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Abstract In mixture with varying concentrations model (MVC) one deals with a nonhomo-
geneous sample which consists of subjects belonging to a fixed number of different populations
(mixture components). The population which a subject belongs to is unknown, but the proba-
bilities to belong to a given component are known and vary from observation to observation.
The distribution of subjects’ observed features depends on the component which it belongs to.

Generalized estimating equations (GEE) for Euclidean parameters in MVC models are
considered. Under suitable assumptions the obtained estimators are asymptotically normal.
A jackknife (JK) technique for the estimation of their asymptotic covariance matrices is de-
scribed. Consistency of JK-estimators is demonstrated. An application to a model of mixture
of nonlinear regressions and a real life example are presented.

Keywords Finite mixture model, nonlinear regression, mixture with varying concentrations,
generalized estimating equations, jackknife, confidence ellipsoid
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1 Introduction

This paper continues studies of the jackknife (JK) technique application for statistical
inference based on the model of mixture with varying concentrations (MVC). JK is a
powerful tool of asymptotic covariance estimation of asymptotically normal statistics
introduced by Quenouille (1949) and Tukey (1958). On its applications for homo-
geneous samples, see [11] and [1]. The JK technique was applied to heteroscedasitc
nonlinear regression models in [9]. Applications to errors-in-variables models are
considered in [12, 13].
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In MVC models one deals with a nonhomogeneous sample which consists of
subjects belonging to M different subpopulations (mixture components). One knows
the probabilities with which a subject belongs to the mixture components and these
probabilities are different for different subjects. So the considered observations are
independent but not identically distributed. Modification of JK to such data analysis
is a challenging problem.

On parametric inference in regression MVC models, see [2]. Estimation in non-
parametric MVC models is discussed in [3]. In [5] a jackknife application to MVC of
linear regressions models with errors in variables is considered. It is shown that the
JK-estimators are consistent and allow to construct asymptotic confidence intervals
for regression coefficients based on orthogonal regression estimators. In [7] a general
result on asymptotic normality of generalized estimating equation (GEE) estimators
for MVC is obtained which is applied to derive asymptotic normality of a modifica-
tion of least squares (LS) estimators for MVC of nonlinear regressions models. A JK
estimator for the asymptotic covariance was introduced in [7] also, but its properties
were not investigated analytically.

In this paper we consider JK estimation of asymptotic covariance of GEE esti-
mators in MVC models and show its consistency. The MVC model and the GEE
estimator are discussed in Section 2. A version of JK for MVC is described in Sec-
tion 3. Main results on consistency, asymptotic normality of GEE estimator and con-
sistency of JK estimator of asymptotic covariance are presented in Section 4. Here
we also consider an application to some nonlinear regression model. In Section 5 the
developed statistical techniques are applied to a real life sociological data. Conclusive
remarks are placed in Section 6. Section 7 contains technical proofs.

2 MVC model and GEE estimation

In the MVC model we assume that each observed subject O belongs to one of M dif-
ferent mixture components (subpopulations) Pk , k = 1, . . . ,M . The sample contains
n subjects O1,. . . , On. Let κj = k iff Oj ∈ Pk . The true κj are unknown, but one
knows the mixing probabilities

pm
j ;n = P{κj = k}.

These probabilities are also called the concentrations of the k-th component at j -th
observation.

The D-dimensional vector of observed variables of O will be denoted by ξ(O) =
(ξ1(O), . . . , ξD(O))T ∈ R

D , ξ j = ξ j ;n = ξ(Oj ).

Let F (k) be the distribution of ξ(O) for O ∈ Pk , i.e.

F (k)(A) = P{ξ(O) ∈ A | O ∈ Pk}
for all Borel sets A ⊆ R

D . Then

P{ξ j ∈ A} =
M∑

k=1

pk
j ;nF

(k)(A). (1)
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So, in the MVC model one observes independent ξ j , j = 1, . . . , n, with the distribu-
tion defined by (1). In this paper we adopt a semiparametric model of components’
distributions

F (k)(A) = F(A,ϑ (k), ν(k)), k = 1, . . . ,M, (2)

where F is some known function of its arguments, ϑ (k) ∈ � ⊆ R
d are unknown

Euclidean parameters of interest, ν(k) are some nonparametric nuisance parameters.
In what follows we will denote by ξ (k) a random vector with distribution F (k)

which can be considered as the value of ξ(O) for a subject O selected at random
from the component Pk .

Example. Consider the model of mixture of regressions from [7]. In this model
the observations are ξ j = (Yj ,X

1
j , . . . , X

m
j )T , where Yj is the response and Xj =

(X1
j , . . . , X

m
j )T is the vector of regressors in the regression model

Yj = g(Xj ; ϑ (κj )) + εj , (3)

where g is a known regression function, ϑ (k) is a vector of unknown regression coeffi-
cients in the k-th mixture component, εj are regression error terms. (In [7] somewhat
more general model is considered, in which the regression functions and parameter
spaces can be different for different components. In this presentation we restrict our-
selves to simplify notation. The main result on JK-consistency can be extended to the
general case considered in [7]).

We assume that εj are independent for different j and, for each j , εj and Xj are

conditionally independent given κj . Let F
(k)
X and F

(k)
ε be the conditional distributions

of Xj and εj given Oj ∈ Pk . We assume that E[εj | κj = k] = ∫
xF

(k)
X (dx) = 0 for

all k = 1, . . . ,M .
Model (3) is a partial case of model (1)–(2) in which the nuisance parameters are

the distributions of regressors and errors for all components, i.e., ν(k) = (F
(k)
X , F

(k)
ε ).

