1, t2) → (t0, t0), and, according to Lemma 6,∫ t2

t1

∫ t2

u

∫ u

0
(u − s)−1/2(v − s)−1/2 ds dv du

= t2
2 − (t1 + t2)t

1/2
1 t

1/2
2 + t2

1 + (t2 − t1)
2

2
ln

(
t
1/2
2 + t

1/2
1

t
1/2
2 − t

1/2
1

)

∼ (t2 − t1)
2

2
ln

(
t0

t2 − t1

)
(18)
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as (t1, t2) → (t0, t0). Equations (16), (17) and (18) imply that

2
∫ t2

t1

u2α+β

∫ t2

u

vβ

∫ u

0
(u − s)−1/2(v − s)−1/2 ds dv du

∼ t
2α+2β
0 (t2 − t1)

2 ln

(
t0

t2 − t1

)
as (t1, t2) → (t0, t0).

Comparing asymptotics of the summands on the right-hand side of (15), we get
that the first one is negligible. Thus,

var(Xt2 − Xt1) ∼ t
2α+2β
0 (t2 − t1)

2 ln

(
t0

t2 − t1

)
as (t1, t2) → (t0, t0).

Case 3. γ > − 1
2 . According to Lemma 7,

lim
(u,v)→(t0,t0)

u<v

uβvβ

∫ u

0
s2α (u − s)γ (v − s)γ ds = t

2β
0

∫ t0

0
s2α (t0 − s)2γ ds

= t
2α+2β+2γ+1
0 B(2α+1, 2γ + 1).

Hence,

var(Xt2 − Xt1) = 2
∫ t2

t1

∫ t2

u

uβvβ

∫ u

0
s2α(u − s)γ (v − s)γ ds dv du

∼ 2
∫ t2

t1

∫ t2

u

dv du t
2α+2β+2γ+1
0 B(2α+1, 2γ + 1)

= (t2 − t1)
2 t

2α+2β+2γ+1
0 B(2α+1, 2γ + 1)

as (t1, t2) → (t0, t0).

Proposition 3. Let the process X admit representation (4) with the values of powers
satisfying relations (2). Let 0 < t2 < t3. Then the asymptotic behavior of E[Xt1 (Xt3 −
Xt2)] as t1 → 0+ is as follows:

E[Xt1 (Xt3 − Xt2)]
∼ B(2α + 1, γ + 1)

(2α + β + γ + 2)(β + γ + 1)
(t

β+γ+1
3 − t

β+γ+1
2 ) t

2α+β+γ+2
1

if β + γ �= −1,

E[Xt1 (Xt3 − Xt2)] ∼ B(2α + 1, γ + 1)

2α + β + γ + 2
t
2α+β+γ+2
1 ln

(
t3

t2

)
if β + γ = −1.
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Proof. According to (4) and (8), for 0 < t1 < t2 < t3

E[Xt1 (Xt3 − Xt2)] =
∫ t1

0
s2α

(∫ t1

s

uβ (u − s)γ du

)(∫ t3

t2

vβ (v − s)γ dv

)
ds.

Obviously,

lim
s→0

∫ t3

t2

vβ (v − s)γ dv =
∫ t3

t2

vβ+γ dv = C(t2, t3),

where

C(t2, t3) =

⎧⎪⎨⎪⎩
t
β+γ+1
3 − t

β+γ+1
2

β + γ + 1
if β + γ �= −1,

ln(t3/t2) if β + γ = −1.

Hence,

E[Xt1 (Xt3 − Xt2)] ∼ C(t2, t3)

∫ t1

0
s2α

(∫ t

s

uβ (u − s)γ du

)
ds as t1 → 0. (19)

Furthermore,∫ t1

0
s2α

(∫ t

s

uβ (u − s)γ du

)
ds =

∫ t1

0
uβ

(∫ u

0
s2α (u − s)γ ds

)
du

= B(2α + 1, γ + 1)

∫ t1

0
u2α+β+γ+1 du

= B(2α + 1, γ + 1)

2α + β + γ + 2
t
2α+β+γ+2
1 , (20)

since the assumptions (2) ensure that 2α + β + γ + 2 > 0. By (19) and (20),

E[Xt1 (Xt3 − Xt2)] ∼ C(t2, t3) B(2α + 1, γ + 1)

2α + β + γ + 2
t
2α+β+γ+2
1 as t1 → 0,

as desired.

4 When does the process X have stationary increments?

Recall that fractional Brownian motion with Hurst index H ∈ (0, 1) is a zero-mean
Gaussian process with covariance function cov(Xs,Xt ) = (s2H +t2H −|t−s|2H ) / 2.

Theorem 2. Let stochastic process X be defined by relations (4) and (2). Then the
following three statements are equivalent:

(a) The process X has stationary increments.

(b) Up to a constant, the process X is a fractional Brownian motion with Hurst
index H ∈ ( 1

2 , 1
)

.

(c) There exists H ∈ ( 1
2 , 1

)
such that α = 1

2 − H , β = H − 1
2 and γ = H − 3

2 .
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Proof. The process X is Gaussian and according to Proposition 1, it is also self-
similar with exponent H = α + β + γ + 3

2 . Suppose (a), i.e., it has stationary
increments. According to [3, Section 1.3; Theorem 1.3.1] a self-similar Gaussian
process with stationary increments is a fBm, up to a constant. Moreover, H > 0
and

(i) if H ∈ (0, 1), then the process X is a fractional Brownian motion with Hurst
index H ;

(ii) if H = 1, then X(t) = tX(1) a.s. for all t ≥ 0 and for some Gaussian variable
X(1) (see Theorem 1.3.3 in [3]);

(iii) if H > 1, then X(t) = 0 almost surely for all t (see Theorem 3.1.1(ii) in [3]).

