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1 Introduction

How to efficiently allocate capital lies at the heart of financial decision making. Port-
folio theory, as developed by [35], provides a framework for this problem, based
on the means, variances and covariances of the assets in the considered portfolio.
The theory revolves around the trade-off between expected return and variance (risk),
denoted by mean-variance optimization. In this setting, investors allocate wealth in
order to maximize expected return given a certain level of risk or conversely allocate
wealth to minimize the risk given a certain level of expected return. Although it has
received a lot of criticism (see, e.g., [42] and [27]), the framework remains one of the
most crucial components in portfolio management.

In this paper, we consider the tangency portfolio (TP) which is one of the most
important portfolios in the financial literature. The TP weights determine what pro-
portions of the capital to invest in each asset and are obtained by maximizing the
expected quadratic utility function. For a portfolio of p risky assets, the TP weights
are given by

wT P = α−1�−1(μ − rf 1p), (1)

where μ is a p-dimensional mean vector of the asset returns, � is a p × p symmetric
positive definite covariance matrix of the asset returns, the coefficient α > 0 de-
scribes the investors’ risk aversion,1 rf denotes the rate of a risk-free asset and 1p is
a p-dimensional vector of ones. We allow for short sales and, therefore, some weights
can be negative. Let us also note that wT P determines the structure of the portfolio
which corresponds to risky assets and does in general not sum to 1. Consequently, the
rest of the wealth 1 − w′

T P 1p needs to be invested into the risk-free asset.
Naturally, the TP weights wT P depend on knowledge of the mean vector μ and

the covariance matrix �. In general, these quantities are not known and need to be
estimated from data on N historical return vectors x1, . . . , xN . Plugging sample es-
timates of the mean vector and covariance matrix into (1) leads us to the sample
estimate of the TP weights expressed as

ŵT P = α−1S−1(x̄ − rf 1p), (2)

where S is the sample covariance matrix and x̄ is the sample mean vector, respec-
tively, of x1, . . . , xN .2 The statistical properties of ŵT P have been extensively studied
throughout the literature. [18] derived an exact test of the weights in the multivariate
normal case. [39] obtained the univariate density for the TP weights as well as its
asymptotic distribution, under the assumption that returns are independent and iden-
tically multivariate normally distributed. Further, [4] provided a procedure of mon-
itoring the TP weights with a sequential approach. [6] obtained the density for, and

1This value represents how willing an investor is to accept upward and downward risks on their invest-
ment. It can be determined through, e.g., qualitative assessment, such as interview questions posed to the
investor.

2It is worth to mention that a similar structure appears in the discriminant analysis. Namely, the coeffi-
cients of a discriminant function that maximizes the discrepancy between two datasets are expressed as a
product of the inverse sample covariance matrix and the sample mean vector (see, for example, [6, 14]).
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several exact tests on, linear transformations of estimated TP weights, while [32] pro-
vided approximate and asymptotic distributions for the weights. [3] studied the dis-
tribution of ŵT P from a Bayesian perspective.3 [15] studied the TP weights in small
and large dimensions when both the population and sample covariance matrix are sin-
gular. Analytical expressions of higher order moments of the estimated TP weights
are derived in [29], while the article [31] presented the asymptotic distribution of the
estimated TP weights as well as the asymptotic distribution of the statistical test on
the elements of the TP under a high-dimensional asymptotic regime. [38] derived a
test for the location of the TP, and [37] extended this result to the high-dimensional
setting. Furthermore, [9] derived central limit theorems for the TP weights estimator
under the assumption that the matrix of observations has a matrix-variate location
mixture of normal distributions. More recently, [30] investigated the distributional
properties of the TP weights under a skew-normal model in small and large dimen-
sions.

The common scenario considered is that the number of observations available
for the estimation, denoted by N , is greater than the portfolio size, denoted by p.
In this case the sample covariance matrix S is positive definite, and ŵT P can be
obtained as presented in (2). However, when the considered portfolio is large, it is
possible that the number of available observations is less than the portfolio dimension.
This can be due to a lack of data for all the assets in the portfolio, but it may also
occur due to the fact that covariance of asset returns tends to change over time. As
such, the assumption of a constant covariance might only hold for limited periods of
time, hence limiting the amount of data available for estimation. Many applications
consider portfolios of large dimensions, containing up to 50, 100 or even 1000 assets
(see, e.g., [41, 26, 34, 2, 20, 16, 22, 5, 12, 1]). If returns are measured on weekly
or monthly intervals, data reaching back several decades might be required to ensure
p ≤ N . Unless the considered assets can be assumed to have a constant covariance
matrix over very long time periods, data spanning such long time intervals is not
suitable to use in the estimation, or might simply not be available. Any such situations,
where p > N , would result in a singular sample covariance matrix S, which in turn
is noninvertible, in the standard sense.

