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Abstract In this paper the study of a three-parametric class of Gaussian Volterra processes
is continued. This study was started in Part I of the present paper. The class under consid-
eration is a generalization of a fractional Brownian motion that is in fact a one-parametric
process depending on Hurst index H . On the one hand, the presence of three parameters gives
us a freedom to operate with the processes and we get a wider application possibilities. On
the other hand, it leads to the need to apply rather subtle methods, depending on the inter-
vals where the parameters fall. Integration with respect to the processes under consideration
is defined, and it is found for which parameters the processes are differentiable. Finally, the
Volterra representation is inverted, that is, the representation of the underlying Wiener process
via Gaussian Volterra process is found. Therefore, it is shown that for any indices for which
Gaussian Volterra process is defined, it generates the same flow of sigma-fields as the underly-
ing Wiener process – the property that has been used many times when considering a fractional
Brownian motion.
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1 Introduction and preliminaries

This paper is a continuation of the paper [7], and we adhere to the same basic notation
and the same object. Namely, let T > 0 and let {Ws, s ∈ [0, T ]} be a Wiener process.
We consider the Gaussian process with Volterra kernel (Gaussian Volterra process) of
the form

Xt =
∫ t

0
K(t, s) dWs, (1)

with

K(t, s) = sα

∫ t

s

uβ (u − s)γ du 1s≤t , (2)

so that

Xt =
∫ t

0
sα

∫ t

s

uβ (u − s)γ du dWs. (3)

According to [7], condition
∫ t

0 K2(t, s)ds < ∞ is satisfied whenever

α > −1

2
, γ > −1, and α + β + γ > −3

2
. (4)

Additionally, we proved in [7] that under condition (4) the process X is Hölder con-
tinuous on the interval [0, T ] up to order min

(
1, γ + 3

2 , α + β + γ + 3
2

)
.

Note that in the case where α = 1/2 − H , β = H − 1/2, γ = H − 3/2,
H ∈ (1/2, 1), process X is a fractional Brownian motion. For integration of a deter-
ministic function with respect to a fractional Brownian motion, we refer to [12]. Vari-
ous approaches to stochastic integration with respect to a fractional Brownian motion
are developed in [2, 3, 11]. Another approach to the integration of a nonrandom func-
tions with respect to the Gaussian processes are considered in [6, Section 3.5]. The
question of the inverse representation of the underlying Wiener process via fractional
Brownian motion was obtained in [10] and clarified in [9].

Thus, the process X under consideration is a generalization of a fractional Brow-
nian motion, moreover, its study requires rather subtle reasoning and estimates that
depend on the values of the parameters α, β and γ . In [7] we proved that the process
X satisfies the single-point Hölder condition up to order α +β +γ + 3

2 at point 0, the
“interval” Hölder condition up to order min(γ + 3

2 , 1) on the interval [t0, T ] (where
0 < t0 < T ), and the Hölder condition up to order min(α +β +γ + 3

2 , γ + 3
2 , 1) on

the entire interval [0, T ]. In the present paper we are interested in the integration w.r.t.
process X and the inverse representation of W via process X. Thus, quite traditional
problems are considered, but their solution requires different analytical approaches
depending on the values of the parameters, and this is the interest of this study.

For the factional Brownian motion BH , the Volterra representation (1) is called
the Molchan representation. The Wiener process W in this representation can be ex-
pressed with BH step-by-step, as it is shown in [10]. The inverse representation in
the form Wt = ∫ t

0 L(t, s) dBH is obtained in [5]. (More generally, [5] deals with

representations of the form B
H1
t = ∫ t

0 L(t, s) dB
H2
s , where BH1 and BH2 are two
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fractional Brownian motions with different Hurst indices which share the Wiener
process in their Molchan representations.)

The inverse Volterra representation of the process of the form

Xt =
∫ t

0
a(s)

∫ t

s

b(u) c(u − s) du dWs

is obtained in [8]. We reuse this representation for the process (3) whenever possible,
i.e., when (4) holds true and γ < 0. However, the conditions of [8, Proposition 2] are
satisfied if α ≤ 0 (in addition to (4) and γ < 0), and are not satisfied if α > 0, while
the inverse representation is valid anyway. Therefore, we have to justify the inverse
representation for the case where the results of [8] are not applicable.

In Section 2 we develop integration of deterministic functions with respect to the
process X. We construct a Banach space Ep,k of functions such that the integration of
functions in Ep,k can be obtained by continuous extension of integration of piecewise-
constant functions. In reality, the space Ep,k is a weighted Lp([0, T ], μ) space for
some measure μ.

In Section 3 we find the set of parameters for which the process X is differentiable.
For that end, we define a process Ẋt = tβ

∫ t

0 sα(t−s)γ dWs , and prove that dXt/dt =
Ẋt (under some conditions for α, β and γ ; see Corollary 2 for details). We also
study under what conditions the process Ẋ is differentiable, and thus the process X is
differentiable several times.

In Section 4 we find an expression for the Wiener process W in the Volterra repre-
sentation (3). The form of the expression depends on whether γ ∈ (−1, 0) or γ ≥ 0.
If γ ∈ (−1, 0), then the inverse representation has the form Wv = ∫ v

0 L(v, t) dXt . If
γ ≥ 0, we use the process Ẋ to reconstruct W .

In the appendices we present auxiliary results. In Appendix A we restate the
Hölder and Young inequalities in a nonstandard form, and propose a lemma that helps
to apply the Young inequality. In Appendix B we present some basics of fractional
calculus, which allows us to solve the Abel equation needed to invert the Volterra
representation for γ > 0.

2 Integration with respect to the Volterra process

2.1 Classes of integrable functions
Let {Xt, t ∈ [0, T ]} be a Volterra process defined in (1) with kernel K(t, s) of the
form (2), and let φ(t) be a nonrandom function. In [11], for linear operator K∗ defined
as

K∗ 1[0,t](s) = K(t, s), (5)

the integral with respect to the process X is defined as∫ T

0
φ(t) dXt =

∫ T

0
K∗φ(s) dWs.

Since in the case under consideration the kernel K(t, s) is absolutely continuous in t

and K(s, s) = 0, we can write

K(u, s) =
∫ u

s

∂K(t, s)

∂t
dt,
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and so the obvious choice for operator K∗ is

(K∗φ)(s) =
∫ T

s

φ(t)
∂K(t, s)

∂t
dt.