In cases (ii) and (iii) var[Xt2 | Xt1] = 0 for t1 < t2, which contradicts (44). Thus,
case (i) takes place, and up to a constant, the process X is a fBm, Xt = mBH

t with
exponent H ∈ (0, 1). Then var(Xt2 − Xt1) = m2 |t2 − t1|2H . On the other hand, the
asymptotics of var(Xt2 − Xt1) is obtained in Proposition 2. Since 2H < 2, the first
case in Proposition 2 occurs, namely, γ < − 1

2 and the asymptotics satisfies (11). It
means that

m2 |t2 − t1|2H ∼ C2(α, β, γ )
t
2α+2β
0 |t2 − t1|2γ+3 B(γ+1, −2γ−1)

(γ + 1) (2γ + 3)

as t1 → t0 and t2 → t0, for all t0 ∈ (0, T ]. Equating the exponents, we obtain that
2α + 2β = 0 and 2γ + 3 = 2H . Since γ ∈ (−1,− 1

2

)
, one has H ∈ ( 1

2 , 1
)
, and we

get that (a) implies (b).
Having (b), find the asymptotics for E[Xt1 (Xt3 − Xt2)]:

E[Xt1 (Xt3 − Xt2)] = m2 (t2H
3 − |t3 − t1|2H − t2H

2 + |t2 − t1|2H )

2
∼ H m2 (t2H−1

3 − t2H−1
2 ) t1

as t1 → 0, for all t2 ∈ (0, T ] and t3 ∈ (0, T ] such that t2 �= t3. Compare this with the
result of Proposition 3. The first case, β + γ �= −1, occurs in Proposition 3, and

H m2 (t2H−1
3 − t2H−1

2 ) t1 ∼ C(t
β+γ+1
3 − t

β+γ+1
2 ) t

2α+β+γ+2
1

as t1 → 0, where C > 0 is a constant. Thus, β+γ +1 = 2H −1 and 2α+β+γ +2 =
1. Now we can find α, β and γ from the system of linear equations:

2α + 2β = 0, 2γ + 3 = 2H, β + γ + 1 = 2H − 1, 2α + β + γ + 2 = 1,

whence

α = 1

2
− H, β = H − 1

2
, γ = H − 3

2
.

So, (b) implies (c). Implication (c) ⇒ (a) is evident.

Remark 1. Note that the Volterra representation of the fractional Brownian motion
with Hurst index 0 < H < 1

2 has a more complex formula than for 1
2 < H < 1,

see [7, Theorem 5.2]. Particularly, the fractional Brownian motion with 0 < H < 1
2

cannot be represented in the form of (1).
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5 Quasi-helix and generalized quasi-helix conditions

In this section we present the uniform inequalities for the incremental variances of
Gaussian processes with Volterra kernels.

5.1 Definitions

Definition 1. Let 0 ≤ t0 < T . The process {Xt, t ∈ [t0, T ]} is a quasi-helix with
exponent λ > 0 if there exist two constants Ci > 0, i = 1, 2, such that for any
t0 ≤ t1 < t2 ≤ T

C1(t2 − t1)
2λ ≤ var(Xt2 − Xt1) ≤ C2(t2 − t1)

2λ. (21)

Sometimes we can construct lower and upper bounds for the variance with differ-
ent exponents. Thus, we come to the notion of the generalized quasi-helix.

Definition 2. The process {Xt, t∈[t0, T ]} is a generalized quasi-helix with exponents
λi > 0, i = 1, 2, if there exist two constants Ci > 0, i = 1, 2, such that for any
t0 ≤ t1 < t2 ≤ T

C1(t2 − t1)
2λ1 ≤ var(Xt2 − Xt1) ≤ C2(t2 − t1)

2λ2 .

Remark 2. Unless var(Xt2 − Xt1) = 0 for all t1, t2 ∈ [t0, T ], the exponents λi satisfy
the relation 0 < λ2 ≤ min(1, λ1).

Definition 3. The process {Xt, t ∈ [t0, T ]} is a pseudo-quasihelix with exponent
λ > 0 if for any λ1 and λ2 such that 0 < λ2 < λ < λ1 it is a generalized quasi-helix
with exponents λ1 and λ2.

5.2 Quasi-helix on [t0, T ]
The following lemma allows to figure out when a self-similar process is a quasi-helix
considering the asymptotic behavior of its small incremental variances.

Lemma 1. Let 0 < t0 < T , and let the stochastic process {Xt, t ∈ (0, T ]} satisfy the
following conditions:

(i) {Xt, t ∈ (0, T ]} is self-similar with exponent H ;

(ii) var(Xt2 − Xt1) > 0 whenever t0 ≤ t1 < t2 ≤ T ;

(iii) for some C > 0 and λ > 0 and for all t ∈ [t0, T ] the variances of increments
asymptotically behave as follows:

var(Xt1 − Xt2) ∼ C t2H−2λ(t2 − t1)
2λ as t1 → t, t2 → t, t1<t2. (22)

Then the process {Xt, t ∈ [t0, T ]} is a quasi-helix with exponent λ.

Proof. Because of (22), the process {Xt, t ∈ [t0, T ]} is mean-square continuous.
Now, consider the function

f (t) = var(Xt − Xt0)

t2H−2λ
0 (t − t0)2λ

, t ∈ (t0, T ].
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Obviously, function f (t) is continuous on (t0, T ], limt→t0 f (t)=C >0 and f (t)>0,
t ∈ (t0, T ], due to condition (iii). As a consequence, it is bounded on [t0, T ], and there
exist 0 < c1 < c2 such that c1 ≤ f (t) ≤ c2 for all t ∈ (t0, T ]. Since the process X is
self-similar with exponent H , we have that

var(Xt2 − Xt1) = t2H
1

t2H
0

var(Xt2t0/t1 − Xt0) = t2H−2λ
1 (t2 − t1)

2λf

(
t2t0

t1

)
for all t1 and t2 such that t0 ≤ t1 < t2 ≤ T .