This issue can be remedied by estimating �−1 in (1) with the Moore–Penrose
inverse of S, which we will denote by S+. This generalized inverse has previously
been successfully employed in portfolio theory for the p > N case by [10, 11, 44,
15].4 Applying the Moore–Penrose inverse, the TP weights are estimated as

w̃T P = α−1S+(x̄ − rf 1p). (3)

An attractive feature of applying the Moore–Penrose inverse S+ in (1) is that it is the
least square solution to the system of equations described by

Sv = α−1(x̄ − rf 1p) (4)

3In the Bayesian setting, the posterior distribution of TP weights is expressed as a product of the (singu-
lar) Wishart matrix and Gaussian vector. Statistical properties of those products are studied by [7, 8, 13, 9].

4Instead of using the Moore–Penrose inverse, one can consider regularization techniques such as the
ridge-type method [43], the Landweber–Fridman iteration approach [33], a form of Lasso [19], or an
iterative algorithm based on a second order damped dynamical systems [24, 25].
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which in the singular case generally lacks exact solution. That is, as shown in [40], for
any vector v ∈ R

p, we have that ‖Sv−α−1(x̄−rf 1p)‖2 ≥ ‖SS+(x̄−rf 1p)−α−1(x̄−
rf 1p)‖2, where ‖·‖2 denotes the Euclidean norm of a vector. Phrased differently, (3)
provides the best solution to equation (4), in the least square sense. In addition, when
p ≤ N , we have that S+ = S−1 and w̃T P = ŵT P , such that w̃T P can be viewed
as a general estimator for the TP weights, covering both the singular and nonsingular
case. For further properties of the Moore–Penrose inverse, see, e.g., [17].

The expectation and variance of an estimator are key quantities to describe its sta-
tistical properties. With the standard assumption of normally distributed asset returns,
the stochastic components of w̃T P consists of S+ and x̄, which are independent under
the assumption of normally distributed data (see, e.g., [10]). Unfortunately, there exist
no derivation of the expected value or variance of S+, when p > N . In [21] however,
these quantities are presented in the special case of � = Ip. The authors also pro-
vided approximate results, using moments of standard normal random variables, and
exact results for moments of the generalized reflexive inverse, another quantity that
can be applied as an inverse of S. Further, in a recent paper [28], several bounds on
the mean and variance of S+ are provided, based on the Poincaré separation theorem.
Our paper builds on the results presented in [21] and [28] to provide bounds and ap-
proximations for the moments of the TP weights, E[w̃T P ] and V[w̃T P ], where E[·]
and V[·] denote the expected value and variance, respectively. We also present a simu-
lation study, where various measures compare the derived bounds with the equivalent
sample quantities obtained from simulated data. Finally, we compare the moments
obtained applying the reflexive generalized inverse and the sample moments based
on the Moore–Penrose inverse.

The rest of this paper is organized as follows. Section 2.1 provides exact moment
results for the case � = Ip. Section 2.2 presents bounds for the moments of w̃T P

in the general case, while approximate moments are derived in Section 2.3. Exact
moments applying the reflexive generalized inverse are derived in Section 3. The
simulation study is presented in Section 4 while Section 5 summarizes.

2 Moments with the Moore–Penrose inverse

Let X be a p × N matrix with N asset return vectors of dimension p × 1 stacked
as columns, where p > N . Further, we assume that these return vectors are inde-
pendent and normally distributed with mean vector μ and positive definite covari-
ance matrix �. Thus X ∼ MN p,N(μ1N,�, IN), where MN p,n(M,�, U) denotes
the matrix-variate normal distribution with p × N mean matrix M, p × p row-
wise covariance matrix � and N × N column-wise covariance matrix U. Further,
let the p × 1 vector x̄ be the row mean of X. Now, define Y = X − x̄1′

N , such that
Y ∼ MN p,N (0,�, IN). Further, let S = YY′/n, such that rank(S) = n < p with
n = N − 1, and nS ∼ Wp(n,�), i.e. nS follows a p-dimensional singular Wishart
distribution with n degrees of freedom and the parameter matrix �. Let S = QRQ′
denote the eigenvalue decomposition of S, where R is the n × n diagonal matrix of
positive eigenvalues and Q is the p × n matrix with corresponding eigenvectors as
columns. Further, define

S+ = QR−1Q′.
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Then, S+ constitutes the Moore–Penrose inverse of YY′/n, and S+ is independent of
x̄ (see [10]).

In the following, let η = α−1(x̄ − rf 1p) and θ = E[η] = α−1(μ − rf 1p).
Consequently, from Corollary 3.2b.1 in [36], together with the fact that E[x̄] = μ and
V[x̄] = �/(n + 1), we obtain that

E[ηη′] = θθ ′ + �

α2(n + 1)
, (5)

E[η′η] = θ ′θ + tr(�)

α2(n + 1)
, (6)

E[η′�η] = θ ′�θ + tr(��)

α2(n + 1)
. (7)

Further, let sij denote the element on row i and column j of S+, and let σ ij denote
the element on row i and column j of �−1. Also let ei denotes a p × 1 vector where
all values are equal to zero, except the i-th element, which is equal to one. Moreover,
we assume that λ1(M) ≥ λ2(M) ≥ · · · ≥ λp(M) are the ordered eigenvalues of a
symmetric p × p matrix M, and that A ≤L B denotes the Löwner ordering of two
positive semi-definite matrices A and B.