If it will be necessary to distinguish, operator K∗ will be marked as K∗
(·,·,·), by the

values of the powers in the kernel K . Now,∫ T

0
φ(t) dXt =

∫ T

0

∫ T

s

φ(t)
∂K(t, s)

∂t
dt dWs.

So, the integral with respect to the Volterra process (3) is formally defined as∫ T

0
φ(t) dXt =

∫ T

0
sα

∫ T

s

φ(t)tβ(t − s)γ dt dWs. (6)

Now our goal is to define the class of functions φ for which the integral
∫ T

0 φ(t) dXt

is well-defined. To that end, for k ∈ R and p ∈ [1,+∞) we consider the Banach
space

Ep,k =
{
φ : [0, T ] → R : φ is Borel measurable and

∫ T

0
|φ(t)|p tpk dt < ∞

}

of functions taken up to a.e. equivalence, with the norm

‖φ‖Ep,k
=

(∫ T

0
|φ(t)|p tpk dt

)1/p

.

Under additional condition pk > −1 the space Ep,k contains indicators of intervals
1[0,t], 0<t≤T . Regardless whether or not pk > −1, the space Ep,k contains indicators
of intervals 1[t0,t], 0 < t0 < t ≤ T , and the span of these indicators is a dense subset in
Ep,k .

Proposition 1. Let (4) hold true, let p ≥ 1 and

p > max
( 2

2γ + 3
,

2

3 + 2α + 2β + 2γ

)
. (7)

Then the operator

(K∗φ)(s) = sα

∫ T

s

φ(t) tβ (t − s)γ dt (8)

is a bounded linear operator Lp[0, T ] → L2[0, T ].
Proof. For p = ∞ Proposition 1 follows from the proof of Theorem 1 [7]. So, let
p is finite, and let us calculate the norms of functions on the interval [0, T ]. In what
follows, ‖f ‖p is a short-hand notation for ‖f ‖Lp[0,T ]. With this notation,

‖tα‖p = (αp + 1)−1/pT α+1/p,
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as long as p > 0 and αp > −1.
To prove the well-definedness and boundedness of the operator K∗, it suffices to

show that∫ T

0
|ψ(s)| sα

∫ T

s

|φ(t)| tβ(t − s)γ dt ds ≤ c(p; α, β, γ ) ‖ψ‖2 ‖φ‖p (9)

for all ψ ∈ L2[0, T ] and for some constant c(p; α, β, γ ) not depending on ψ . Con-
sider six cases.

Case 1. Let γ ≥ 0. Notice that under conditions of Proposition 1, inequalities 1
2 +α >

0 and 1
p

− 1 − β − γ < 1
2 + α hold true. Choose an arbitrary δ ≥ 0 such that

1
p

− 1 − β − γ < δ < 1
2 + α.

Obviously, in the left-hand integral in (9) we have that s≤t and t−s≤t . Therefore∫ T

0
|ψ(s)| sα

∫ T

s

|φ(t)| tβ(t − s)γ dt ds ≤
∫ T

0
|ψ(s)| sα−δ

∫ T

s

|φ(t)| tδ+β+γ dt ds

≤
∫ T

0
|ψ(s)| sα−δ ds

∫ T

0
|φ(t)| tδ+β+γ dt.

By the Hölder inequality,∫ T

0
|ψ(s)| sα−δ ds ≤ ‖ψ‖2 ‖sα−δ‖2,

∫ T

0
|φ(t)| tδ+β+γ dt ≤ ‖φ‖p‖tδ+β+γ ‖p/(p−1).

Thus, (9) holds true with

c(p; α, β, γ ) = ‖sα−δ‖2‖tδ+β+γ ‖p/(p−1),

and the finiteness of the norms ‖sα−δ‖2 and ‖tδ+β+γ ‖p/(p−1) follows from the in-
equalities p ≥ 1 and 1

p
− 1 − β − γ < δ < 1

2 + α.

Case 2. Let −1 < γ < 0 and 1
p

< γ + 1. Let us find ε from the following equation:

1

p
+

(
−

(
α + 1

2 − ε
)+ − β

)+
− γ + 2ε = 1. (10)

It follows from assumption (7) that 1
p

< 3
2 + α + β + γ . Together with assumption

1
p

< γ + 1, this implies that the left-hand side of (10) is less than 1 for ε = 0. In

addition, the left-hand side of (10) is obviously greater than 1 for ε = 1
2 . Hence, there

exists the unique ε ∈ (0, 1
2 ) that satisfies (10); take it for the rest of the proof.

As before, s ≤ t , and thus

s

(
α+ 1

2 −ε
)+

≤ t

(
α+ 1

2 −ε
)+

. (11)

Since α − (
α + 1

2 − ε
)+ = min

(
α, ε − 1

2

)
,

s
α−

(
α+ 1

2 −ε
)+

tβ = s
min

(
α, ε− 1

2

)
tβ . (12)
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Multiplying (11) by (12), we get

sαtβ ≤ s
min

(
α, ε− 1

2

)
t

(
α+ 1

2 −ε
)++β

.

Hence,∫ T

0
|ψ(s)| sα

∫ T

s

|φ(t)| tβ(t − s)γ dt ds ≤

≤
∫ T

0
|ψ(s)| smin

(
α, ε− 1

2

) ∫ T

s

|φ(t)| t
(
α+ 1

2 −ε
)++β

(t − s)γ dt ds.

Define q and r from the equations

1

q
=

(
−

(
α + 1

2 − ε
)+ − β

)+
+ ε,

1

r
= ε − γ,

respectively. Then q > 0 and r > 0 and, according to (10), 1
p

+ 1
q

+ 1
r

= 1.
Denote

hs(t) =
{

0 if t ∈ [0, s],
(t − s)γ if t ∈ (s, T ]

and apply the Hölder inequality:

∫ T

s

|φ(t)| t
(
α+ 1

2 −ε
)++β

(t − s)γ dt =
∫ T

0
|φ(t)| t

(
α+ 1

2 −ε
)++β

hs(t) dt ≤

≤ ‖φ‖p

∥∥∥∥∥t

(
α+ 1

2 −ε
)++β

∥∥∥∥∥
q

‖hs‖r ≤ ‖φ‖p

∥∥∥∥∥t

(
α+ 1

2 −ε
)++β

∥∥∥∥∥
q

‖h0‖r .