Thus,

c1t
2H−2λ
1 (t2 − t1)

2λ ≤ var(Xt2 − Xt1) ≤ c2t
2H−2λ
1 (t2 − t1)

2λ,

whence

c1 min(t2H−2λ
0 , T 2H−2λ)(t2 − t1)

2λ ≤ var(Xt2 − Xt1)

≤ c2 max(t2H−2λ
0 , T 2H−2λ)(t2 − t1)

2λ.

It means that inequality (21) holds true for C1 = c1 min(t2H−2λ
0 , T 2H−2λ) and

C2 = c2 max(t2H−2λ
0 , T 2H−2λ). So, the process X is a quasi-helix on the interval

[t0, T ] with exponent λ.

Theorem 3. Let 0 < t0 < T , and let the process X be defined by (4) and (2).
Moreover, assume that γ �= − 1

2 . Then the process {Xt, t ∈ [t0, T ]} is a quasi-helix
with exponent γ + 3

2 if −1 < γ < − 1
2 , and with exponent 1 if γ > − 1

2 .

Proof. The proof immediately follows from Proposition 1, inequality (9), Proposi-
tion 2, and Lemma 1.

5.3 Generalized quasi-helix on [0, T ]. Case γ �= −1/2

Lemma 2. Let T > 0 and let stochastic process {Xt, t ∈[0, T ]} satisfy the following
conditions:

(i) X0 = 0;

(ii) {Xt, t ∈ [0, T ]} is self-similar with exponent H > 0;

(iii) var(Xt2 − Xt1) > 0 whenever 0 ≤ t1 < t2 ≤ T ;

(iv) for some C > 0, λ > 0 and for all t ∈ (0, T ] the incremental variances
asymptotically behave as follows:

var(Xt1 − Xt2) ∼ C t2H−2λ(t2 − t1)
2λ as t1 → t, t2 → t, t1<t2. (23)

Then the process {Xt, t ∈ [0, T ]} is a generalized quasi-helix with exponents H ∨ λ

and H ∧ λ.
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Proof. The process {Xt, t ∈ [0, T ]} is mean-square continuous. The continuity at
point 0 follows from self-similarity with exponent H > 0, while the continuity on
(0, T ] follows from (23) with λ > 0.

Consider the function

f (t) = var(XT − Xt)

(T − t)2λ
, t ∈ [0, T ).

The function f (t) is continuous on [0, T ), f (t) > 0 on [0, T ), and

lim
t→T

f (t) = CT 2H−2γ ∈ (0,∞).

As the consequence, there exist c1 > 0 and c2 such that c1 ≤ f (t) ≤ c2 on [0, T ).
Because of self-similarity, for any 0 ≤ t1 < t2 ≤ T

var(Xt2 − Xt1) = t2H
2

T 2H
var(XT − Xt1T/t2) = t2H−2λ

2 T 2λ−2H (t2 − t1)
2λf

(
t1T

t2

)
.

Hence,

c1t
2H−2λ
2 T 2λ−2H (t2 − t1)

2λ ≤ var(Xt2 − Xt1) ≤ c2t
2H−2λ
2 T 2λ−2H (t2 − t1)

2λ.

In the following inequalities, we use that 0 < t2 − t1 ≤ t2 ≤ T , however the inequal-
ities depend on the sign of 2H − 2λ. If 2H ≤ 2λ, then

c1(t2 − t1)
2λ ≤ c1 T 2λ−2H (t2 − t1)

2λ

t2λ−2H
2

≤ var(Xt2 − Xt1)

≤ c2 T 2λ−2H (t2 − t1)
2λ

t2λ−2H
2

≤ c2 T 2λ−2H (t2 − t1)
2H .

If 2H ≥ 2λ, then

c1(t2 − t1)
2H

T 2H−2λ
≤ c1 t2H−2λ

2 (t2 − t1)
2λ

T 2H−2λ
≤ var(Xt2 − Xt1)

≤ c2 t2H−2λ
2 (t2 − t1)

2λ

T 2H−2λ
≤ c2 (t2 − t1)

2λ,

and the proof follows.

Theorem 4. Let T > 0, and let the process X be defined by (4) and (2). Moreover,
assume that γ �= − 1

2 . If −1 < γ < − 1
2 , then the process {Xt, t ∈ [0, T ]} is a

generalized quasi-helix with exponents (γ + 3
2 )∨ (α+β +γ + 3

2 ) and (γ + 3
2 )∧ (α+

β + γ + 3
2 ). Otherwise, if γ > − 1

2 , then the process {Xt, t ∈ [0, T ]} is a generalized
quasi-helix with exponents 1 ∨ (α + β + γ + 3

2 ) and 1 ∧ (α + β + γ + 3
2 ).

Proof. Theorem 4 follows immediately from Propositions 1 and 2, inequality (9) and
Lemma 2.



Gaussian Volterra processes with power-type kernels. Part I 327

If a self-similar process is a quasi-helix on [0, T ], then the exponents in the
self-similarity condition and in the quasi-helix condition must be the same. If for
some t0 ∈ [0, T ] the variances of a quasi-helix satisfy the relation var(Xt1 − Xt2) ∼
C(t0) (t2 − t1)

2λ as t1 → t0, t2 → t0, t1 < t2 for some C(t0) > 0 and λ > 0, then
the exponent in the quasi-helix condition must be equal to λ. If the variances of a
stochastic process satisfy the relation given in the second case in Proposition 2 (for
γ = − 1

2 ), then the process cannot be quasi-helix. This proves the necessity condition
in the following corollary. The sufficiency follows from Theorems 3 and 4.

Corollary 1. Let 0 < t0 < T , and let the process X be defined by (4) and (2). The
process X is a quasi-helix on [t0, T ] if and only if γ �= − 1

2 . The process X is a
quasi-helix on [0, T ] in (and only in) two cases:

• if −1 < λ < − 1
2 and α + β = 0, or

• if λ > − 1
2 and α + β + γ = − 1

2 .