To estimate ϑ (k) in (1)–(2) we apply the technique of generalized estimating
equations (GEE) considered in [7]. (On GEE estimation technique and its relations
to least squares, maximum likelihood and M-estimators in context of i.i.d. obser-
vations, see Section 5.4 in [10].) Let us choose an elementary estimating function
s : RD × � → R

d such that

E s(ξ (k), γ ) = 0 iff γ = ϑ (k). (4)

So, considering (4) as an equation of γ = (γ 1, . . . γ d)T ∈ � ⊆ R
d , we observe that

its unique solution is ϑ (k). To obtain an estimator for ϑ (k) we replace E s(ξ (k), γ ) by
its estimator

S(k)
n (γ ) =

n∑
j=1

ak
j ;ns(ξ j ;n; γ ), (5)

where ak
j ;n are nonrandom weights satisfying the assumption

n∑
j=1

ak
j ;np

m
j ;n =

{
1 if k = m,

0 if k �= m,
for all m = 1, . . . ,M. (6)



380 R. Maiboroda et al.

Observe that S(k)
n (γ ) is an unbiased estimator for E s(ξ (k), γ ) under (6), i.e., E S(k)

n

(γ ) = E s(ξ (k), γ ). The GEE estimator to ϑ (k) is any statistics ϑ̂
(k)

n such that

S(k)
n (ϑ̂

(k)

n ) = 0, a.s. (7)

E.g., in the model (3) differentiation of the least squares functional yields the elemen-
tary estimating function

s(γ , Y, X) = (Y − g(X, γ ))ġ(X, γ ), (8)

where

ġ(X, γ ) =
(

∂g(X, γ )

∂γ 1 , . . .
∂g(X, γ

∂γ d

)T

.

In this paper we consider only the minimax weights ak
j ;n, which can be defined as

follows. Let p;n be the matrix of all concentrations for all components of the mixture:

p;n =
⎛
⎜⎝

p1
1;n . . . pM

1;n
...

. . .
...

p1
n;n . . . pM

n;n

⎞
⎟⎠ .

Then the matrix of all weights a;n = (am
j ;n)j=1,...,n,m=1,...,M is defined as

a;n = p;n�−1
;n , (9)

where �;n = pT
;np;n. (We assume that det �;n �= 0). Minimax properties of a;n were

discussed in [3]. For one alternative approach to weighting in GEE for MVC, see [4].

3 Jackknife for MVC

Consider the set of parameters ϑ (k), k = 1, . . . ,M , for different components as one
long vector parameter ϑ = ((ϑ (1))T , . . . , (ϑ (M))T )T and similarly for the set of es-

timators ϑ̂n = ((ϑ̂
(1)

n )T , . . . , (ϑ̂
(M)

n )T )T . (Recall that ϑ (k), ϑ̂
(k)

n ∈ R
d .) It was shown

in [7] that under suitable assumptions (see Theorem 3 below) the estimator ϑ̂ ;n is
asymptotically normal, i.e.

√
n(ϑ̂ ;n − ϑ)

W−→ N(0, V).

To apply asymptotic normality for hypotheses testing one needs an estimator for the
dispersion matrix (asymptotic covariance) V given by (16). Jackknife (JK) is a pow-
erful tool for constructing such estimators. We now consider its modification for the
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MVC models (cf. [5]). Let

p;−i,n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1
1;n . . . pM

1;n
...

. . .
...

p1
i−1;n . . . pM

i−1;n
0 . . . 0

p1
i+1;n . . . pM

i+1;n
...

. . .
...

p1
n;n . . . pM

n;n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

i.e. p;−i,n is the matrix p;n with the i-th row replaced by the zero row. Then �;−i,n =
pT

;−i,n
p;−i,n and

a;−i,n = p;−i,n�
−1
;−i,n

. (10)

Let
S(k)

−in(γ ) =
∑
j �=i

ak
j ;−i,ns(ξ j ;n; γ ) (11)

and define ϑ̂
(k)

−in as a statistics which satisfy

S(k)
−in(ϑ̂

(k)

−in) = 0, a.s., (12)

ϑ̂−in = ((ϑ̂
(1)

−in)
T , . . . , (ϑ̂

(M)

−in)T )T . In fact, ϑ̂−in is the GEE estimator for ϑ calcu-
lated by the sample which contains all the observed subjects Oj , except the i-th one.
Then the JK estimator for V is

V̂n = n

n∑
i=1

(ϑ̂−in − ϑ̂n)(ϑ̂−in − ϑ̂n)
T . (13)

(On some efficient algorithms for calculation of a;−i,n and V̂n see [5]).

4 Main theorems

In this section we consider asymptotic behavior of ϑ̂ ;n and V̂n as n → ∞. Note that
we do not assume any relationship between the samples {ξ j ;n, j = 1, . . . , n} for
different n. They can be independent or dependent, or a smaller sample can be a part
of a larger one. The concentration arrays p;n are also unrelated for different n.

To formulate the theorems we need some notations and assumptions. In what
follows we assume that the limit

�∞ = lim
n→∞

1

n
pT

;np;n (14)

exists and det �∞ �= 0.
For a vector x, the symbol |x| means the Euclidean norm. For a matrix A, |A| is

the operator norm. Let ψ(x, γ ) be any function of x ∈ R
D , γ ∈ �, maybe vector- or
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matrix-valued, h : RD → R, ρ : �×� → R. We say that ψ satisfy Condition �h,ρ

iff, for all γ 1, γ 2 ∈ � and all x ∈ R
D ,

|ψ(x, γ 1) − ψ(x, γ 2)| ≤ h(x)ρ(γ 1, γ 2).

A set of functions {ψ i , i ∈ I } satisfy Condition �h,ρ if ψ i satisfy �h,ρ for each
i ∈ I .

The following theorem states conditions of consistency of ϑ̂n and consistency of
ϑ̂−in uniform by i.

Theorem 1 (Consistency). Let the following assumptions hold.

(C1) � is a compact set in R
d .

(C2) Condition �h,ρ holds for the elementary estimating functions s with some func-
tions ρ and h.

(C3) ρ is a continuous function on � × � with ρ(γ , γ ) = 0 for all γ ∈ �.

(C4) For all l = 1, . . . ,M , E |s(ξ (l),ϑ
(l))|2 < ∞ and E(h(ξ (l)))

2 < ∞.

(C5) E s(ξ(k), γ ) = 0 if and only if γ = ϑ (k).

(C6) det �∞ > 0.

(C7) P{∃γ ∈ �, such that S(k)
n (γ ) = 0} → 1 as n → ∞.

(C7’) P{∀i = 1, . . . , n, ∃γ i ∈ �, such that S(k)
−in(γ i ) = 0} → 1 as n → ∞.