Again, with the Hölder inequality∫ T

0
|ψ(s)| sα

∫ T

s

|φ(t)| tβ(t − s)γ dt ds ≤

≤
∫ T

0
|ψ(s)| smin

(
α, ε− 1

2

)
dt ‖φ‖p

∥∥∥∥∥t

(
α+ 1

2 −ε
)++β

∥∥∥∥∥
q

‖h0‖r ≤

≤ ‖ψ‖2

∥∥∥∥s
min

(
α, ε− 1

2

)∥∥∥∥
2
‖φ‖p

∥∥∥∥∥t

(
α+ 1

2 −ε
)++β

∥∥∥∥∥
q

‖h0‖r .

Inequality (9) holds true with

c(p; α, β, γ ) =
∥∥∥∥s

min
(
α, ε− 1

2

)∥∥∥∥
2

∥∥∥∥∥t

(
α+ 1

2 −ε
)++β

∥∥∥∥∥
q

‖h0‖r .

Case 3. −1 < γ < 0, 1
p

≥ γ + 1, α ≤ 0 and β ≤ 0. Due to assumption (7),
1
p

< 3
2 + α + β + γ , whence α + β > − 1

2 . Apply Lemma 2 for a1 = 1
2 − α − β,
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a2 = 1
p

, and a3 = −γ , and find ε1 and ε3 such that

1

2
− α − β + ε1 < 1, −γ + ε3 < 1,

1

2
− α − β + ε1 + 1

p
− γ + ε3 = 2.

By the Hölder inequality for nonconjugate exponents

‖ψ(s)sα+β‖1/(0.5+ε1−α−β) ≤ ‖ψ‖2‖sα+β‖1/(ε1−α−β).

Since β ≤ 0 and s ≤ t on the integration domain of (9), we have that tβ ≤ sβ .
Then by the Young inequality∫ T

0
|ψ(s)| sα

∫ T

s

|φ(t)| tβ(t−s)γ dt ds ≤
∫ T

0
|ψ(s)| sα+β

∫ T

s

|φ(t)| (t−s)γ dt ds

≤ ‖ψ(s)sα+β‖1/(0.5+ε1−α−β)‖φ‖p‖uγ ‖1/(−γ+ε3)

≤ ‖ψ‖2 ‖sα+β‖1/(ε1−α−β) ‖φ‖p ‖uγ ‖1/(−γ+ε3),

and (9) holds true with c(p; α, β, γ ) = ‖sα+β‖1/(ε1−α−β) ‖uγ ‖1/(−γ+ε3).

Case 4. −1 < γ < 0, 1
p

≥ γ +1, α ≤ 0, β ≥ 0, and β +γ < 0. These imply β < 1.
Hence

tβ < sβ + (t − s)β for all s ∈ (0, t) (13)

due to concavity of sβ + (t − s)β and the fact that for s = 0 and s = t (13) becomes
an equality. Thus,∫ T

0
|ψ(s)| sα

∫ T

s

|φ(t)| tβ(t−s)γ dt ds

≤
∫ T

0
|ψ(s)| sα+β

∫ T

s

|φ(t)| (t−s)γ dt ds +
∫ T

0
|ψ(s)| sα

∫ T

s

|φ(t)| (t−s)β+γ dt ds.

Apply Lemma 2 for a1 = 1
2 +(α+β)−, a2 = 1

p
and a3 = −γ . Due to the same reason

as in Case 3, α + β > − 1
2 ; hence, 0 < 1

2 + (α + β)− < 1. Obviously, 0 < 1
p

≤ 1
and 0 < −γ < 1. Due to (7),

1

p
<

3

2
+ α + β + γ and

1

p
<

3

2
+ γ,

whence
1

2
+ (α + β)− + 1

p
− γ < 2.

By Lemma 2, there exist ε1 and ε3 such that

1

2
+ (α + β)− + ε1 < 1, −γ + ε3 < 1,

1

2
+ (α + β)− + ε1 + 1

p
− γ + ε3 = 2.
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By the Young inequality and the Hölder inequality for nonconjugate exponents,∫ T

0
|ψ(s)| sα+β

∫ T

s

|φ(t)| (t−s)γ dt ds

≤ ‖ψ(s)sα+β‖1/(0.5+(α+β)−+ε1)‖φ‖p‖uγ ‖1/(−γ+ε3)

≤ ‖ψ‖2 ‖sα+β‖1/((α+β)−+ε1) ‖φ‖p ‖uγ ‖1/(−γ+ε3).

Apply Lemma 2 again, this time for a1 = 1
2 −α, a2 = 1

p
and a3 = −β − γ . Here

conditions of Lemma 2 are easier to check. By Lemma 2, there exist δ1 and δ3 such
that

1

2
− α + δ1 < 1, −β − γ + δ3 < 1,

1

2
− α + δ1 + 1

p
− β − γ + δ3 = 2.

By the Young inequality and the Hölder inequality for nonconjugate exponents,∫ T

0
|ψ(s)| sα

∫ T

s

|φ(t)| (t−s)β+γ dt ds

≤ ‖ψ(s)sα‖1/(0.5−α+δ1)‖φ‖p ‖uβ+γ ‖1/(−γ−β+δ3)

≤ ‖ψ‖2 ‖sα‖1/(δ1−α) ‖φ‖p ‖uβ+γ ‖1/(δ3−β−γ ).

Thus, inequality (9) holds true with

c(p; α, β, γ ) = ‖sα+β‖1/((α+β)−+ε1) ‖uγ ‖1/(−γ+ε3)

+ ‖sα‖1/(δ1−α) ‖uβ+γ ‖1/(δ3−β−γ ).

Case 5. −1 < γ < 0, 1
p

≥ γ + 1, α ≤ 0, β ≥ 0, and β + γ ≥ 0. Similarly to (13),

t−γ < s−γ + (t − s)−γ for all s ∈ (0, t).

Thus,∫ T

0
|ψ(s)| sα

∫ T

s

|φ(t)| tβ(t−s)γ dt ds

≤
∫ T

0
|ψ(s)| sα−γ

∫ T

s

|φ(t)| tβ+γ (t−s)γ dt ds +
∫ T

0
|ψ(s)| sα

∫ T

s

|φ(t)| tβ+γ dt ds

≤
∫ T

0
|ψ(s)| sα−γ

∫ T

s

|φ(t)| tβ+γ (t−s)γ dt ds +
∫ T

0
|ψ(s)| sα ds

∫ T

0
|φ(t)| tβ+γ dt.