5.4 Generalized quasi-helix on [0, T ]. The bordering case γ = − 1
2

Theorem 5. Let 0 < t0 < T , and let the process X be defined by (4) and (2) with

α > −1

2
, α + β > −1, and γ = −1

2
. (24)

Then the following holds true:

1. For any λ ∈ (0, 1) the process {Xt, t ∈ [t0, T ]} is a generalized quasi-helix
with exponents 1 and λ.

2. If α + β < 0, then the process {Xt, t ∈ [0, T ]} is a generalized quasi-helix
with exponents 1 and α + β + 1.

3. If α + β ≥ 0, then for any λ ∈ (0, 1) the process {Xt, t ∈ [0, T ]} is a
generalized quasi-helix with exponents α + β + 1 and λ.

Proof. We divide the proof into five parts. First, we obtain the lower and upper
bounds for var(Xt2 − Xt1). Then we subsequently prove the three statements of the
theorem.

To start with, the process X is self-similar with the exponent α + β + γ + 3
2 =

α + β + 1 > 0. It is square-continuous on [0, T ]. Denote

fλ(t) = var(XT − Xt)

(T − t)2λ
, t ∈ [0, T ).

Here we assume λ ∈ R. The function fλ is continuous on [0, T ), fλ(t) > 0 for all
t ∈ [0, T ) and fλ(t) ∼ T 2α+2β(T − t)2−2λ(ln(T ) − ln(T − t)) as t → T , due to
Proposition 2.

(i) Lower bound. Let’s apply function fλ with λ = 1. In this case

f1(t) = var(XT − Xt)

(T − t)2 , t ∈ [0, T ),
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f1(t) ∼ T 2α+2β(ln(T ) − ln(T − t)) as t → T ,

lim
t→T

f1(t) = +∞.

Together with continuity and positivity of function f1 on [0, T ) this implies that for
some c1 > 0

∀ t ∈ [0, T ) : f1(t) > c1.

Furthermore, self-similarity of X implies that

var(Xt2 − Xt1) = t
2α+2β+2
2

T 2α+2β+2 var(XT − Xt1T/t2)

= t
2α+2β
2 (t2 − t1)

2

T 2α+2β
f1

(
t1T

t2

)
≥ c1 t

2α+2β
2 (t2 − t1)

2

T 2α+2β
.

If α + β < 0, then

var(Xt2 − Xt1) ≥ c1 (t2 − t1)
2 (25)

for all t1 and t2 such that 0 ≤ t1 < t2 ≤ T .
If α + β ≥ 0, then

var(Xt2 − Xt1) ≥ c1 t
2α+2β
0 (t2 − t1)

2

T 2α+2β
(26)

for all 0 < t0 ≤ t1 < t2 ≤ T , and

var(Xt2 − Xt1) ≥ c1(t2 − t1)
2α+2β+2

T 2α+2β
(27)

for all 0 ≤ t1 < t2 ≤ T .
(ii) Upper bound. Let λ ∈ (0, 1). Then, as 2 − 2λ > 0,

lim
t→T

fλ(t) = 0.

With continuity of fλ on [0, T ), this implies that the function fλ is bounded on [0, T ).
Thus, for some finite c2(λ),

∀ t ∈ [0, T ) : fλ(t) ≤ c2(λ).

Furthermore,

var(Xt2 − Xt1) = t
2α+2β+2
2

T 2α+2β+2 var(XT − Xt1T/t2)

= t
2α+2β+2−2λ
2 (t2 − t1)

2λ

T 2α+2β+2−2λ
fλ

(
t1T

t2

)
≤ c2(λ) t

2α+2β+2−2λ
2 (t2 − t1)

2λ

T 2α+2β+2−2λ
.

Obviously,

max
t2∈[t0,T ] t

2α+2β+2−2λ
2 = max(t

2α+2β+2−2λ
0 , T 2α+2β+2−2λ).
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Thus,

var(Xt2 − Xt1) ≤ c2(λ) max

(
t
2α+2β+2−2λ
0

T 2α+2β+2−2λ
, 1

)
(t2 − t1)

2λ (28)

for all t1 and t2 such that t0 ≤ t1 < t2 ≤ T .
If λ ≤ α + β + 1 in addition to λ ∈ (0, 1), then

var(Xt2 − Xt1) ≤ c2(λ) (t2 − t1)
2λ (29)

for all t1 and t2 such that 0 ≤ t1 < t2 ≤ T .
(iii) Proof of statement 1. Let λ ∈ (0, 1). If α + β < 0, then, due to (25) and (28),

c1 (t2 − t1)
2 ≤ var(Xt2 − Xt1) ≤ c2(λ) max

(
t
2α+2β+2−2λ
0

T 2α+2β+2−2λ
, 1

)
(t2 − t1)

2λ.

If α + β ≥ 0 (and, as a consequence, λ < α + β + 1), then, due to (26) and (29),

c1 t
2α+2β
0 (t2 − t1)

2

T 2α+2β
≤ var(Xt2 − Xt1) ≤ c2(λ) (t2 − t1)

2λ

for all t1 and t2 such that t0 ≤ t1 < t2 ≤ T .
In either case, the process {Xt, t ∈ [t0, T ]} is a generalized quasi-helix with

exponents 1 and λ.
(iv) Proof of statement 2. Let α + β < 0. Denote the self-similarity exponent by

λ: λ = α + β + 1. Then λ ∈ (0, 1). The condition λ ≤ α + β + 1 of (29) is also
satisfied.

Due to (25) and (29),

c1 (t2 − t1)
2 ≤ var(Xt2 − Xt1) ≤ c2(λ) (t2 − t1)

2λ

for all t1 and t2 such that 0 ≤ t1 < t2 ≤ T . Thus, the process {Xt, t ∈ [0, T ]} is a
generalized quasi-helix with exponents 1 and λ. We recall that λ = α + β + 1.