Then, under the assumptions (C1)–(C7), ϑ̂
(k)

n

P−→ ϑ (k) as n → ∞, and under the
assumptions (C1)–(C6), (C7’),

sup
i=1,...,n

|ϑ̂ (k)

−in − ϑ (k)| P−→ 0 (15)

as n → ∞.

Assumptions (C7) and (C7’) claim the existence of GEE solutions with proba-
bility tending to 1 as n → ∞. They seem rather imperfect. The following theorem
provides conditions under which they hold.

Let Ṡ(γ ) be the Jacobian of a vector-valued function S, S∞(γ ) = E s(ξ (k), γ ).

Theorem 2 (Existence). Let the assumptions (C1)–(C6) of Theorem 1 hold and,
moreover,

(E1) ϑ (k) is an inner point of �.

(E2) Ṡ(k)∞ (ϑ (k)) exists and det Ṡ(k)∞ (ϑ (k)) �= 0.

Then assumptions (C7) and (C7’) of Theorem 1 hold.
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To formulate the asymptotic normality result we need some additional notations.
Let

M(k)(γ ) = E ṡ(ξ (k), γ ), M(k) = M(k)(ϑ (k)) = E ṡ(ξ (k),ϑ
(k)),

〈akamplpi〉 = lim
n→∞ n

n∑
j=1

ak
j ;na

m
j ;np

l
j ;np

i
j ;n,

〈akampl〉 = lim
n→∞ n

n∑
j=1

ak
j ;na

m
j ;np

l
j ;n

(existence of these limits is a condition in the following Theorem 3). Now

Z(m,l) =
M∑
i=1

〈amalpi〉 E s(ξ (i),ϑ
(m))s(ξ (i),ϑ

(l))T

−
M∑

ii ,i2=1

〈amalpi1pi2〉 E s(ξ (i1)
,ϑ (m)) E s(ξ (i2)

,ϑ (l))T ,

V(m,l) = (M(m))−1Z(m,l)(M(m))−T

(here and below M−T = (M−1)T ). Let’s pack all the matrices V(m,l) into one (Md)×
(Md) matrix

V =
⎛
⎜⎝

V(1,1) . . . V(1,M)

...
. . .

...

V(M,1) . . . V(M,M)

⎞
⎟⎠ . (16)

Let s(x, γ ) = (s1(x, γ ), . . . , sd(x, γ ))T .

Theorem 3 (Asymptotic normality). Let the following assumptions hold.

(AN1) ϑ is an inner point of �M = � × · · · × �.

(AN2) There exists an open ball B centered in ϑ , such that the derivatives

∂2sl(x, γ )

∂γ i∂γ j

exist for all γ = (γ 1, . . . , γ d)T ∈ B, all l, i, j = 1, . . . , d , and almost all x
(w.r.t. all F (k), k = 1, . . . ,M).

(AN3) There exists a function h : RD → R such that

max
l,i,j

sup
γ∈B

∣∣∣∣∂2sl(x, γ )

∂γ i∂γ j

∣∣∣∣ ≤ h(x)

and E(h(ξ (k)))
α < ∞ for some α > 1 for all k = 1, . . .M .

(AN4) E |s(ξ (k),ϑ
(k))|2 < ∞ for all k = 1, . . . M .
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(AN5) M(k) are finite and nonsingular for all k = 1, . . . ,M .

(AN6) The limits 〈akampipl〉 exist for all k,m, i, l = 1, . . . ,M .

(AN7) Matrix �∞ exists and is nonsingular.

(AN8) ϑ̂n exists and is a consistent estimator for ϑ .

Then √
n(ϑ̂n − ϑ)

W−→ N(0, V)

as n → ∞.

(Note that in Theorems 1–4 and the lemmas in Section 7 below the functions h

can be different).
In fact, Theorem 3 is just Theorem 2 from [7] reformulated in terms of the present

paper.
Now we are ready to formulate the theorem on consistency of the JK estimator of

V.

Theorem 4. Assume that assumptions (AN1), (AN5), (AN6), (AN7) of Theorem 3
hold and, moreover:

(JK1) There exists a function h : RD → R such that

sup
γ∈�

|s(x, γ )| ≤ h(x), sup
γ∈�

|ṡ(x, γ )| ≤ h(x),

max
l,i,j

sup
γ∈B

∣∣∣∣∂2sl(x, γ )

∂γ i∂γ j

∣∣∣∣ ≤ h(x)

and for some α > 4,
E(h(ξ (l)))

α < ∞,

(JK2) ϑ̂n is a
√

n-consistent estimator of ϑ ,

(JK3) supi=1,...,n |ϑ̂−in − ϑ | P−→ 0 as n → ∞.

Then V̂n
P−→ V as n → ∞.

Example. Let the observed data be ξ j = (Yj ,Xj )
T , j = 1, . . . , n, where depen-

dence between Xj and Yj is described by the regression model (3) with

g(Xj ,ϑ
(k)) = 1

1 + exp(−ϑ
(k)
0 − ϑ

(k)
1 Xj)

, (17)

where ϑ (k) = (ϑ
(k)
0 ,ϑ

(k)
1 )T are the vectors of regression coefficients for the k-th

mixture component.
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Assume that γ ∈ �, where � is a compact set in R
2. Then for the elementary

estimating function s defined by (8) we obtain

|s(ξ j , γ )| ≤ C(1 + |Xj |)(1 + |εj |) and | ∂2

∂γ iγ i
sl(ξ j , γ )| ≤ C(1 + |Xj |3)(1 + |εj |),

where C < ∞ is some constant. So Assumption (JK1) holds if E[(εj )
4 | κj = k] <

∞ and E[|Xj |12 | κj = k] < ∞ for all k = 1, . . . ,M . Assumption (AN5) holds if

Var[Xj | κj = k] > 0. (18)

Assumption (C5) also holds under (18), see Theorem 2 in [8]. So, under rather mild
assumptions Theorems 1–4 hold for generalized least squares estimator in this model.
In [7] confidence sets for ϑ (k) are constructed based on the asymptotic normality of

ϑ̂
(k)

n and consistency of V̂(k,k)
n . Namely, the confidence ellipsoid for ϑ (k) is defined as

Bα,n = {γ ∈ R
d : (γ − ϑ (k))T (V̂(k,k)

n )−1(γ − ϑ (k)) ≤ Qη(1 − α)},
where Qη(1 − α) is the quantile of level 1 − α of the χ2-distribution with d degrees
of freedom. Then under the assumptions of Theorems 1–4, if det Z(k,k) �= 0,

lim
n→∞ P{ϑ (k) ∈ Bα,n} = 1 − α.