Apply Lemma 2 for a1 = 1
2 + (α − γ )−, a2 = 1

p
and a3 = −γ . From (7) it follows

that 1
2 − γ + 1

p
< 2. Since α > − 1

2 and p ≥ 1, 1
2 − α + 1

p
< 2. Hence,

1

2
+ (α − γ )− + 1

p
− γ = 1

2
− min(α, γ ) + 1

p
< 2.
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By Lemma 2 there exist ε1 > 0 and ε3 > 0 such that

1

2
+ (α − γ )− + ε1 < 1, ε3 − γ < 1,

1

2
+ (α − γ )− + ε1 + 1

p
+ ε3 − γ = 2.

By the Young inequality and the Hölder inequality for nonconjugate exponents,∫ T

0
|ψ(s)| sα−γ

∫ T

s

|φ(t)| tβ+γ (t−s)γ dt ds

≤ ‖ψ(s)sα−γ ‖1/(0.5+(α−γ )−+ε1)‖φ‖pT β+γ ‖uγ ‖1/(ε3−γ )

≤ ‖ψ‖2‖sα−γ ‖1/((α−γ )−+ε1) ‖φ‖pT β+γ ‖uγ ‖1/(ε3−γ ).

By the Hölder inequality∫ T

0
|ψ(s)|sα ds ≤ ‖ψ‖2‖sα‖2,

∫ T

0
|φ(t)|tβ+γ dt ≤ ‖φ‖p‖tβ+γ ‖p/(p−1).

Thus, inequality (9) holds true with

c(p; α, β, γ ) = ‖sα−γ ‖1/((α−γ )−+ε1) T β+γ ‖uγ ‖1/(ε3−γ ) + ‖sα‖2 ‖tβ+γ ‖p/(p−1).

Case 6. α > 0. We have already proved Proposition 1 for α ≤ 0. We are going to use
it for α = 0.

On the integration domain of (9) s ≤ t , and so sα ≤ tα . We have∫ T

0
|ψ(s)| sα

∫ T

s

|φ(t)| tβ(t−s)γ dt ds ≤
∫ T

0
|ψ(s)|

∫ T

s

|φ(t)| tα+β(t−s)γ dt ds

≤ c(p; 0, α+β, γ ) ‖ψ‖2 ‖φ‖p.

The inequality (9) holds true for c(p; α, β, γ ) = c(p; 0, α+β, γ ).

Corollary 1. Let

α > −1

2
, γ > −1, p ≥ 1,

1

p
<

3

2
+ γ,

1

p
+ k <

3

2
+ α + β + γ.

Then the operator K∗ defined in (8) is a bounded linear operator Ep,k → L2[0, T ].
Proof. Recall that the operator K∗ for specific α, β and γ is denoted by K∗

(α,β,γ ).
From the definition of K∗

(α,β,γ ), it follows that

(K∗
(α,β,γ )(φ(t)tk))(s) = sα

∫ T

s

φ(t) tk+β (t − s)γ dt = (K∗
(α,β+k,γ )φ)(s).

Then

‖K∗
(α,β,γ )φ‖2 = ‖K∗

(α,β−k,γ )(φ(t)tk)‖2
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≤ c(p; α, β−k, γ ) ‖φ(t)tk‖p = c(p; α, β−k, γ ) ‖φ‖Ep,k
(14)

for any function φ such that K∗
(α,β−k,γ )

(φ(t)tk) is well-defined. Under conditions

of Corollary 1, the operator K∗
(α,β−k,γ )

: Lp[0, T ] → L2[0, T ] is bounded and
c(p; α, β−k, γ ) can be chosen as a finite number. Thus, the boundedness of the op-
erator K∗

(α,β,γ ) : Ep,k → L2[0, T ] follows from (14).

In the following definition conditions (4) are satisfied, X is a process defined
by (3), and

1 ≤ p < ∞, pk > −1,
1

p
<

3

2
+ γ,

1

p
+ k <

3

2
+ α + β + γ. (15)

Definition 1. The integral of a nonrandom function φ ∈ Ep,k with respect to the
Gaussian process X is defined as∫ T

0
φ(t) dXt =

∫ T

0
K∗φ(s) dWs =

∫ T

0
sα

∫ T

s

φ(t)tβ(t − s)γ dt dWs. (16)

Particularly, Definition 1 can be applied for 1 ≤ p < ∞, γ > −1,

α > −1

2
,

1

p
<

3

2
+ γ,

1

p
<

3

2
+ α + β + γ, and φ ∈ Lp[0, T ].

Remark 1. Under conditions of Corollary 1, (16) provides linear continuous mapping
Ep,k → L2(
,F , P), where L2(
,F ,P) is a space of square-integrable random

variables. Furthermore, if pk > −1, then (16) gives
∫ T

0 1[a,b] dXt = Xb − Xa , which
is very natural. If 1 ≤ p < ∞, then the indicators of intervals span a dense subset
in Ep,k . Thus, in Definition 1, we construct a linear and continuous extension of the
integral from the set of indicators of intervals to the entire space Ep,k .

2.2 Traditional approach
This integration is compared with the one defined in [4, 14].

The covariance function of the process X can be represented as

E Xt1Xt2 =
∫ t1

0

∫ t2

0
r(u, v) dv du,

r(u, v) =
∫ min(t1,t2)

0
sα(u − s)β(v − s)γ ds;

this representation follows from [7, Eq. (8)]. The integrand satisfies relations r(u, v) >

0 and r ∈ L1([0, T ]2), since
∫ T

0

∫ T

0 r(u, v) du dv = E X2
T < ∞.

The Hilbert space H is defined as the space that contains piecewise-constant
(staircase) functions, equipped with scalar product 〈1(0,t1], 1(0,t2]〉, and then com-
pleted.

Let H0 be the set of functions φ : [0, T ] → R, for which∫ T

0

∫ T

0
|φ(u)r(u, v)φ(v)| dv du < ∞.

The space H0 contains all piecewise-constant functions.



Gaussian Volterra processes with power-type kernels. Part II 441

The space H0 in embedded into H. The element f ′ ∈H corresponds to f ∈H0 if

〈f ′, g〉H =
∫ T

0

∫ T

0
f (u)r(u, v)g(v) dv du

for every piecewise-constant function g. Every element of f ∈ H0 has its counterpart
in H according to [4, Theorem 1.1].

The integration operator is an isometric linear operator H → L2(
,F , P) such
that

∫ T

0 1(0,t](s) dXs = Xt . Here L2(
,F , P) is the space of square-integrable ran-
dom variables.