(v) Proof of statement 3. Let α + β ≥ 0 and λ ∈ (0, 1). Then the assumption
λ ≤ α + β + 1 of (29) is satisfied. Due to (27) and (29),

c1(t2 − t1)
2α+2β+2

T 2α+2β
≤ var(Xt2 − Xt1) ≤ c2(λ) (t2 − t1)

2λ

for all t1 and t2 such that 0 ≤ t1 < t2 ≤ T . Thus, the process {Xt, t ∈ [0, T ]} is a
generalized quasi-helix with exponents α + β + 1 and λ.

The following corollary to Theorem 5 is complimentary to Corollary 1.

Corollary 2. Let 0 < t0 < T . Process X defined by (4) and (24) is a pseudo-
quasihelix on the interval [t0, T ] with exponent 1. If, in addition, α + β = 0, then X

is a pseudo-quasihelix on the entire interval [0, T ].
Quasi-helix, pseudo-quasihelix and generalized quasi-helix conditions for the pro-

cess X defined by (1) and (2) are summarized in Table 2.
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Table 2. Summary of quasi-helix properties

The process X is

Xt =
∫ t

0
sα

∫ t

s
uβ(u − s)γ du dWs,

α > − 1
2 , γ > −1, α + β + γ > − 3

2 .

The process X satisfies on the interval [0, T ] on any interval [t0, T ]
quasi-helix if and only if

γ < − 1
2 and α + β = 0, or

γ > − 1
2 and α + β + γ = − 1

2 .

γ �= − 1
2

pseudo-quasihelix γ ≤ − 1
2 and α + β = 0, or

γ ≥ − 1
2 and α + β + γ = − 1

2 .

always

generalized quasi-helix always always

Here 0 < t0 < T . The entry “always” means “always whenever α > − 1
2 , γ > −1, α + β + γ > − 3

2 .”

The exponents in the generalized quasi-helix condition:

the exponents in the generalized quasi-helix condition

on the interval [0, T ] are on any interval [t0, T ] are

If γ < − 1
2 and α + β ≤ 0, γ+ 3

2 and α+β+γ+ 3
2 γ+ 3

2

If γ < − 1
2 and α + β ≥ 0, α+β+γ+ 3

2 and γ+ 3
2 γ+ 3

2

If γ = − 1
2 and α + β < 0, 1 and α + β + 1 1 and 1−ε

If γ = − 1
2 and α + β ≥ 0, α+β+1 and 1−ε 1 and 1−ε

If γ > − 1
2 and α+β+γ ≤ − 1

2 , 1 and α+β+γ+ 3
2 1

If γ > − 1
2 and α+β+γ ≥ − 1

2 , α+β+γ+ 3
2 and 1 1

If only one number is in the cell, then the process is a quasi-helix. In that case, the exponents in both
sides of the generalized quasi-helix condition are equal. The number 1−ε means that the upper bound in
the generalized quasi-helix condition “∃C2 ∀t1 ∀t2 : var(Xt2 − Xt1 ) ≤ C2 (t2 − t1)2λ” holds true for all
λ ∈ (0, 1).

6 Hölder property

The Hölder property for stochastic processes follows from generalized quasi-helix
property. Indeed, it is well-known that Gaussian process {Xt, t ∈ [t0, T ]} satisfying
for some λ0 > 0 the assumption

∀ λ ∈ (0, λ0) ∃C(λ) ∀t1 ∈ [t0, T ] ∀t2 ∈ [t0, T ] : var(Xt2 − Xt1) ≤ C(λ) |t2 − t1|2λ,

has a modification X̃ whose paths are Hölder up to order λ0, that is,

∀ λ ∈ (0, λ0) ∃C(λ, ω) ∀t1 ∈ [t0, T ] ∀t2 ∈ [t0, T ] : |X̃t2 − X̃t1 | ≤ C(λ, ω) |t2 − t1|λ.

As a consequence, a stochastic process satisfying quasi-helix or pseudo-quasihelix
condition with exponent λ also has a modification that is Hölder up to order λ. A
stochastic process that satisfies the generalized quasi-helix condition with exponents
λ1 and λ2 < λ1 also has a modification that is Hölder up to order λ2.
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Theorem 6. Let 0 < t0 < T , and let the process X be defined by (4) and (2).
(i) The process {Xt, t ∈ [t0, T ]} has a continuous modification that satisfies the

Hölder condition up to order min
(
γ+ 3

2 , 1
)
.

(ii) The process {Xt, t ∈ [0, T ]} has a continuous modification that is Hölder up
to order min

(
α+β+γ+ 3

2 , γ+ 3
2 , 1

)
.

Proof. The Hölder condition follows from the results of Section 5 presented in The-
orems 3, 4 and 5 and summarized in Table 2.

Remark 3. According to Proposition 2, the process X defined by (4) and (2) does not
admit the bound var(Xt2 − Xt1) < C |t2 − t1|2λ for any λ > min

(
γ + 3

2 , 1
)
. Hence,

according to [2, Theorem 1], the process X cannot be Hölder of order greater than
min

(
γ + 3

2 , 1
)
.

The process X is self-similar with exponent H = α+β+γ + 3
2 , whence var(Xt −

X0) = C t2H for some constant C > 0. Hence, according to [2, Theorem 1], the
process X cannot satisfy the Hölder condition of order greater than H on the interval
[0, T ].

Thus, the process X cannot satisfy the Hölder condition of order greater than
specified in Theorem 6.