In [7] results of simulations are presented which show that these ellipsoids can be
used for samples large enough.

5 Application to sociological data

In this section we show how the considered technique can be applied to the statistical
analysis of real life data. In many sociological problems one deals with two sets of
data from two different sources. The first (I) set consists of individual records with
values of variables which present personal information of investigated persons. The
second (A) set contain some averaged information on large groups of a variable of
investigated persons which is not presented in the I-set. The problem is how to merge
information from A- and I-sets to infer on the model involving variables from both
sets.

We consider as the I-set a data of results of Ukrainian External Independent Test-
ing (EIT) in 2016 from the official site of Ukrainian Center for Educational Quality
Assessment. EIT exams are to be passed by high school graduates for admission to
universities. Information on scores in Ukrainian language and literature (Ukr) and
on Mathematics (Math) for nearly 246 000 examinees of EIT-2016 is available.1 In
[5] linear regression dependence between Ukr and Math is assumed. In this paper ve
consider the model

Ukr = 1

1 + exp(−ϑ
(k)
0 − ϑ

(k)
1 Math)

+ ε, (19)

1Original EIT scores range from 100 to 200. In this presentation we rescale them onto [0, 1].
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Fig. 1. Estimated logistic regression lines by EIT-2016 data. Solid line for 1st component,
dashed line for 2nd, dotted line for 3rd one

in which the coefficients ϑ
(k)
0 and ϑ

(k)
1 depend on the political attitudes of the adult

environment in which the student was brought up. There can be a family of Ukrainian
independence adherents or an environment critical to existence of Ukrainian state and
culture.

EIT-2016 does not contain information on political issues. But for each exam-
ine the region of Ukraine is recorded where he/she graduated. So we used data on
results of Ukrainian Parliament (Verhovna Rada) elections-2014 to get approximate
proportions of adherents of different political choices in regions of Ukraine (A-set).
All possible electoral choices at these elections (voting for one of parties, voting
against all or not to take part in the voting) were divided into three groups (compo-
nents): (1) pro-Ukrainian, (2) contra-Ukrainian and (3) neutral (see [5] for details).
The concentrations of components are taken as frequencies of adherents of corre-
sponding electoral choice at the region where j -th examinee attended high school.
On Fig. 1 the fitted regression lines are presented. The dependence between Math
and Ukr on this picture seems significantly different in the three components. Say,
in the pro component it is increasing and seemingly nonlinear, in the contra com-
ponent it is decreasing, in the neutral one it is increasing and quite near to linear
dependence.

To verify significance of these differences we constructed the confidence ellip-
soids for the parameters as described in Section 4. By the Bonferroni rule, to infer
with the significance level α0 = 0.05, we took the levels of the ellipsoids α = α0/3 =
0.01666. Obtained ellipsoids are presented on Fig. 2. Since they are not intersecting,
we conclude that the differences between the parameters are significant for all the
components.
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Fig. 2. Confidence ellipsoids for logistic regression parameters by EIT-2016 data

6 Conclusion

So, we obtained conditions under which the JK estimator for asymptotic variance
is valid for nonlinear GEE estimators in MVC models. The presented example of
sociological data analysis demonstrates possibilities of practical applications of this
estimator.

7 Proofs

We start from some auxiliary lemmas.

Lemma 1. Assume that �∞ exists and is nonsingular. Then for some constant Ca <

∞,

|ak
j ;n| ≤ Ca

n
, |ak

j ;n − ak
j ;−in| ≤ Ca

n2

for all k = 1, . . . ,M , 1 ≤ i �= j ≤ n, n = 1, 2, . . . .

For the proof, see [5], lemma 1.
Let ψj ;n, j = 1, . . . , n, n = 1, 2, . . . , be any set of functions with domain R

D

and values in a set of scalars, or vectors, or matrices. We use the following notation


(k)
n (γ ) =

n∑
j=1

ak
j ;nψj ;n(ξ j ;n, γ ),



(k)
−in(γ ) =

∑
j �=i

ak
j ;−inψj ;n(ξ j ;n, γ ).
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In this notation ψ can be replaced by any other symbol, e.g., ψ̃ , s or ṡ.

Lemma 2. Let H : RD → R be some function, such that

(i) maxj,n supγ∈� |ψj ;n(x, γ )| ≤ H(x),

(ii) for some α > 1 and all k = 1, . . . ,M , E(H(ξ (k)))
α < ∞.

Then
max

j=1,...,n
sup
γ∈�

|ψj ;n(ξ j ;n, γ )| = oP (n1/α).

Proof. Let
ψ̃j ;n = sup

γ∈�

|ψj ;n(ξ j ;n, γ )|.

Then

Pn(C) = P{ max
j=1,...,n

ψ̃j ;n > C} = 1 −
n∏

j=1

(1 − P{ψ̃j ;n > C}). (20)

Put Cn = C0n
1/α for some C0 > 0. Then

p̃n = sup
j=1,...,n

P{ψ̃j ;n > Cn} = o(1/n). (21)

Really,
P{ψ̃j ;n > Cn} ≤ P{H(ξ j ;n) > Cn}

≤
M∑

k=1

pk
j ;n P{H(ξ (k)) > Cn} ≤

M∑
k=1

P{H(ξ (k)) > Cn}.

So, to show (21) one needs only to observe that

n P{H(ξ (k)) > Cn} = o(1) for all k = 1, . . . M. (22)

But
n P{H(ξ (k)) > Cn} = n E 1{H(ξ (k)) > Cn}

≤ n E 1{H(ξ (k)) > Cn}
H(ξ (k))

α

Cα
n

≤ 1

Cα
0

E H(ξ (k))
α1{H(ξ (k)) > Cn} = o(1)

due to the assumption (ii) of the lemma. So (21) holds. From (20) and (21) we obtain

Pn(C) ≤ 1 − exp(n log(1 − p̃n)) = 1 − exp(−n · o(1/n)) = o(1)

for any C0 > 0.

Lemma 3. Let the following assumptions hold.