2.1 Exact moments when � = Ip

When � is the identity matrix, it is possible to derive exact moments of the TP weights
obtained from the Moore–Penrose inverse in the singular case. First, note the follow-
ing results presented in Theorem 2.1 of [21], which state that in the case � = Ip and
p > n + 3, we have that

E[S+] = a1Ip, (8)

V[vec(S+)] = a2(Ip2 + Cp2) + 2a3vec(Ip)vec′(Ip), (9)

where Cp2 is the commutation matrix, vec(·) is the vectorization operator and

a1 = n2

p(p − n − 1)
, (10)

a2 = n3[p(p − 1) − n(p − n − 2) − 2]
p(p − 1)(p + 2)(p − n)(p − n − 1)(p − n − 3)

, (11)

a3 = n3[n2(n − 1) + 2n(p − 2)(p − n) + 2p(p − 1)]
p2(p − 1)(p + 2)(p − n)(p − n − 1)2(p − n − 3)

. (12)

Note that constants in (10)–(12) differ slightly from the constants presented in [21],
since our paper considers results for nS ∼ Wp(n,�), while [21] derived the results
for W ∼ Wp(n,�). The moments in (8) and (9) allow us to derive the following
results.

Theorem 1. If p > n + 3 and � = Ip, then

E[w̃T P ] = a1wT P ,
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V[w̃T P ] = (a2 + 2a3)wT P w′
T P +

[
a2w′

T P wT P + a2
1 + (p + 1)a2 + 2a3

α2(n + 1)

]
Ip

with constants a1, a2 and a3 that are defined in (10)–(12).

Proof. Since w̃T P = α−1S+(x̄ − rf 1p), the first result follows directly from (8) and
the independence of S+ and x̄. For the second result, first note that as discussed in
[21], equation (9) can be written as

Cov(sij , skl) = a2(δikδjl + δilδjk) + 2a3δij δkl,

where δij = 1 if i = j and 0 otherwise, so that δij , i, j = 1 . . . , p, denote the
elements of Ip. Hence, we have that

E[sij skl] = a2(δikδjl + δilδjk) + (a2
1 + 2a3)δij δkl . (13)

Also note the following element representations of matrix operations, where A and B
are symmetric p × p matrices and tr(·) denotes the trace operator of a matrix:

[Atr(BA)]ij = aij

p∑
k=1

p∑
l=1

aklbkl, (14)

[ABA]ij =
p∑

k=1

p∑
l=1

bklaikajl

=
p∑

k=1

p∑
l=1

bklailajk. (15)

Moreover, with η = α−1(x̄ − rf 1p) and E[η] = θ ,

V[w̃T P ] = V[S+η] = E
[
E[S+ηη′S+ | η]]− E[S+]θθ ′

E[S+]. (16)

By letting H = ηη′ and applying equations (13)–(15) we obtain

E[S+HS+ | η]ij =
p∑

k=1

p∑
l=1

hkl E[siksj l]

=
p∑

k=1

p∑
l=1

hkl[a2(δij δkl + δilδkj ) + (a2
1 + 2a3)δikδjl]

= a2
[
Iptr(HIp)

]
ij

+ a2[IpHIp]ij + (a2
1 + 2a3)[IpHIp]ij .

Consequently,

E[S+HS+ | η] = (a2
1 + a2 + 2a3)H + a2tr(H)Ip,

and inserting the above result into (16) together with (5) and (8) gives

V[S+η] = (a2
1 + a2 + 2a3)

(
θθ ′ + α−2N−1Ip

)
+

+a2

(
tr(θθ ′) + α−2N−1p

)
Ip − a2

1θθ ′

and the theorem follows noting that θ = wT P when � = Ip.
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A direct consequence of Theorem 1 is that the estimator w̃T P is biased, with bias
factor a1. Hence, in the case of � = Ip, we have that a−1

1 w̃T P constitutes an un-
biased estimator. Further, in accordance with Corollary 2.1 in [21], as n, p → ∞,
assuming n/p → r , with 0 < r < 1, the constants of V[w̃T P ] emits the following
asymptotic magnitudes: a1 = O(1), a2 = O(n−1) = O(p−1) and a3 = O(n−2) =
O(p−2). Consequently, since tr(wT P w′

T P ) = O(p) in the general case, we have that
a2tr(wT P w′

T P ) = O(1). Hence, unless wT P has some specific structure, V[w̃T P ]
does not vanish to zero under this asymptotic regime. This is not unique for the sin-
gular case, since the corresponding is also true for ŵT P in the nonsingular case, when
n, p → ∞. Finally, we note that in practice the population covariance matrix of a
portfolio of assets will likely never be equal to Ip, and hence the results in this sec-
tion are mainly of theoretical nature.