Lemma 3. Let the process {Xt, t ∈ [0, T ]} satisfy conditions

(i) X is Gaussian with zero mean;

(ii) X is self-similar with exponent H > 0;

(iii) incremental variances of X satisfy the inequality

∃λ0 > 0 ∃C0 < ∞ ∀t1, t2 ∈ [0, T ] : var(Xt1 − Xt2) ≤ C0 |t2 − t1|2λ0 . (30)

Then X has a modification X̃ whose paths are Hölder up to order H at point 0:
∀λ ∈ (0,H) ∃C1 = C1(λ, ω) < ∞, a.s. ∀t ∈ [0, T ] : |X̃t − X̃0| ≤ C1 tλ. (31)

Remark 4. Note that in Lemma 3 we formulated the Hölder condition at a single
point. The exponent in the Hölder condition at a single point may exceed 1, while the
exponent in the Hölder condition on an interval does not exceed 1 unless the function
or process is constant at that interval.

Proof of Lemma 3. The process X is mean-square continuous, and X0 = 0 almost
surely. The variance of X is a power function: var(Xt ) = var(Xt − X0) = Ct2H for
some C ≥ 0. Let us take the constants λ0 and C0 from (30). Since Ct2H = var(Xt −
X0) ≤ C0t

2λ0 for all t ∈ [0, T ], the exponents H and λ0 satisfy the inequality
0 < λ0 ≤ H . (Moreover, with view of Remark 2, 0 < λ0 ≤ min(1,H).)

Consider the stochastic process Y = {Ys, s ∈ [0, T H/λ0]} with Ys = Xsλ0/H . For
all s1 and s2 such that 0 ≤ s1 < s2 ≤ T H/λ0 , the incremental variances of Y are

var(Ys2 − Ys1) = var(X
s
λ0/H

2
− X

s
λ0/H

1
)
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=
(

s
λ0/H
2

T

)2H

var
(
XT − X

T s
λ0/H

1 s
−λ0/H

2

) ≤ C0s
2λ0
2

T 2H

(
T − T s

λ0/H
1

s
λ0/H

2

)2λ0

.

With 0 ≤ s1

s2
< 1, the inequality 0 <

λ0

H
≤ 1 implies

(
s1

s2

)λ0/H

≥ s1

s2
. Hence,

T − T s
λ0/H
1

s
λ0/H
2

≤ T − T s1

s2
,

and

var(Ys2 − Ys1) ≤ C0s
2λ0
2

T 2H

(
T − T s1

s2

)2λ0

= C0 (s2 − s1)
2λ0

T 2H−2λ0
.

Therefore Y has a modification Ỹ whose paths are Hölder up to order λ0:

∀θ ∈ (0, λ0) ∃C2 = C2(θ, ω) < ∞ a.s., ∀s1, s2 ∈ [0, T H/λ0] :
|Ỹs2 − Ỹs1 | ≤ C2 |s2 − s1|θ .

The process X̃ = {X̃t , t ∈ [0, T ]} with X̃t = ỸtH/λ0 is a modification of the
process X. Then

∀θ ∈ (0, λ0) ∀s1, s2 ∈ [0, T H/λ0] : |X̃
s
λ0/H

2
− X̃

s
λ0/H

1
| ≤ C2 |s2 − s1|θ ,

whence
∀θ ∈ (0, λ0) ∀s ∈ [0, T H/λ0 ] : |X̃sλ0/H − X̃0| ≤ C2 sθ .

Substituting s = tH/λ0 and θ = λλ0/H for λ ∈ (0,H), we obtain (31).

The next result is an immediate consequence of Lemma 3. Self-similarity of X is
established in Proposition 1.

Theorem 7. Let the process X be defined by (4) and (2). Then X has a modification
whose paths satisfy the Hölder condition up to order α + β + γ + 3

2 at point 0:
∀λ ∈ (

0, α + β + γ + 3
2

) ∃C = C(λ, ω) < ∞ a.s. ∀t ∈ [0, T ] : |X̃t − X̃0| ≤ C tλ,

where C is an a.s. finite random variable.

A Appendix

A.1 Some inference for power integrals
Lemma 4. Let β ∈R, γ >−1 and t >0. Then the asymptotic behavior of the integral∫ t

s
uβ(u − s)γ du as s → 0+ is

(i)
∫ t

s

uβ(u − s)γ du ∼ sβ+γ+1 B(γ+1, −β−γ−1) if β+γ < −1,

(ii)
∫ t

s

uβ(u − s)γ du ∼ ln(t/s) if β+γ = −1,

(iii)
∫ t

s

uβ(u − s)γ du → tβ+γ+1

β + γ + 1
if β+γ > −1.
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Proof. By [7, Lemma 2.2(ii)],∫ t

s

uβ(u − s)γ du = sβ+γ+1
∫ t/s

1
vβ(v − 1)γ dv

= sβ+γ+1
∫ 1− s

t

0
xγ (1 − x)−β−γ−2 dx. (32)

Case 1. If β + γ < −1, then −β − γ − 2 > −1,∫ u

0
xγ (1 − x)−β−γ−2 dx → B(γ+1, −β−γ−1) as u → 1−,∫ t

s

uβ(u − s)γ du ∼ sβ+γ+1 B(γ+1, −β−γ−1) as s → 0+,

as desired.
Case 2. Now suppose that β + γ = −1. Then (32) comes into∫ t

s

uβ(u − s)γ du =
∫ 1− s

t

0

xγ

1 − x
dx.

By substitution x = 1 − e−y and y = z ln(t/s),∫ 1− s
t

0

xγ

1 − x
dx =

∫ ln(t/s)

0
(1 − e−y)γ dy = ln(t/s)

∫ 1

0

(
1 −

( s

t

)z)γ

dz.