(i) det �∞ �= 0.

(ii) A set of functions ψj ;n, j = 1, . . . , n, n ∈ N, satisfy Condition �h,ρ with a
function h such that E(h(ξ (k))

2 < ∞ for all k = 1, . . . , M .
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Then there exists a sequence of random variables ζn = Op(1), such that for all
n = 1, 2, . . . , all γ1, γ2 ∈ � and all i = 1, . . . n the following inequalities hold:

|
(k)
n (γ 1) − 
(k)

n (γ 2)| ≤ ζnρ(γ 1, γ 2), (23)

|
(k)
−in(γ 1) − 


(k)
−in(γ 2)| ≤ ζnρ(γ 1, γ 2). (24)

Proof. Let us start with (23). Observe that by Condition �h,ρ and Lemma 1,

|
(k)
n (γ 1) − 
(k)

n (γ 2)| ≤
n∑

j=1

|ak
j ;n|h(ξ j ;n)ρ(γ 1, γ 2) ≤ Caρ(γ 1, γ 2)

n

n∑
j=1

h(ξ j ;n).

By assumption (ii) of the lemma

A1 = max
j,n

E h(ξ j ;n) ≤ max
k=1,...,M

E h(ξ (k)) < ∞

and A2 = E(h(ξ j ;n))2 < ∞. So, for any λ > A1,

P

⎧⎨
⎩1

n

n∑
j=1

h(ξj ;n) > λ

⎫⎬
⎭ ≤ Var 1

n

∑n
j=1 h(ξj ;n)(

λ − E 1
n

∑n
j=1 h(ξj ;n)

)2
≤ A2

n(λ − A1)2
→ 0

as n → ∞. So (23) holds with ζn = Ca

n

∑n
j=1 h(ξj ;n).

To show (24) observe that

|
(k)
−in(γ 1)−


(k)
−in(γ 2)| ≤

n∑
j=1

|ak
j ;−in|h(ξ j ;n)ρ(γ 1, γ 2) ≤ Caρ(γ 1, γ 2)

n

n∑
j=1

h(ξ j ;n)

and

|ak
j ;−in| ≤ |aj ;n| + |aj ;n − ak

j ;−in| ≤ C′
a

n

for some C′
a < ∞ due to Lemma 1. The rest of the proof is the same as for (23).

Lemma 4. Let the following assumptions hold.

(i) � is a compact in R
d .

(ii) Condition �h,ρ holds for {ψj ;n, j = 1, . . . , n, n = 1, 2, . . . }.
(iii) ρ is a continuous function on � × � and ρ(γ , γ ) = 0 for all γ ∈ �.

(iv) For all k = 1, . . . , M , E(h(ξ (k)))
2 < ∞, maxj,n E |ψj ;n(ξ (k),ϑ

(k))|2 < ∞.

(v) det �∞ �= 0.

Then
sup
γ∈�

|
(k)
n (γ ) − E 
(k)

n (γ )| P−→ 0, (25)

sup
γ∈�

|
(k)
−in(γ ) − E 


(k)
−in(γ )| P−→ 0 (26)

as n → ∞.
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Proof. Let ψ̄j ;n(γ ) = E ψj ;n(ξ j ;nγ ),

ψ̃j ;n(ξ j ;n, γ ) = ψj ;n(ξ j ;n, γ ) − ψ̄j ;n(γ ).

Then ψ̃j ;n satisfy Condition �
h̃,ρ

with h̃(x) = h(x) + C
 , where C
 is some con-
stant, e.g.,

C
 = max
k=1,...,M

E h(ξ (k)) < ∞.

By the assumption (iv),
E(h̃(ξ (k)))

2 < ∞ (27)

and
max
j,n

E |ψ̃j ;n(ξ (k),ϑ
(k))|2 < ∞, for all k = 1, . . . ,M. (28)

To prove the lemma is sufficient to show that

sup
γ∈�

|
̃(k)
n (γ )| P−→ 0 (29)

and
sup
γ∈�

|
̃(k)
−in(γ )| P−→ 0 (30)

as n → ∞.
Let us show (29). Consider the case when ψj ;n are scalar-valued. Then

E 
̃(k)
n (γ ) =

n∑
j=1

ak
j ;n E ψ̃j ;n(ξ j ;n, γ ) = 0 (31)

and

Var 
̃(k)
n (γ ) =

n∑
j=1

(ak
j ;n)

2 Var ψ̃j ;n(ξ j ;n, γ ) ≤ C2
a

n
max
j,n

Var ψ̃j ;n(ξ j ;n, γ ). (32)

Assumptions (iii) and (iv) with inequalities (27) and (28) imply

max
j,n

Var ψ̃j ;n(ξ j ;n, , γ ) < ∞.

So, by (31) and (32), we get


̃(k)
n (γ )

P−→ 0 as n → ∞ (33)

for any γ ∈ �.
It is obvious that if ψj ;n are vector- or matrix-valued, then (33) holds coordinate-

wise.
Applying Lemma 3 to ψ̃j ;n one obtains

|
̃(k)
n (γ 1) − 
̃(k)

n (γ 2)| ≤ ζnρ(γ 1, γ 1) for all γ 1, γ 2 ∈ � (34)
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with some ζn = OP (1). To prove (29) we have to show that for any δ > 0 and ε > 0
there exists such n0 that for all n > n0

P{sup
γ∈�

|
̃(k)
n (γ )| > δ} < ε. (35)

Fix ε and δ. Choose a nonrandom Cζ < ∞ such that P{ζn > Cζ } ≤ ε/2 for all n.
Since � is compact by assumption (iii) of the lemma there exists a finite set

T = {t1, . . . , tL} ⊂ � such that for each γ ∈ � one can choose l(γ ) ∈ {1, . . . , L}
with

ρ(γ , tl(γ )) <
δ

2Cζ

. (36)

Note that
|
̃(k)

n (γ )| ≤ |
̃(k)
n (γ ) − 
̃(k)

n (tl(γ ))| + |
̃(k)
n (tl(γ ))|,

so
sup
γ∈�

|
̃(k)
n (γ )| ≤ sup

γ∈�

|
̃(k)
n (γ ) − 
̃(k)

n (tl(γ )| + max
l=1,....L

|
̃(k)
n (tl )|

≤ ζn sup
γ∈�

ρ(γ , tl(γ )) + max
l=1,....L

|
̃(k)
n (tl )|.