2.2 Bounds on the moments
This section aims to provide upper and lower bounds for the expected value of w̃T P

and upper bounds for the variance of w̃T P . First, define the following p×p matrices,

D = a1(λp(�−1))2�,

Ua = a1(λ1(�
−1))2�,

Ub = n

p − n − 1
λ1(�

−1)Ip,

with elements dij , u
(a)
ij and u

(b)
ij , respectively. Further denote by eij the elements of

E[S+] and let u
(∗)
ii = min{u(a)

ii , u
(b)
ii }, i = 1, . . . , p. Then we can derive the following

result.

Theorem 2. Suppose p > n + 3 and � > 0. Let wi and θi , be the i-th elements
of the p × 1 vectors w = E[w̃T P ] and θ = α−1(μ − rf 1p), respectively. Then for
i = 1, . . . , p, it holds that

viiθi +
p∑

j �=i

vij θj ≤ wi ≤ ziiθi +
p∑

j �=i

zij θj

where, for i, j = 1, . . . , p,

vij =
{
gij if θj ≥ 0,

hij if θj < 0,

zij =
{
gij if θj < 0,

hij if θj ≥ 0,

with gii = dii , hii = u
(∗)
ii , while for i �= j ,

gij = max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dij −
√

(u
(∗)
ii − dii)(u

(∗)
jj − djj ),

u
(a)
ij −

√
(u

(a)
ii − dii)(u

(a)
jj − djj ),

−
√

(u
(b)
ii − dii)(u

(b)
jj − djj ),

−
√

u
(∗)
ii u

(∗)
jj

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,
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hij = min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dij +
√

(u
(∗)
ii − dii)(u

(∗)
jj − djj ),

u
(a)
ij +

√
(u

(a)
ii − dii)(u

(a)
jj − djj ),√

(u
(b)
ii − dii)(u

(b)
jj − djj ),√

u
(∗)
ii u

(∗)
jj

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Proof. The result follows directly from the element-wise bounds in Lemma A2 and
that due to the independence of S+ and x̄ we have E[w̃T P ] = E[S+]θ .

Note that when � = Ip, we have that λ1(�
−1)2 = λp(�−1)2 = 1, and hence

E[S+] = D = Ua = a1Ip. Consequently gij = hij = 0, i �= j , and gii = hii = a1,

i = 1, . . . , p, since u
(a)
ii = a1 < a1

p
n

= u
(b)
ii , and p > n. Hence, Theorem 2 yields

that E[w̃T P ] = a1θ , consistent with the result of Theorem 1.
The following result provides two upper bounds for the variance of the TP weights

estimate w̃T P .

Theorem 3. Suppose p > n + 3 and � > 0. Then

V[w̃T P ] ≤L (2c1 + c2)(λ1(�
−1))4 (k1� E[ηη′]� + k2� E[η′�η]) , (17)

V[w̃T P ] ≤L (2c1 + c2)(λ1(�
−1))4

E[(η′η)]Ip, (18)

with the expected values given in (5)–(7) and

c1 = n2[(p − n)(p − n − 1)(p − n − 3)]−1,

c2 = (p − n − 2)c1,

k1 =
[

1 + n − (p + 1)(p(n + 1) − 2)

p(p + 1) − 2

]
n

p
,

k2 =
[

1 − (p + 1)(p − n)

p(p + 1) − 2

]
n

p
.

Proof. We are interested in bounds for the quantity α′
V[w̃T P ]α = α′

V[S+η]α, for
all α ∈ R

p. First, by the tower property we have

V[S+η] = E
[
E[S+ηη′S+ | η]]− E[S+]θθ ′

E[S+].
Hence, we can obtain

α′
V[S+η]α = E

[
E[α′S+ηη′S+α | η]]− α′

E[S+]θθ ′
E[S+]α′

= E

[
E[(α′S+η)2 | η]

]
− (α′

E[S+]θ)2.

Then, by noting that (α′
E[S+]θ)2 > 0 and applying the bounds from Lemma A4 on

E[(α′S+η)2] we can derive

α′
V[S+η]α ≤ (2c1 + c2)(λ1(�

−1))4

×E

[
k1(α

′�η)2 + k2(α
′�α)(η′�η)

]
,

α′
V[S+η]α ≤ (λ1(�

−1))4(2c1 + c2)E[(α′α)(η′η)],
and with the aid of (5)–(7) the result follows.
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2.3 Approximate moments

Regarding general �, it is possible to provide approximate moments for w̃T P using
simulations of standard normal matrices. Following Section 3.1 in [21], we denote the
eigendecomposition of � as � = ���′, with λi denoting the i-th diagonal element
of �, and let Z ∼ MN p,n(0, Ip, In), with z′

i denoting row i of Z. Further, denote
mij (�) = E[z′

i (Z
′�Z)−2zj ] and vij,kl(�) = Cov[z′

i (Z
′�Z)−2zj , z′

k(Z
′�Z)−2zl],

where Cov[X, Y ] denotes the covariance between X and Y .
Also define

M(�) = n

p∑
i=1

λimii(�)eie′
i ,

V(�) = n2

⎡
⎣ p∑

i=1

p∑
j=1

λiλj vii,jj (�)(eie′
j ⊗ eie′

j )

+
p∑

i=1

p∑
j=1

λiλjvij,ij (�)(ej e′
j ⊗ eie′

i )(Ip2 + Cp2)

−2
p∑
i

λ2
i vii,ii (�)(eie′

i ⊗ eie′
i )

]
(19)

and make the decomposition

(� ⊗ �)V(�)(�′ ⊗ �′) =
⎛
⎜⎝

�11 · · · �1p

...
. . .