Let us substantiate the convergence

lim
s→0+

∫ 1

0

(
1 −

( s

t

)z)γ

dz =
∫ 1

0
lim

s→0+

(
1 −

( s

t

)z)γ

dz = 1. (33)

The pre-limit integral
∫ t

0 (1 − szt−z)γ dz is finite for all s ∈ (0, t). The integral
∫ 1

0 dz

on the right-hand side of (33) is also finite. The integrand (1 − szt−z)γ is monotone
in s for all z ∈ (0, 1). Hence, the convergence (33) indeed holds true. Finally,∫ t

s

uβ(u − s)γ du = ln(t/s)

∫ 1

0

(
1 −

( s

t

)z)γ

dz ∼ ln(t/s) as s → 0+,

as desired.
Case 3. Now suppose that β + γ > −1. If γ > 0, then the convergence

lim
s→0+

∫ t

s

uβ(u − s)γ du =
∫ t

0
lim

s→0+ uβ(u − s)γ du =
∫ t

0
uβ+γ du = tβ+γ+1

β + γ + 1

follows from the Lebesgue monotone convergence theorem. Otherwise, if −1<γ ≤0,
then

lim
s→0+

∫ t

s

uβ(u − s)γ du = lim
s→0+

∫ t−s

0
(v + s)βvγ dv =

∫ t

0
lim

s→0+(v + s)βvγ dv
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=
∫ t

0
vβ+γ dv = tβ+γ+1

β + γ + 1

due to the dominated convergence theorem. However, the dominant used depends on
β:

if β ≤ 0, then (v + s)βvγ 1(0,t−s](v) ≤ vβ+γ and
∫ t

0
vβ+γ dv < ∞;

if β > 0, then (v + s)βvγ 1(0,t−s](v) ≤ tβvγ and
∫ t

0
tβvγ dv < ∞.

In any case, there is the desired convergence.

Lemma 5. Let t0 > 0, α > − 1
2 and −1 < γ ≤ 0. Then

lim
(u,v)→(t0,t0)

u≤v

∫ u

0
(u2α −s2α) (u−s)γ (v−s)γ ds =

∫ t0

0
(t2α

0 −s2α) (t0 −s)2γ ds, (34)

and this value is finite.

Proof. In what follows, assume that α �= 0, otherwise both integrals equal zero.
First, prove that the integral on the right-hand side is finite. Indeed, integrand (t2α

0 −
s2α)(t0 − s)2γ is continuous on (0, t0), and its asymptotic behavior at endpoints is

(t2α
0 − s2α)(t0 − s)2γ ∼ −s2αt

2γ

0 as s → 0 if α < 0,

(t2α
0 − s2α)(t0 − s)2γ → t

2γ+2γ

0 as s → 0 if α > 0,

(t2α
0 − s2α)(t0 − s)2γ ∼ 2α(t0 − s)2γ+1 as s → t0.

As 2α > −1 and 2γ + 1 > −1, the integral is finite. Moreover, by linear substi-
tution, ∫ u

0
(u2α − s2α)(u − s)γ (v − s)γ ds

= u2α+2γ+1

t
2α+2γ+1
0

∫ t0

0
(t2α

0 − s2α) (t0 − s)γ
(

vt0

u
− s

)γ

ds. (35)

Obviously,
u2α+2γ+1

t
2α+2γ+1
0

→ 1 as u → t0 ,

and for 0 < s < t0 and u ≤ v∣∣∣∣(t2α
0 − s2α) (t0 − s)γ

(
vt0

u
− s

)γ ∣∣∣∣ ≤
∣∣∣(s2α − t2α

0 ) (t0 − s)2γ
∣∣∣ ; (36)

(s2α − t2α
0 ) (t0 − s)γ

(
vt0

u
− s

)γ

→ (s2α − t2α
0 ) (t0 − s)2γ
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as (u, v)→ (t0, t0), u≤ v for all s ∈ (0, t0). By the Lebesgue dominated convergence
theorem,∫ t0

0
(s2α − t2α

0 ) (t0 − s)γ
(

vt0

u
− s

)γ

ds →
∫ t0

0
(t2α

0 − s2α) (t0 − u)2γ ds (37)

as (u, v) → (t0, t0), u ≤ v. The proof follows from equality (35) together with (36)
and (37).

Remark 5. The condition γ ≤ 0 can be excluded from the assumptions of Lemma 5.
If t0 > 0, α > − 1

2 and γ > −1, then (34) holds true and the limit in (34) is finite.

Lemma 6. If 0 < t1 < t2, then∫ t2

t1

(∫ t2

u

(∫ u

0
(u − s)−1/2(v − s)−1/2 ds

)
dv

)
du

= t2
2 − (t1 + t2)t

1/2
1 t

1/2
2 + t2

1 + (t2 − t1)
2

2
ln

(
t
1/2
2 + t

1/2
1

t
1/2
2 − t

1/2
1

)
. (38)

Proof. We have∫ t2

u=t1

∫ t2

v=u

∫ u

s=0
(u − s)−1/2(v − s)−1/2 ds dv du

=
∫ t2

s=0

∫ t2

u=max(s,t1)

∫ t2

v=u

(u − s)−1/2(v − s)−1/2 dv du ds

=
∫ t2

s=0

∫ t2

u=max(s,t1)

2

(√
t2 − s

u − s
− 1

)
du ds

=
∫ t2

s=0

(
4(t2 − s) − 4

√
(t2 − s)(max(s, t1) − s) − 2(t2 − max(s, t1))

)
ds

= 2t2
2 − 4

∫ t1

0

√
(t2 − s)(t1 − s) ds − (t2 − t1)(t2 + t1)

= t2
1 + t2

2 − 4
∫ t1

0

√
(t2 − s)(t1 − s) ds. (39)

By the linear substitution s = 1
2 (t1 + t2 − (t2 − t1)x), x ≥ 1, the last integral can be

reduced to a well-known one:∫ √
(t2 − s)(t1 − s) ds = −

∫ √
(t2 − t1)2(x2 − 1)

4

t2 − t1

2
dt

= − (t2 − t1)
2

4

∫ √
x2 − 1 dx

= − (t2 − t1)
2

8

(
x
√

x2 − 1 − ln(x +
√

x2 − 1)
)