Proposition 2. Let conditions (4) and (15) hold true.

1. Then Ep,k ⊂ H0, and, as the consequence, Ep,k is embedded into H.

2. If φ ∈ Ep,k , then Definition 1 yields the same integral
∫ T

0 φ(t) dXt as the one
defined in [4].

Proof. For kernel K defined in (2) and operator K∗ defined in (8), Eq. (5) holds true:
K∗ 1(0,t] (s) = K(t, s) for all t, s ∈ (0, T ].

For functions f, g : [0, T ] → [0,+∞)

∫ T

0
K∗f (s)K∗g (s) ds =

∫ T

0

∫ T

0
f (u)r(u, v)g(v) dv du;

this is proved by changing the order of integration. If φ ∈ Ep,k , then |φ| ∈ Ep,k . By
Corollary 1, K∗|φ| ∈ L2[0, T ], whence

∫ T

0

∫ T

0
|φ(u)r(u, v)φ(v)| dv du =

∫ T

0
(K∗|φ| (s))2 ds < ∞.

Thus, φ ∈ H0.
In Definition 1,

∫ T

0 φ(t) dXt = ∫ T

0 K∗φ (s) dWs . This agrees with [14, equation
(24)].

Remark 2. Inequality pk > −1 is not essential for the first statement of Proposition 2.

Remark 3. In Proposition 2, Ep,k is a proper subset of H0, that is, Ep,k = H0. Indeed,
let (4) and (15) hold true. Then there exists k′ such that k < k′ < α +β + γ + 3

2 − 1
p

.

Due to Proposition 2, Ep,k′ ⊂ H0. Since k < k′, Ep,k ⊂ Ep,k′ and Ep,k = Ep,k′ .
Hence, Ep,k = H0.

3 Differentiability of Volterra process

Consider the stochastic process

Ẋt = tβ
∫ t

0
sα(t − s)γ dWs. (17)



442 Yu. Mishura, S. Shklyar

It is well-defined if

α > −1

2
and γ > −1

2
,

and is self-similar with exponent α + β + γ + 1
2 . Let �x� stand for the least integer

that is greater or equal to x.

Proposition 3. If α > − 1
2 , β ∈ R and γ ∈ (− 1

2 , 1
2

]
, then the process Ẋ has a

modification which is Hölder continuous up to order γ + 1
2 on any interval [t0, T ],

0 < t0 < T .
If α > − 1

2 , β ∈ R and γ > 1
2 , then the process Ẋ has a modification which is

continuously differentiable on (0, T ], and, as a result, is Lipschitz continuous on any
interval [t0, T ]. Moreover, the process Ẋ is �γ − 1

2� times continuously differentiable.

Proof. The process Mt = ∫ t

0 sγ dWs has a modification that satisfies the Hölder
condition up to order 1

2 on any interval [t0, T ], t0 ∈ (0, T ).
First, consider the case γ ∈ (− 1

2 , 1
2

]
. Let λ ∈ (

0 ∨ γ, γ + 1
2

)
. The process M

satisfies the Hölder condition of order λ − γ ∈ (
0, 1

2 ) on the interval [t0, T ]. Then∫ t

0 sα(t − s)γ dWs = ∫ t

0 (t − s)γ dMs satisfies the Hölder condition of order λ due to
[10, Lemma 2.1]. Thus, the process Ẋ also satisfies the Hölder condition of order λ

on [t0, T ].
Second, consider the case γ > 1

2 . We can choose a positive integer k ∈ N and a
real number λ0 ∈ (

0, 1
2

)
such that 0 < γ − k +λ0 < 1. (We can choose k = �γ − 1

2�,
and �γ − 1

2�∨0 < λ0 < 1
2 , as �γ − 1

2� < γ + 1
2 .) The process M is Hölder continuous

of order λ0 on any interval [t0, T ]. Then the process
∫ t

0 sα(t − s)γ−k dWs = ∫ t

0 (t −
s)γ−k dMs is Hölder continuous of order γ − k + λ0 on any interval [t0, T ], and thus
continuous on (0, T ]. The process∫ t

0
sα(t − s)γ dWs = �(γ+1)

(k−1)!�(γ−k+1)

∫ t

0
(t − u)k−1

∫ u

0
sα(u − s)γ−k dWs du

is the kth antiderivative of the process �(γ+1)
�(γ−k+1)

∫ t

0 sα(t − s)γ−k dWs , and thus is k

times continuously differentiable on (0, T ]. Here and hereafter �(x) is the gamma
function. As the result, the process Ẋ is k times continuously differentiable on (0, T ].
It satisfies the Lipschitz condition on any interval [t0, T ].

The next general result is in fact the part of Lemma 2 from [7], and it will be
applied in the proof of Proposition 4.

Lemma 1. Let the process Y be self-similar with exponent H > 0 and be mean-
square continuous on [0, T ]. Additionally, let the process Y satisfy the inequality

E(YT − Yt )
2 ≤ C T 2H−2λ(T − t)2λ, t0 < t < T,

for some C > 0, λ > 0, and 0 < t0 < T . Then there exists c > 0 such that

E(Yt − Ys)
2 ≤ c (t − s)2(λ∧H), 0 ≤ s < t ≤ T .

Now let us return to our process X.
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Proposition 4. If α > − 1
2 and γ > − 1

2 , then the process Ẋ is mean-square continu-
ous and has continuous modification on (0, T ]. If, in addition, α +β +γ > − 1

2 , then
the process Ẋ is mean-square continuous and has continuous modification on [0, T ].
Proof. Path continuity of the process Ẋ on (0, T ) follows from the local Hölder or
Lipschitz condition. The process Ẋ satisfies the Hölder condition up to order (γ +
1
2 ) ∨ 1 on any finite interval [t0, T ], 0 < t0 < T . According to [1, Theorem 1], for
any λ0, 0 < λ0 < (γ + 1

2 ) ∨ 1 the incremental variance satisfies

E(Ẋt − Ẋs)
2 ≤ C(t0, T , λ0) |t − s|2λ0 ,

whence the mean-square continuity on (0, T ] follows. Furthermore,

E Ẋ2
t = E(Ẋt − Ẋ0)

2 = t2α+2β+2γ+1 B(2α+1, 2γ+1),

where B(x, y) is the beta function. Under additional condition α + β + γ > − 1
2

the process Ẋ is mean-square continuous at point 0. Due to Lemma 1, the process Ẋ

satisfies the inequality

E(Ẋt − Ẋs)
2 ≤ C1 (t − s)(2λ0)∧(2α+2β+2γ+1), 0 ≤ s < t ≤ T .