...

�p1 · · · �pp

⎞
⎟⎠ , (20)

where �ij are p × p matrices, i, j = 1, . . . , p. The following result can then be
derived.

Theorem 4. If p > n + 3 and � > 0, then

E[w̃T P ] = �M(�)�′θ ,

V[w̃T P ] =
p∑

i=1

p∑
j=1

(
θiθj + σij

α2(n + 1)

)
� ij + 1

α2(n + 1)
�M(�)�M(�)�′

with θi = α−1(μi − rf ).

Proof. From Theorem 3.1 in [21], we have that E[S+] = �M(�)�′. Then the first
result follows due to the independence of S+ and x̄. For the second result, we have
that

V[S+η] = E
[
E[S+ηη′S+ | η]]− E[S+]θθ ′

E[S+]. (21)

Again we let H = ηη′. Applying Theorem 3.1 in [21] we have that

V[vec(S+)] = (� ⊗ �)V(�)(�′ ⊗ �′),
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and in accordance with equation (6.8) in [23], we get

E[S+HS+] =
p∑

i=1

p∑
j=1

hij�ij + E[S+]HE[S+],

where �ij is obtained from the decomposition (20). Inserting the above into (21)
gives

V[S+η] =
p∑

i=1

p∑
j=1

E[hij ]� ij + E[S+]E[H]E[S+] − E[S+]θθ ′
E[S+]

=
p∑

i=1

p∑
j=1

(
θiθj + σij

α2N

)
�ij + 1

α2N
�M(�)�M(�)�′

due to (5) and since �′�� = �. The theorem is proved.

In [21] the authors note that the moments mij (�) and vij,kl(�) do not seem to
have tractable closed-form representations. However, these quantities can be approx-
imated by simulation of Z, given the eigenvalues of �.

3 Exact moments with reflexive generalized inverse

An alternative to using the Moore–Penrose inverse S+ to estimate �−1 is an applica-
tion of the reflexive generalized inverse, defined as

S† = �−1/2
(
�−1/2S�−1/2

)+
�−1/2,

where the elements of S† are denoted s
†
ij . Then, the TP weights vector can be esti-

mated by

w†
T P = S†η,

and we derive the following result.

Theorem 5. If p > n + 3 and � > 0, then

E[w†
T P ] = a1wT P ,

V[w†
T P ] = (a2 + 2a3)wT P w′

T P

+
[
a2w′

T P �wT P + a2
1 + (p + 1)a2 + 2a3

α2(n + 1)

]
�−1.

Proof. The first result follows directly from Corollary 2.3 in [21], and the indepen-
dence of S and x̄. For the second result, we have that

V[S†η] = E

[
E[S†ηη′S† | η]

]
− E[S†]θθ ′

E[S†]. (22)
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Again we let H = ηη′, and note that by Corollary 2.3 in [21] we have

E[s†
iks

†
lj ] = a2(σ

ij σ kl + σ ilσ kj ) + (a2
1 + 2a3)σ

ikσ jl

which combined with (14)–(15) allows us to obtain

E

[
S†HS† | η

]
ij

=
p∑

k=1

p∑
l=1

hkl E

[
s

†
iks

†
lj

]

=
p∑

k=1

p∑
l=1

hkl

(
a2(σ

ij σ kl + σ ilσ kj )

+(a2
1 + 2a3)σ

ikσ jl
)

= (a2
1 + a2 + 2a3)

[
�−1H�−1

]
ij

+ a2tr(H�−1)
[
�−1

]
ij

so sthat

E[S†HS† | η] = (a2
1 + a2 + 2a3)�

−1H�−1 + a2tr(H�−1)�−1.

Inserting this into equation (22) gives

V[S†η] = (a2
1 + a2 + 2a3)�

−1
E[ηη′]�−1 + a2tr(E[ηη′]�−1)�−1

−E[S†]θθ ′
E[S†],

and applying the first result on E[S†] together with (5) concludes the proof.

An obvious drawback of w†
T P is that � must be known in order to construct S†.

Moreover, in the case of � = Ip the results in Theorem 5 coincide with the results in
Theorem 1, since in this case S† = S+.