+ C

= − (t2 − t1)
2

8

t1 + t2 − 2s

t2 − t1

2
√

(t2 − s)(t1 − s)

t2 − t1
+
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+ (t2 − t1)
2

8
ln

(
t1 + t2 − 2s + 2

√
(t2 − s)(t1 − s)

t2 − t1

)
+ C

= − (t1 + t2 − 2s)
√

(t2 − s)(t1 − s)

4
+

+ (t2 − t1)
2

8
ln

(√
t2 − s + √

t1 − s√
t2 − s − √

t1 − s

)
+ C,

whence∫ t1

0

√
(t2 − s)(t1 − s) ds = (t1 + t2)

√
t2t1

4
− (t2 − t1)

2

8
ln

(√
t2 + √

t1√
t2 − √

t1

)
. (40)

Equations (39) and (40) imply that∫ t2

t1

∫ t2

u

∫ u

0
(u − s)−1/2(v − s)−1/2 ds dv du

= t2
1 + t2

2 − (t1 + t2)
√

t2t1 + (t2 − t1)
2

2
ln

(√
t2 + √

t1√
t2 − √

t1

)
,

which agrees with (38).

Lemma 7. Let α > − 1
2 , β ∈ R and γ > − 1

2 . Then

lim
(u,v)→(t0,t0)

u<v

uβvβ

∫ u

0
s2α (u − s)γ (v − s)γ ds = t

2α+2β+2γ+1
0 B(2α+1, 2γ + 1).

(41)

Proof. By a linear substitution,

uβvβ

∫ u

0
s2α (u − s)γ (v − s)γ ds

= u2α+β+γ+1vβ+γ

∫ 1

0
s2α (1 − s)γ

(
1 − us

v

)γ

ds.

Thus,

lim
(u,v)→(t0,t0)

u<v

uβvβ

∫ u

0
s2α (u − s)γ (v − s)γ ds

= lim
(u,v)→(t0,t0)

u<v

u2α+β+γ+1vβ+γ

∫ 1

0
s2α (1 − s)γ

(
1 − us

v

)γ

ds

= lim
u→t0

u2α+β+γ+1 lim
v→t0

vβ+γ lim
(u,v)→(t0,t0)

u<v

∫ 1

0
s2α (1−s)γ

(
1 − us

v

)γ

ds

= t
2α+2β+2γ+1
0 lim

r→1−

∫ 1

0
s2α (1 − s)γ (1 − rs)γ ds (42)

provided that the limit on the right-hand side exists.
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If − 1
2 < γ ≤ 0, then

|s2α (1 − s)γ (1 − rs)γ | ≤ s2α (1 − s)2γ ,

for all r ∈ (0, 1) and s ∈ (0, 1), while∫ 1

0
s2α (1 − s)2γ ds = B(2α + 1, 2γ + 1) < ∞.

Otherwise, if γ ≥ 0, then

|s2α (1 − s)γ (1 − rs)γ | ≤ s2α,

for all r ∈ (0, 1) and s ∈ (0, 1), while∫ 1

0
s2α = 1

2α + 1
< ∞.

By the Lebesgue dominated convergence theorem,

lim
r→1−

∫ 1

0
s2α (1 − s)γ (1 − rs)γ ds =

∫ 1

0
lim

r→1− s2α (1 − s)γ (1 − rs)γ ds

=
∫ 1

0
s2α (1 − s)2γ ds = B(2α + 1, 2γ + 1);

(43)

thus, the limit on the right-hand side of (42) exists as supposed. Equations (42) and
(43) imply (41).

Remark 6. In Lemma 7, the constraint u < v can be relaxed as u ≤ v. If α > − 1
2 ,

β ∈ R and γ > − 1
2 , then

lim
(u,v)→(t0,t0)

u≤v

uβvβ

∫ u

0
s2α (u − s)γ (v − s)γ ds = t

2α+2β+2γ+1
0 B(2α+1, 2γ + 1).

The generalization follows from the equality

u2β

∫ u

0
s2α (u − s)2γ ds = u2α+2β+2γ+1 B(2α+1, 2γ + 1).

A.2 The process X is not deterministic

Let X be a process defined by (4). According to (9), the increments of process X are
nondegenerate in the sense that they have nonzero variances. Moreover, similarly to
representation (8), for 0 < t1 < t2,

var[Xt2 | Xt1] ≥ var[Xt2 | Ft1] =
∫ t2

t1

(
sα

∫ t

s

uβ(u − s)γ du

)2

ds > 0, (44)
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where Ft1 is a σ -algebra generated by Wt , t ∈ [0, t1], and the conditional variance is
given as var[X | F] = E[(X − E[X | F])2 | F]. The inequality var[Xt2 | Xt1] ≥
var[Xt2 | Ft1] follows from fact that Xt1 is Ft1 -measurable, the conditional variance
allows a representation

var[Xt2 | Xt1] = var[E[Xt2 | Ft1] | Xt1] + E[var[Xt2 | Ft1] | Xt1]
due to the law of total variance, and the conditional variance var[Xt2 | Ft1] is nonran-
dom.

A.3 The meaning of the exponents

The order of the Hölder continuity on a finite interval separated from 0 is determined
by γ . The self-similarity exponent equals α +β +γ + 3

2 . In Proposition 2 the asymp-
totics of the incremental variance depends on all parameters, however, it can be split
into three factors: |t2 − t1|(2γ+3)∧2 (or −(t2 − t1)

2 ln |t2 − t1| if λ = −1/2), which
depends on γ and describes the rate of convergence to 0; t

2α+2β
0 or t

2α+2β+2γ+1
0 to

achieve the homogeneity order compatible with the self-similarity; and a coefficient,
which depends on α and γ . Some asymptotic properties of the covariance function of
the process X are given in Proposition 3.
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