Hence, the process Ẋ has a modification that is Hölder continuous up to order λ0 ∧(
α + β + γ + 1

2

)
on the interval [0, T ] and thus is continuous at point 0.

The continuity of Ẋ allows to change the order of integration. For the process X

defined in (3),

Xt2 − Xt1 =
∫ t2

0
sα

∫ t2

s∨t1

uβ (u − s)γ du dWs

=
∫ t2

t1

uβ

∫ u

0
sα (u − s)γ dWs du =

∫ t2

t1

Ẋu du.

Corollary 2. If α > − 1
2 , γ > − 1

2 and α + β + γ > − 3
2 , then some modifications of

the processes X and Ẋ defined in (3) and (17) satisfy the relation

Xt = Xt0 +
∫ t

t0

Ẋs ds.

The process Xt is �γ + 1
2� times continuously differentiable on (0, T ], and dXt/dt =

Ẋt for 0 < t ≤ T .
If, in addition, α + β + γ > − 1

2 , then the processes X and Ẋ satisfy the relation

Xt =
∫ t

0
Ẋs ds. (18)

Then the process Xt is continuously differentiable on [0, T ].
Representation (18) is also valid for α + β + γ ∈ (− 3

2 ,− 1
2

]
. However, in this

case, the integrand Ẋ may be unbounded in the neighborhood of 0. Thus, the integral
here should be understood in improper sense:

Xt = lim
t0→0+

∫ t

t0

Ẋs ds.



444 Yu. Mishura, S. Shklyar

4 Inverse representation

In Volterra representation (1) (or, specifically, (3)) the process X is represented as the
integral with respect to the Wiener process W . We construct the representation of the
Wiener process W in (3) using the process X. However, the form of the representation
depends on whether γ ∈ (−1, 0) or γ ≥ 0, and on whether γ is integer or not.

4.1 Case γ < 0
Reduction to the integral equation
We are going to find the inverse representation to (1):

Wv =
∫ v

0
L(v, t) dXt . (19)

Assume that integration with respect to X is performed according to (6). Then the
left-hand side and the right-hand side of (19) admit the representations

Wv =
∫ v

0
dWv,∫ v

0
L(v, t) dXt =

∫ v

0

∫ v

s

L(v, t)
∂K(t, s)

∂t
dt dWs.

Thus, the sufficient and necessary condition for (19) is∫ v

s

L(v, t)
∂K(t, s)

∂t
dt = 1 (20)

for all v ∈ (0, T ] and for almost all s ∈ (0, v). For the kernel defined by (2), the
integral equation (20) turns into∫ v

s

L(v, t) sα tβ (t − s)γ dt = 1. (21)

The explicit solution
The solution to equation ∫ v

s

L(v, t)a(s)b(t)c(t − s) dt = 1

is found in Mishura et al. [8, Proposition 3]. In that solution, they use the “Sonine
pair” with the function c(s), which is a function p(s) that satisfies the integral equa-
tion ∫ t

0
p(s) c(t − s) ds = 1, t ∈ (0, T ].

The “Sonine pair” with the power function sγ exists for all γ ∈ (−1, 0); it is equal to
s−γ−1/ B(−γ, γ+1).

Now we construct a solution to equation (21) within a class of functions L(v, t),
0 < t < v < T , that satisfy the following absolute integrability condition∫ v

s

|L(v, t)| dt < ∞, 0 < s < v ≤ T . (22)



Gaussian Volterra processes with power-type kernels. Part II 445

Theorem 1. Let α > − 1
2 , β ∈ R, and −1 < γ < 0. Then the solution to the integral

equation (21) for all s and v such that 0 < s < v ≤ T is

L(v, t) = − t−β

B(γ+1,−γ )

∂

∂t

(∫ v

t

s−α(s − t)−γ−1 ds

)

= 1

B(−γ, γ+1) tβ

(
v−α(v − t)−γ−1 + α

∫ v

t

u−α−1(u − t)−γ−1 du

)
.

(23)

The solution is unique up to equality for all v ∈ (0, T ] and for almost all t ∈
(0, v).

Proof. Necessity (if the function L(v, t) is a solution to (21) under conditions (22),
then it must be defined by (23) for almost all t ∈ (0, v)). Let L(t, s) satisfy both (21)
and (22). Let us find the expression for L(t, s).

Let 0 < r < v ≤ T . Calculate the double integral∫∫
r<s<t<v

L(v, t)tβ (t − s)γ (s − r)−γ−1 dt ds. (24)

First, proof the existence.∫∫
r<s<t<v

|L(v, t)tβ (t − s)γ (s − r)−γ−1| dt ds =

=
∫ v

r

tβ |L(v, t)|
∫ t

r

(t − s)γ (s − r)−γ−1 ds dt =

= B(γ+1,−γ )

∫ v

r

tβ |L(v, t)| dt ≤

≤ B(γ+1,−γ ) max(rβ, vβ)

∫ v

r

|L(v, t)| dt < ∞.

Thus, the integral in (24) exists absolutely. Calculate it in two ways. On the one hand,∫∫
r<s<t<v

L(v, t)tβ (t − s)γ (s − r)−γ−1 dt ds =

=
∫ v

r

tβ L(v, t)

∫ t

r

(t − s)γ (s − r)−γ−1 ds dt =

= B(γ+1,−γ )

∫ v

r

tβ L(v, t) dt.

On the other hand, with (21),∫∫
r<s<t<v

L(v, t)tβ (t − s)γ (s − r)−γ−1 dt ds =

=
∫ v

r

s−α

∫ v

s

L(v, t) sαtβ(t − s)γ dt (s − r)−γ−1 ds =
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=
∫ v

r

s−α(s − r)−γ−1 ds.

Thus, L(v, t) satisfies the equation

B(γ+1,−γ )

∫ v

r

tβ L(v, t) dt =
∫ v

r

s−α(s − r)−γ−1 ds.