Therefore

P{sup
γ∈�

|
̃(k)
n (γ ) > δ} ≤ P{ζn sup

γ∈�

ρ(γ , tl(γ )) > δ/2} + P{ max
l=1,...,L

|
̃(k)
n (tl )| > δ/2}.

(37)
The second term in the RHS of (37) tends to 0 as n → ∞ due to (33). So it is less
then ε/2 for n large enough. By (36) the first term is less then P{ζn > Cζ } < ε/2.

So (35) holds and (25) is shown.
Let us show (26). Observe that


̃(k)
n (γ ) − 
̃

(k)
−in(γ ) = ak

i;nψ̃i(ξ i,n, γ ) +
∑
j �=i

(ak
j ;n − ak

j ;−in)ψ̃j ;n(ξ j ;n, γ ).

To estimate maxj,n supγ∈� |ψ̃j ;n(ξ j ;n, γ )| we apply Lemma 2 with H(x) = |x|.
Assumption (iv) of Lemma 4 implies that the assertion of Lemma 2 holds with α = 2.
So

max
j,n

sup
γ∈�

|ψ̃j ;n(ξ j ;n, γ )| = OP (n1/2).

From Lemma 1 we get

|ak
i;n| ≤ Ca/n, |ak

j ;n − ak
j ;−in| ≤ Ca/n2,

so
max

i=1,...,n
sup
γ∈�

|
̃(k)
n (γ ) − 
̃

(k)
−in(γ )| = OP (n−1/2).

This with (25) implies (26).
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Proof of Theorem 1. 1. We will show that ϑ̂
(k)

n

P−→ ϑ (k) as n → ∞.

Let S(k)∞ (γ ) = E s(ξ (k), γ ). Assumptions (C3) and (C4) imply that S(k)∞ (γ ) is

continuous on γ ∈ �. By (C5), |S(k)∞ (γ )| > 0 for all γ �= ϑ (k).
Fix any ε > 0 and consider Nε = {γ ∈ � : |γ − ϑ (k)| ≥ ε}. Then

smin = inf
γ∈Nε

|S(k)∞ (γ )| > 0.

For γ ∈ Nε

|S(k)
n (γ )| ≥ |S(k)∞ (γ )| − |S(k)∞ (γ ) − S(k)

n (γ )|
≥ smin − sup

γ∈�

|S(k)∞ (γ ) − S(k)
n (γ )|.

So

P
{

inf
γ∈Nε

|S(k)
n (γ )| ≤ smin

2

}
≤ P

{
sup
γ∈�

|S(k)∞ (γ ) − S(k)
n (γ )| ≥ smin

2

}
.

Applying Lemma 4 with ψj ;n = s one obtains that

sup
γ∈�

|S(k)∞ (γ ) − S(k)
n (γ )| P−→ 0 (38)

as n → ∞. Therefore

P
{

inf
γ∈Nε

|S(k)
n (γ )| ≤ smin

2

}
→ 0.

Since S(k)
n (ϑ̂

(k)

n ) = 0, this implies P{ϑ̂ (k)

n ∈ Nε} → 0 as n → ∞, i.e. ϑ̂
(k)

n

P−→ ϑ (k).
2. Let us show (15).
By Lemma 4,

max
i=1,...,n

sup
γ∈�

|S(k)
−in − S(k)∞ (γ )| P−→ 0. (39)

Then

P
{

min
i=1,...,n

inf
γ∈Nε

|S(k)
−in(γ )| ≤ smin

2

}

≤ P

{
max

i=1,...,n
sup
γ∈�

|S(k)∞ (γ ) − S(k)
−in(γ )| ≥ smin

2

}
P−→ 0.

From this we obtain (15) by the same way as in the first part of the proof.

Proof of Theorem 2. The proof follows the lines of the proof of Theorem A.10 in
[6] with the use of (38) and (39) instead of the law of large numbers.

Proof of Theorem 4. Let

sj ;n(ξ j ;n, γ ) = s(ξ j ;n, γ ) − E s(ξ j ;n, γ ).
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Then, due to (6),

n∑
j=1

al
j ;nsj ;n(ξ j ;n, γ ) =

n∑
j=1

al
j ;ns(ξ j ;n, γ ) −

M∑
m=1

n∑
j=1

al
j ;np

m
j ;n E s(ξ (m), γ )

=
n∑

j=1

al
j ;ns(ξ j ;n, γ ) = S(l)

n (γ ).

So

S(l)
n (ϑ̂

(l)

n ) =
n∑

j=1

al
j ;nsj ;n(ξ j ;n, ϑ̂

(l)

n ) = 0. (40)

Similarly,

S(l)
−in(ϑ̂

(l)

−in) =
∑
j �=i

al
j ;−insj ;n(ξ j ;n, ϑ̂

(l)

−in) = 0. (41)

By the Mean Value theorem, there exists t lni ∈ [0, 1] such that

− S(l)
−in(ϑ̂

(l)

n ) = S(l)
−in(ϑ̂

(l)

−in) − S(l)
−in(ϑ̂

(l)

n ) = Ṡ(l)
−in(ζ

(l)
−in)(ϑ̂

(l)

−in − ϑ̂
(l)

n ), (42)

where
ζ

(l)
−in = (1 − t lni)ϑ̂

(l)

−in + t lni ϑ̂
(l)

n .

Observe that, by Assumption (JK1),

|ṡj ;n(x, γ 1) − ṡj ;n(x, γ 2)| ≤ 2h(x)|γ 1 − γ 2|.
Applying Lemma 4 with ψj ;n = ṡ(l)

j ;n, ρ(γ 1, γ 2), we obtain

max
i=1,...,n

sup
γ∈�

|Ṡ(l)
−in(γ ) − M(l)(γ )| P−→ 0 (43)

as n → ∞.
By Assumption (JK1), applying the Lebesgue Dominated Convergence theorem,

we obtain M(l)(γ ) → M(l)(ϑ (l)) as γ → ϑ (l). So, by Assumptions (JK2) and (JK3),
we obtain

max
i=1,...,n

|Ṡ(l)
−in(ζ

(l)
−in) − M(l)(ϑ (l))| P−→ 0.