4 Simulation study

The aim of this section is to compare the bounds on the moments of w̃T P derived in
Section 2.2 with the sample mean and sample variance of this estimator. We will also
investigate the difference between the moments of w†

T P derived in Theorem 5 and the
sample moments of w̃T P . Ideally, the bounds should not deviate from the obtained
sample moments very much. To this end, define bl and bu as the p × 1 vectors with
elements

bl
i = viiμi +

p∑
j �=i

vijμj ,

bu
i = ziiμi +

p∑
j �=i

zijμj ,
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such that bl and bu represent the element-wise lower and upper bounds for the ex-
pected TP weights vector presented in Theorem 2, where we set α = 1 and rf = 0.
Let

B1 = (2c1 + c2)(λ1(�
−1))4 (k1� E[ηη′]� + k2� E[η′�η]) ,

B2 = (2c1 + c2)(λ1(�
−1))4

E[(η′η)]Ip

represent the bounds in equations (17) and (18) in Theorem 3, respectively. Further,
let m and V respectively denote the sample mean vector and sample covariance matrix
of w̃T P based on an observed matrix X, as described in Section 2. Moreover, we
define

tl = 1′
p|bl − m|

p
, (23)

tu = 1′
p|bu − m|

p
, (24)

t† = 1′
p|E[w†

T P ] − m|
p

, (25)

so that tl , tu and t† measure the element-wise difference between the sample mean
vector and the lower and upper bounds on the mean, and mean of w†

T P , respectively.
Dividing by p allows comparing the measures between various portfolio sizes. Fur-
ther, let

T1 =
∣∣∣1′

p (B1 − V) 1p

∣∣∣
p2 , (26)

T2 =
∣∣∣1′

p (B2 − V) 1p

∣∣∣
p2 , (27)

T † =
∣∣∣1′

p

(
V[w†

T P ] − V
)

1p

∣∣∣
p2 , (28)

where 1p is a p×1 vector of ones. Then, T1 and T2 provide a measure of discrepancy
between the sample covariance matrix and bounds presented in Theorem 3, while
T † measures the discrepancy between the variance of w†

T P presented in Theorem 5
and the sample covariance matrix of w̃T P . Since it is divided by p2, the number
of elements in B1, B2, V[w†

T P ] and V, the measures T1, T † and T2 again allow for
comparison between different portfolio sizes. Moreover, define

fl = ‖bl − m‖2
F /‖m‖2

F , (29)

fu = ‖bu − m‖2
F /‖m‖2

F , (30)

f † = ‖E[w†
T P ] − m‖2

F /‖m‖2
F , (31)

F1 = ‖B1 − V‖2
F /‖V‖2

F , (32)
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F2 = ‖B2 − V‖2
F /‖V‖2

F , (33)

F † = ‖V[w†
T P ] − V‖2

F /‖V‖2
F , (34)

where ‖M‖2
F denotes the Frobenius norm of the matrix M. Hence f1, f2, F1 and F2

represent the normalized Frobenius norm of differences between the bounds and the
sample variance, while f † and F † denote the differences between the moments of
w†

T P and the sample variance of w̃T P .
In the following, we will study simulations of (23)–(34) for various parameter

values. In order to account for a wide range of values of μ and �, these values will
be randomly generated in the simulation study. Each of the p elements in the mean
vector μ will be independently generated as U(−0.1, 0.1), where U(l, u) denotes the
uniform distribution between l and u. The positive definite covariance matrix � will
be determined as � = ���′, where the p × p matrix � represent the eigenvectors
of � and is generated according to the Haar distribution. The p × p matrix � is
diagonal, and its elements represents the ordered eigenvalues of �. Here we let the
p eigenvalues be equally spaced from d to 1, for various values of d . Then, the pa-
rameter d represents a measure of dependency between the p assets in the portfolio,
where d = 1 represents no dependency and larger d represents a stronger dependency
structure. Consequently, the simulation procedure can be described as follows:

1) Generate μ, with μi ∼ U(−0.1, 0.1), i = 1 . . . , p.

2) Generate � according to the Haar distribution, and compute � = ���′, where
diag(�) = d . . . , 1.

3) Independently generate x̄ ∼ Np,1(μ,�/N) and nS ∼ Wp(n,�).

4) Compute w̃T P .

5) Repeat steps 3) and 4) above s = 10000 times.

6) Based on the s samples of w̃T P , compute m and V.

7) Given m and V, compute (23)–(34).

The above procedure is repeated r = 10 times to get r values of (23)–(34) for
a given combination of p, N and d . Figures 1–12 display the mean value, for the r

simulations, of each respective measure, for p = {25, 50, 75, 100}, d = {1, . . . , 10}
and N = {2, 0.4p, 0.7p, p − 3}.5 For easier reading, the values are displayed on
a logarithmic scale and are connected with a solid line. First, we notice that most
measures seem to increase with increasing dependency measure d . Further, tl , tu, t†,
T1, T2, T † increase with increasing sample size N . However, F2, the measure of the
discrepancy between the sample variance of w̃T P and the variance bound B2, on the
contrary, decreases with increasing N . Regarding the bounds on the expected value

5The computation time for each set of simulations for p = {25, 50, 75, 100} is {12, 26, 55, 107} min-
utes, respectively, when calculation is run on 15 threads of an AMD Ryzen 7 5800H CPU. Hence, for
future research, it is possible to explore even larger sample sizes on a standard PC.