Hence L(v, t) can be expressed explicitly:

L(v, t) = − t−β

B(γ+1,−γ )

∂

∂t

(∫ v

t

s−α(s − t)−γ−1 ds

)

for almost all t ∈ (0, v).
Sufficiency (the function L(v, t) defined by (23) satisfies (21) and (22)). First,

consider the generic case α = 0, that is, either α ∈ (− 1
2 , 0

)
or α > 0. Let 0 < s <

v ≤ T . Then ∫ v

s

v−α

(v − t)γ+1
(t − s)γ dt = B(−γ, γ+1)

vα
,

∫ v

s

∫ v

t

u−α−1 du

(u − t)γ+1
(t − s)γ dt =

∫ v

s

u−α−1
∫ u

s

(t − s)γ dt

(u − t)γ+1
du =

=
∫ v

s

u−α−1B(γ+1,−γ ) du =

= 1

α
B(−γ, γ+1) (s−α − v−α).

Hence∫ v

s

L(v,t) sαtβ(t − s)γ dt =

= sα

B(−γ, γ+1)

∫ v

s

(
v−α

(v − t)γ+1
+ α

∫ v

t

u−α−1 du

(u − t)γ+1

)
(t − s)γ dt =

= sα

B(−γ, γ+1)

(
B(−γ, γ+1)

vα
+ B(−γ, γ+1) (s−α − v−α)

)
= 1.

For α = 0, (21) is proved.
Now, consider the case α = 0. Then

L(v, t) = 1

B(−γ, γ+1) tβ(v − t)γ+1 .

Then, for all s and v such that 0 < s < v ≤ T∫ v

s

L(v, t) tβ(t − s)γ dt = 1

B(−γ, γ+1)

∫ v

s

(t − s)γ dt

(v − t)γ+1 = 1.

It remains to verify that the function L(v, t) satisfies condition (22). The factor
t−β/B(−γ, γ+1) is bounded for t ∈ (s, v). As to the other factor,∫ v

s

∣∣∣∣v−α(v − t)−γ−1 + α

∫ v

t

u−α−1(u − t)−γ−1 du

∣∣∣∣ dt
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≤
∫ v

s

v−α(v − t)−γ−1 dt + |α|
∫ v

s

u−α−1
∫ u

s

(u − t)−γ−1 dt du

= v−α(v − s)−γ

−γ
+ |α|

−γ

∫ v

s

u−α−1(u − s)−γ du < ∞.

The product of bounded continuous function and integrable function is integrable.
Thus, L(v, t) satisfies (22). The theorem is proved.

Theorem 2. Let α > − 1
2 , −1 < γ < 0 and α + β + γ > − 3

2 . Then

1. The process X that is well-defined by (3), according to [7, Theorem 1], admits
the inverse representation of the form

Wv =
∫ v

0
L(v, t) dXt

= 1

B(−γ, γ+1)

∫ v

0
t−β

(
v−α(v−t)−γ−1 + α

∫ v

t

u−α−1(u−t)−γ−1 du

)
dXt .

(25)

2. The integration in (25) can be formally performed according to (6). There exist
p and k, more precisely, p and k that satisfy (27), for which L(v, · ) ∈ Ep,k ,
and integration in (25) can be performed according to Definition 1.

Proof. For fixed v > 0, the kernel function L(v, t) defined in Theorem 1 is continu-
ous in t in the interval (0, v). With [7, Lemma 4], the asymptotics of L(v, t) as t → 0
can be established:

L(v, t) = O(t−βv−α−γ−1) if α + γ < −1,

L(v, t) ∼ α

B(−γ, γ+1)
t−β log(v/t) if α + γ = −1,

L(v, t) ∼ α B(−γ, α+γ+1)

B(−γ, γ+1)
t−α−β−γ−1 if α + γ > −1.

The asymptotics in the other endpoint is

L(v, t) ∼ v−β−α(v − t)−γ−1

B(−γ, γ+1)
as t → v− .

In order for L(t, v) to be defined for all t ∈ (0, T ] and thus the relation “L(v, ·) ∈
Ep,k” make sense, assume L(v, t) = 0 for 0 < v ≤ t . The relation L(v, ·) ∈ Ep,k

holds true if and only if

max(β, α + β + γ + 1) <
1

p
+ k and γ + 1 <

1

p
. (26)

The conditions of Theorem 2 imply that

max(0, γ + 1) < min
(

1, γ + 3
2

)
,
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max(0, β, α + β + γ + 1) < α + β + γ + 3

2
.

Therefore, there exist p and k such that

max(0, γ + 1) <
1

p
< min

(
1, γ + 3

2

)
,

max(0, β, α + β + γ + 1) <
1

p
+ k < α + β + γ + 3

2
.

(27)

For these p and k, inequalities (15) and (26) hold true. Then L(v, ·) ∈ Ep,k for all
v ∈ (0, T ], and the second part of Theorem 2 is proved.

All functions within Ep,k are integrable with respect to Xt according to Defini-
tion 1. Then, with (21),∫ v

0
L(v, t) dXt =

∫ v

0
sα

∫ v

s

L(v, t)tβ(t − s)γ dt dWs =
∫ v

0
dWs = Wv.

Eq. (25) is proved.

4.2 Case γ ≥ 0

Theorem 3. Let α > − 1
2 , γ ≥ 0 and α + β + γ > − 3

2 . The process X admits a
modification which is differentiable on (0, T ], and for which, for Ẋt = dXt/dt , the
following expression for the inverse representation holds true:

Wv = 1

�(γ + 1)

∫ v

0
t−α d

(
Dγ

0+(t−β Ẋt )
)
,

that is, the process W can be obtained from X with four steps:

Ẋt = dXt

dt
, Yt = t−βẊt , Mt = 1

�(γ + 1)
Dγ

0+Yt , Wv =
∫ v

0
t−α dMt .

Here Dγ

0+ is the identity operator if γ = 0. Otherwise, if γ > 0, then Dγ

0+ is the
fractional differentiation operator defined in (29) or (30).

Proof. Due to Corollary 2, the process X has a modification that is continuously
differentiable on (0, T ], for which Ẋt = dXt/dt with the process Ẋ defined in (17).
Denote

Yt = t−βẊt =
∫ t

0
sα(t − s)γ dWs, Mt =

∫ t

0
sα dWs.

Now assume that γ > 0 and use notation from Appendix B. The process Y is contin-
uous on [0, T ] by Proposition 4. With changing the order of integration,

Iγ

0+Mt = 1

�(γ )

∫ t

0
uγ−1

∫ u

0
sα dWs du

= 1

�(γ )

∫ t

0
sα

∫ t

s

uγ−1 du dWs = 1

�(γ+1)

∫ t

0
sα(t − s)γ dWs = 1

�(γ+1)
Yt .