By (AN5) M(l)(ϑ (l)) = M(l) is nonsingular, so

P{det Ṡ(l)
−in(ζ

(l)
−in) �= 0,∀i = 1, . . . , n} → 1

and
�l

n = max
i=1,...,n

|(Ṡ(l)
−in(ζ

(l)
−in))

−1| = Op(1). (44)

So, with probability which tends to 1 as n → ∞,

|ϑ̂ (l)

−in − ϑ̂
(l)

n | = |(Ṡ(l)
−in(ζ

(l)
−in))

−1(−S(l)
−in(ϑ̂n))| ≤ �l

n|S(l)
−in(ϑ̂

(l)

n )|
= �l

n|S(l)
−in(ϑ

(l)) + Ṡ(l)
−in(ζ̃

(l)

−in)(ϑ̂
(l)

n − ϑ (l))|,
(45)
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where ζ̃
(l)

−in are some intermediate points between ϑ̂
(l)

n and ϑ (l). From (43) and As-
sumption (JK2) we obtain

Ṡ(l)
−in(ζ̃

(l)

ni )(ϑ̂
(l)

n − ϑ (l)) = OP (n−1/2). (46)

Then

S(l)
−in(ϑ

(l)) = S(l)
n (ϑ (l)) − al

i;nsi;n(ξ i;n,ϑ (l)) −
∑
j �=i

(al
j ;n − al

j ;−in)sj ;n(ξ j ;n,ϑ (l)).

Observe that E sj ;n(ξ j ;n,ϑ (l)) = 0 and

E |S(l)
n (ϑ (l))|2 =

n∑
j=1

(a
(l)
j ;n)

2 E |sj ;n(ξ j ;n,ϑ (l))|2 = O(n−1)

due to Lemma 1. So S(l)
n (ϑ (l)) = OP (n−1/2).

By Lemmas 1, 2 and Assumption (JK1),

max
i=1,...,n

|al
i;nsi;n(ξ i;n,ϑ (l)) +

∑
j �=i

(al
j ;n − al

j ;−in)sj ;n(ξ j ;n,ϑ (l))| = OP (nβ−1) (47)

for any β ≥ 1/α. With β = 1/2 we get

max
i=1,...,n

|S(l)
−in(ϑ

(l))| = OP (n−1/2).

This with (44)–(46) yields

max
i=1,...,n

|ϑ̂ (l)

−in − ϑ̂
(l)| = OP (n−1/2). (48)

Let M(l)
−in = Ṡ(l)

−in(ζ
(l)
−in). By (40)–(42), we obtain

ϑ̂
(l)

−in − ϑ̂
(l)

n = (M(l)
−in)

−1(S(l)
n (ϑ̂

(l)

n ) − S(l)
−in(ϑ̂

(l)

n ))

= (M(l)
−in)

−1

⎛
⎝al

i;nsi;n(ξ i;n, ϑ̂
(l)

n )−
∑
j �=i

(al
j ;n−al

j ;−in)sj ;n(ξ j ;n, ϑ̂
(l)

n )

⎞
⎠.

(49)
Put

U(l)
i = al

i;nsi;n(ξ i;n,ϑ (l)) +
∑
j �=i

(al
j ;n − al

j ;−in)sj ;n(ξ j ;n,ϑ (l)), (50)

�
(l)U
i =al

i;n(si;n(ξ i;n, ϑ̂
(l)

n ) − si;n(ξ i;n,ϑ (l)))

+
∑
j �=i

(al
j ;n − al

j ;−in)(sj ;n(ξ j ;n, ϑ̂n) − sj ;n(ξ j ;n,ϑ (l))),
(51)

�
(l)M
i = (M(l)

−in))
−1 − (M(l))−1. (52)
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Then, by (49),

ϑ̂
(l)

−in − ϑ̂
(l)

n = ((M(l))−1 + �
(l)M
i )(U(l)

i + �
(l)U
i ).

So

V̂(k,m)
n = n

n∑
i=1

(ϑ̂
(k)

−in − ϑ̂
(k)

n )(ϑ̂
(m)

−in − ϑ̂
(m)

n )T = n

n∑
i=1

vi, (53)

where

vi = ((M(k))−1 + �
(k)M
i )(U(k)

i + �
(k)U
i )(U(m)

i + �
(m)U
i )T ((M(m))−1 + �

(m)M
i )−T .

(54)
Consider

Ṽ(k,m)
n = n

n∑
i=1

ṽi , ṽi = (M(k))−1U(k)
i (U(m)

i )T (M(m))−T . (55)

We will show that
|V̂(k,m)

n − Ṽ(k,m)
n | P−→ 0, as n → ∞, (56)

and
Ṽn(k,m)

P−→ V(k,m), as n → ∞. (57)

Convergences (56) and (57) for all k,m = 1, . . . ,M imply the statement of the
theorem.

To show (56) consider the following expansion

vi − ṽi = v1
i + v2

i + v3
1 + v4

1,

where

v1
i = �

(k)M
i (U(k)

i + �
(k)U
i )(U(m)

i + �
(m)U
i )T ((M(m))−1 + �

(m)M
i )T ,

v2
i = (M(k))−1�

(k)U
i (U(m)

i + �
(m)U
i )T ((M(m))−1 + �

(m)M
i )T ,

v3
i = (M(k))−1U(k)

i (�
(m)U
i )T ((M(m))−1 + �

(m)M
i )T ,

v4
i = (M(k))−1U(k)

i (U(m)
i )T ((�

(m)M
i )T .

(58)

Let us estimate each vl
i separately. At first we bound �(k)M .