466 G. Alfelt, S. Mazur

Fig. 1. The logarithm of tl plotted for various values of p, N and d

of w̃T P , tl and tu become very similar, and so do f1 and f2. The measures of the
difference between E[w̃T P ] and E[w†

T P ], t† and f †, are fairly small for most of the

considered simulation parameters. This suggests that E[w†
T P ] can serve as a rough

approximation of E[w̃T P ], especially for N ∈ (0.4p, 0.7p). Furthermore, when d =
1 we have � = Ip, and hence the both bounds b1 and b2, as well as E[w†

T P ], provide
equality with E[w̃T P ]. In particular, for d = 1, these measures simply capture sample
variance for the mean of m. Similarly, when d = 1, T † and F † capture the sample
variance of V. Further, for N < p − 3 and low values of d , T † and F † are fairly
small, suggesting that V[w†

T P ] could be applied as a rough approximation of V[w̃T P ]
in these cases. Finally, we notice that the measures F1 and F2 become very large for
most of the combinations of p, N and d . It is however important to note that the
Frobenius norm of differences, that these measures are based on, captures element-
wise squared discrepancies, while B1 and B2 are not element-wise bounds, but rather
bounds in the Löwner order sense.

5 Summary

The TP is an important portfolio in mean-variance asset optimization framework of
[35], and the statistical properties of the typical TP weight estimator have been thor-
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Fig. 2. The logarithm of tu plotted for various values of p, N and d

oughly studied. However, when the portfolio dimension is greater than the sample
size, this estimator is not applicable since standard inversion of the now singular
sample covariance matrix is not possible. This issue can be solved by applying the
Moore–Penrose inverse, to which a general TP weights estimator can be provided,
covering both the singular and nonsingular case. Unfortunately, there exists no deriva-
tion of the moments for the Moore–Penrose inverse of a singular Wishart matrix, and
consequently the moments of the general TP estimator cannot be obtained.

In this paper, we provide bounds on the mean and variance of the TP weights es-
timator in the singular case. Further, we present approximate results, as well as exact
moment results in the case when the population covariance is equal to the identity
matrix. We also provide exact moment results when the reflexive generalized inverse
is applied in the TP weights equation.

Moreover, we investigate the properties of the derived bounds, and the estima-
tor based on the reflexive generalized inverse, in a simulation study. The difference
between the various bounds and the sample counterparts are measured by several
quantities, and studied for numerous dimensions, sample sizes and levels of depen-
dencies of the population covariance matrix. The results suggest that many of the
derived bounds are closest to the sample moments when the population covariance
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Fig. 3. The logarithm of t† plotted for various values of p, N and d

matrix implies low dependency between the considered assets. Finally, the study im-
plies that in some cases the moments of TP weights based on the reflexive generalized
inverse can be used as a rough approximation for the moments of TP weights based
on the Moore–Penrose inverse. For future studies, it would be relevant, for example,
to perform a sensitivity analysis on how fluctuations in the population covariance
matrix affect the estimated TP weights.

Appendix

Lemma A1. The elements of E[S+] have the bounds, for i = 1, . . . , p,

0 < dii ≤ eii ≤ u
(a)
ii ,

and, for i, j = 1, . . . , p, i �= j ,

eij ≤ min{dij , u
(a)
ij } +

√
(u

(a)
ii − dii)(u

(a)
jj − djj ),

eij ≥ max{dij , u
(a)
ij } −

√
(u

(a)
ii − dii)(u

(a)
jj − djj ).
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Fig. 4. The logarithm of T1 plotted for various values of p, N and d

Proof. First note that in accordance with Theorem 3.2 and Theorem 3.3 of [28], we
have that

D ≤L E[S+] ≤L Ua,

E[S+] ≤L Ub.

Further, by definition of the Löwner order we have, with α ∈ R
p, that

α′Dα ≤ α′
E[S+]α ≤ α′Uα. (35)

Thus, since α′(E[S+] − D)α ≥ 0, we have that E[S+] − D is a positive semi-definite
matrix, and the same holds for U − E[S+]. This gives that 0 < dii ≤ eii ≤ u

(a)
ii ,

i = 1, . . . , p.
Moreover, note that every principal submatrix of a positive definite matrix is also

positive definite. Combined with (35) it provides the following inequalities, for any
i, j = 1, . . . , p, and with arbitrary nonzero scalars x1 and x2,

x2
1u

(a)
ii + 2x1x2u

(a)
ij + x2

2u
(a)
jj ≥

x2
1eii + 2x1x2eij + x2

2ejj ≥
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Fig. 5. The logarithm of T2 plotted for various values of p, N and d

x2
1dii + 2x1x2dij + x2

2djj > 0.