Gaussian Volterra processes with power-type kernels. Part II 449

Hence, according to the definition of the fractional differentiation in Appendix B,

Mt = 1

�(γ+1)
Dγ

0+Yt . (28)

Notice that if γ = 0, then Mt = Yt and (28) holds true as well, provided that D0
0+

is the identity operator.
Finally, dMt = tαdWt , whence

Wv =
∫ v

0
t−α dMt .

Here we have the integral of a nonstochastic function w.r.t. a martingale.

Now consider specific cases. Let the conditions of Theorem 3 hold true. If γ = 0,
then

Wv = 1

�(γ + 1)

∫ v

0
t−α d

(
t−β Ẋt

)
.

If γ is a positive integer, then

Wv = 1

γ !
∫ v

0
t−α d

(
dγ

dtγ

(
t−β Ẋt

))
,

where γ ! = 1 · 2 · · · γ is the factorial. Here formula (29) is used.
Consider the general case. Let γ ≥ 0, and let n > γ be a positive integer. Then,

according to (30),

Wv = 1

�(γ+1)�(n−γ )

∫ v

0
t−α d

(
dn

dtn

(∫ t

0
(t − s)n−γ−1s−βẊs ds

))
.

In particular, one can take n = �γ �+1, where �γ � is the unique integer of the interval
(γ−1, γ ]. Any γ ≥ 0 can be represented as γ = �γ � + {γ }, with �γ � nonnegative
integer and 0 ≤ {γ } < 1. Then

Wv = 1

�(γ+1)�(1−{γ })
∫ v

0
t−α d

(
d�γ �+1

dt�γ �+1

(∫ t

0
(t − s)−{γ }s−βẊs ds

))
.

A Hölder inequality and Young inequality

In this section, auxiliary results used in the proof of Proposition 1 are presented.

Lemma 2. Let a1 ∈ [0, 1), a2 ∈ (0, 1] and a3 ∈ [0, 1) be real numbers such that a1+
a2 + a3 < 2. Then there exist ε1 ∈ (0, 1) and ε3 ∈ (0, 1), such that a1 + ε1 ∈ (0, 1),
a3 + ε3 ∈ (0, 1), and (a1 + ε1) + a2 + (a3 + ε3) = 2.

Proof. We can take

εi = (1 − ai) (2 − a1 − a2 − a3)

2 − a1 − a3
, i = 1, 3.

Then obviously εi > 0, 1 − ai − εi > 0, and ε1 + ε3 = 2 − a1 − a2 − a3.
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Hölder inequality for nonconjugate exponents. Here we present the Hölder inequal-
ity and the Young inequality, both in the nonstandard form, however, both of them
follow from the respective inequalities in their classical form.

Let p ∈ (0,+∞], q ∈ (0,+∞], and let f and g be measurable functions on
[0, T ]. Then

‖f (t)g(t)‖1/(1/p+1/q) ≤ ‖f ‖p‖g‖q .

This inequality holds true regardless whether or not f ∈ Lp[0, T ] and g ∈ Lq [0, T ].
(If f /∈ Lp[0, T ], we assume ‖f ‖p = ∞.) It also holds true regardless whether the
exponents p, q and 1/(1/p + 1/q) are less, equal or greater than 1. (If p ∈ [1,+∞],
then ‖ · ‖p is the norm in Lp[0, T ]. Otherwise, if p ∈ (0, 1), then the space Lp[0, T ]
is not normalizable.)

Hölder inequality for three functions. Let p, q, r ∈ [1,+∞], 1
p

+ 1
q

+ 1
r

= 1,
f ∈ Lp[0, T ], g ∈ Lq [0, T ], and h ∈ Lr [0, T ]. Then∣∣∣∣

∫ T

0
f (t)g(t)h(t) dt

∣∣∣∣ ≤
∫ T

0
|f (t)g(t)h(t)| dt ≤ ‖f ‖p‖g‖q‖h‖r .

Young inequality for three functions. Let p, q, r ∈ [1,+∞], 1
p

+ 1
q

+ 1
r

= 2,
f ∈ Lp[0, T ], g ∈ Lq [0, T ], and h ∈ Lr [0, T ]. Then∣∣∣∣∣∣

∫∫
0<s<t<T

f (s)g(t)h(t−s) ds dt

∣∣∣∣∣∣ ≤
∫∫

0<s<t<T

|f (s)g(t)h(t−s)| ds dt ≤ ‖f ‖p‖g‖q‖h‖r .

B Fractional calculus

Solving the inverse representation problem, in Section 4.2 we need to solve the Abel
equation �(α) f (t) = ∫ t

0 sα−1g(s) ds. In this connection, we apply basics of frac-
tional calculus. For details, see [13, §2].

Let f be a continuous function on [0, T ], with the standard notation f ∈ C[0, T ].
For α > 0, the αth order fractional integral of f is defined as

Iα
0+f (t) = 1

�(α)

∫ t

0
(t − s)α−1f (s) ds.

The fractional integral has the following semigroup property:

Iα
0+I

β

0+ = Iα+β

0+ ,

whence In
0+ = (I1

0+)n for n ∈ N.
Now we find the inverse operator of Iα

0+. We find an operator
Dα

0+ : Iα
0+(C[0, T ]) → C[0, T ] such that Dα

0+Iα
0+f = f for all f ∈ C[0, T ].

As I1
0+f (t) = ∫ t

0 f (s) ds, the inverse operator of I1
0+ is a differentiation opera-

tor: D1
0+g(t) = d

dt
g(t). As In

0+ = (I1
0+)n, the inverse operator of In

0+ is the iterated
differentiation of nth order. Thus,

if g = In
0+f , n ∈ N, f ∈ C[0, T ], then f (t) = Dn

0+g(t) = dn

dtn
g(t). (29)
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Now let α > 0 be a real number, and let n ∈ N, n > α. As Dn
0+I

n−α
0+ Iα

0+ =
Dn

0+In
0+ is an identity operator on C[0, T ], Dn

0+I
n−α
0+ is an inverse operator of Iα

0+.
Thus,

if g = Iα
0+f, 0 < α < n, n ∈ N, f ∈ C[0, T ], then

f (t) = Dα
0+g(t) = Dn

0+In−α
0+ g(t) = 1

�(n − α)

dn

dtn

(∫ t

0
(t − s)n−α−1g(s) ds

)
.

(30)
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