Applying Lemma 4 to ψj ;n(x, γ ) = ∂

∂γ (l) ṡj ;n(x, γ ), l = 1, . . . , d , by the same

way as for S(k)
−in one obtains

max
i=1,...,n

sup
γ∈�

∣∣∣∣ ∂

∂γ l
S(k)

−in(γ )

∣∣∣∣ = Op(1). (59)

Then, by the Mean Value theorem and Assumption (JK2), we get

max
i=1,...,n

|Ṡ(k)
−in(ζ

(k)
−in) − Ṡ(k)

−in(ϑ
(k))| = OP (1)OP (n−1/2) = OP (n−1/2). (60)
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Applying Lemmas 1 and 2 by the same way as in (47) to ṡ(l)
j ;n we obtain

max
i=1,...,n

|Ṡ(k)
−in(ϑ

(k)) − Ṡ(k)(ϑ (k))| = OP (nβ−1). (61)

Variances of each entry of Ṡ(k)
n (ϑ) can be estimated as O(n−1), so

|Ṡ(k)
n (ϑ (k)) − M(k)| = OP (n−1/2). (62)

Since M(k)
−in = Ṡ(k)

−in(ζ
(k)
−in), formulas (60)–(62) yield

max
i=1,...,n

|M(k)
−in − M(k)| = OP (n−1/2),

So, due to Assumption (AN5),

max
i=1,...,n

|�(k)M
i | = OP (n−1/2). (63)

By Lemmas 1 and 2 and Assumption (JK2),

max
i=1,...,n

|U(k)
i | = OP (nβ−1). (64)

Let us bound

max
i=1,...,n

|�(k)U
i | ≤ max

i=1,...,n
(|ak

i;n)| · |ṡi;n(ζ i )| · |ϑ̂ (k)

n − ϑ (k)|

+
∑
j �=i

|ak
j ;n − ak

j ;−in| · |ṡi;n(ζ j )| · |ϑ̂ (k)

n − ϑ (k)|. (65)

(here ζ j are some intermediate points between ϑ̂
(k)

n and ϑ (k)).

By Lemma 2, maxj=1,...,n supγ∈� |ṡj ;n(γ )| = OP (nβ). So (65), Lemma 1 and
(JK2) imply

max
i=1,...,n

|�(k)U
i | = OP (nβ−3/2). (66)

Now we bound vl
i defined by (58).

By (63), (64) and (66),

max
i=1,...,n

|v1
i | ≤ max

i=1,...,n
|�(k)M

i | · (|U(k)
i | + |�(k)U

i |)

· (|U(m)
i | + |�(m)U

i |)(|(M(m))−1| + |�(m)M
i |)

= OP (n−1/2)OP (nβ−1)2OP (1) = OP (n2β−5/2).

Similarly,
max

i=1,...,n
|v4

i | = OP (n2β−5/2).
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For v2
i (and, similarly, v3

i ), we have

max
i=1,...,n

|v2
i | ≤ max

i=1,...,n
|(M(k))−1| · |�(k)U

i |

· (|U(m)
i | + |�(m)U

i |)(|(M(m))−1| + |�(m)M
i |)

= OP (nβ−3/2)OP (nβ−1)OP (1) = OP (n2β−5/2).

Therefore

|V̂(m,k)
n − Ṽ(m,k)

n | ≤ n

n∑
i=1

|vi − ṽi | ≤ n2 max
i=1,...,n

4∑
l=1

|vl
i | = OP (n2β−1/2) = oP (1)

for 1/α ≤ β < 1/4. (Recall that we can take any β ≥ 1/α and α > 4).
So (56) holds. To prove the theorem we need only to verify (57).
Consider

Ẑ(k,m)
n = n

n∑
i=1

U(k)
i (U(m)

i )T .

Then E Ẑ(k,m)
n = Z̄1,n + Z̄2,n, where

Z̄1,n = n

n∑
j=1

ak
j ;na

m
j ;n E sj ;n(ξ j ;n,ϑ (k))sj ;n(ξ j ;n,ϑ (m)),

Z̄2,n = n

n∑
j=1

∑
j �=i

(ak
j ;n − ak

j ;−in)(a
m
j ;n − am

j ;−in) E sj ;n(ξ j ;n,ϑ (k))sj ;n(ξ j ;n,ϑ (m)).

By Lemma 1,

max
i=1,...,n

|
∑
j �=i

(ak
j ;n−ak

j ;−in)(a
m
j ;n−am

j ;−in)E sj ;n(ξ j ;n,ϑ (k))sj ;n(ξ j ;n,ϑ (m))|=O(n−3),

so Z̄2,n = n2O(n−3) = O(n−1). This implies

E Ẑ(k,m)
n ∼ Z̄1,n → Z(k,m). (67)

Let us bound

E |Ẑ(k,m)
n − E Ẑ(k,m)

n |2 ≤
d∑

p,q=1

Var(Ẑpq(k,m)
n ) (68)

(here and below Ẑ
pq(k,m)
n is the (p, q) entry of the matrix Ẑ(k,m)

n , U
p(k)
i is the p-th

entry of the vector U(k)).
Consider

Var(Ẑpq(k,m)
n ) = n2

n∑
i=1

Var(Up(k)
i U

q(m)
i ) ≤ n3 max

i,p,q
E(U

p(k)
i U

q(m)
i )2

≤ n3
√

max
i,p,q

E(U
p(k)
i )4 E(U

q(m)
i )4 ≤ n3 max

i,p,l
E(U

p(l)
i )4.

(69)
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(We applied the Cauchy–Schwarz inequality here.)
Let ηj = s

p

j ;n(ξ j ;n,ϑ (k)), bij = ak
j ;n − ak

j ;−in
. Then E ηi = 0, so

E(U
p(k)
i )4 = E(ak

i ηi +
∑
j �=i

bij ηj )
4 = J1;n + J2;n + J3,n, (70)

where
J1;n = (ak

i;n)
4 E(ηi)

4, J2;n = 6(ak
i;n)

2 E(ηi)
2 E(

∑
j �=i

bij ηj )
2,

J3;n = E(
∑
j �=i

bij ηj )
4.

By Assumption (JK1) and Lemma 1, J1;n = O(n−4),

J2;n ≤ C

n2

∑
j �=i

(bij )
2 E(ηj )

2 = O(n−5),

J3;n ≤
∑
j �=i

(bij )
4 E(ηj )

4 + 6
∑

j1,j2 �=i

(bij1)
2(bij2)

2 E(ηj1)
2 E(ηj2)

2

= O(n−7) + n2O(n−8) = O(n−6).

So, from (70) we obtain
sup
i,n

E(U
p(l)
i )4 = O(n−4)

and (69), (68) yield

E |Ẑ(k,m)
n − E Ẑ(k,m)

n |2 = O(n−4)n3 = O(n−1).

This with (67) imply (57).
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