Now, first assume x1 > 0, x2 > 0. Then, the above expressions can be applied to
obtain

x2
1eii + 2x1x2eij + x2

2eii ≥ x2
1dii + 2x1x2dij + x2

2djj , (36)

x2
1u

(a)
ii + 2x1x2eij + x2

2u
(a)
jj ≥ x2

1dii + 2x1x2dij + x2
2djj ,

eij ≥ −x2
1(u

(a)
ii − dii) + x2

2(u
(a)
jj − djj ) − 2x1x2dij

2x1x2

= −x1(u
(a)
ii − dii)

2x2
− x2(u

(a)
jj − djj )

2x1
+ dij (37)

for any i, j = . . . , p, i �= j . As the right-hand side is a lower bound, we would like
to obtain values x1 and x2 that maximizes this concave function. Deriving and setting
the expression equal to zero, we obtain that it has its maximum at

x2
1(u

(a)
ii − dii) = x2

2(u
(a)
jj − djj ).
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Fig. 6. The logarithm of T † plotted for various values of p, N and d

Without loss of generality we can set x1 = 1 and thus obtain the maximum at

x1 = 1,

x2 =
√√√√ (u

(a)
ii − dii)

(u
(a)
jj − djj )

.

Applying this result to equation (37) yields

eij ≥ dij −
√

(u
(a)
ii − dii)(u

(a)
jj − djj ). (38)

With an equivalent approach, again with x1 > 0, x2 > 0, we can use inequalities

x2
1dii + 2x1x2eij + x2

2djj ≤ x2
1u

(a)
ii + 2x1x2u

(a)
ij + x2

2u
(a)
jj ,

eij ≤ x2
1(u

(a)
ii − dii) + x2

2(u
(a)
jj − djj ) + 2x1x2u

(a)
ij

2x1x2

in order to obtain the upper bound

eij ≤ u
(a)
ij +

√
(u

(a)
ii − dii)(u

(a)
jj − djj ). (39)
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Fig. 7. The logarithm of fl plotted for various values of p, N and d

Instead considering x1 < 0 and x2 > 0 (or x1 > 0 and x2 < 0), with a similar
approach, we can obtain the bounds

eij ≤ dij +
√

(u
(a)
ii − dii)(u

(a)
jj − djj ),

eij ≥ u
(a)
ij −

√
(u

(a)
ii − dii)(u

(a)
jj − djj ).

Letting x1 < 0 and x2 < 0 again yield bounds (38) and (39). Expressing it differently,
the above bounds can be written as

eij ≤ min{dij , u
(a)
ij } +

√
(u

(a)
ii − dii)(u

(a)
jj − djj ),

eij ≥ max{dij , u
(a)
ij } −

√
(u

(a)
ii − dii)(u

(a)
jj − djj ),

concluding the proof.

The results in Lemma A1 can be further extended, by also considering the bound-
ing matrix Ub. The following lemma summarizes this result.

Lemma A2. The elements of E[S+] have the bounds, for i = 1, . . . , p,

0 < gii := dii ≤ eii ≤ hii := u
(∗)
ii ,
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Fig. 8. The logarithm of fu plotted for various values of p, N and d

where u
(∗)
ii = min{u(a)

ii , u
(b)
ii }. Further, for i, j = 1, . . . , p, i �= j ,

gij ≤ eij ≤ hij

with

gij = max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dij −
√

(u
(∗)
ii − dii)(u

(∗)
jj − djj ),

u
(a)
ij −

√
(u

(a)
ii − dii)(u

(a)
jj − djj ),

−
√

(u
(b)
ii − dii)(u

(b)
jj − djj ),

−
√

u
(∗)
ii u

(∗)
jj

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

hij = min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dij +
√

(u
(∗)
ii − dii)(u

(∗)
jj − djj ),

u
(a)
ij +

√
(u

(a)
ii − dii)(u

(a)
jj − djj ),√

(u
(b)
ii − dii)(u

(b)
jj − djj ),√

u
(∗)
ii u

(∗)
jj

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.
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Fig. 9. The logarithm of f † plotted for various values of p, N and d

Proof. First, we have that

dij −
√

(u
(∗)
ii − dii)(u

(∗)
jj − djj ) ≤ eij ≤ dij +

√
(u

(∗)
ii − dii)(u

(∗)
jj − djj ),

since eii (and ejj ) in (36) can be replaced by either u
(a)
ii or u

(b)
ii , whichever is the

smaller. Then

u
(a)
ij −

√
(u

(a)
ii − dii)(u

(a)
jj − djj ) ≤ eij ≤ u

(a)
ij +

√
(u

(a)
ii − dii)(u

(a)
jj − djj )

−
√

(u
(b)
ii − dii)(u

(b)
jj − djj ) ≤ eij ≤

√
(u

(b)
ii − dii)(u

(b)
jj − djj )

follows directly from Lemma A1 and the fact that Ub is diagonal and thus u
(b)
ij = 0.

Finally,

−
√

u
(∗)
ii u

(∗)
jj ≤ eij ≤

√
u

(∗)
ii u

(∗)
jj

follows from

−
√

u
(∗)
ii u

(∗)
jj ≤ −√

eiiejj ≤ eij ≤ √
eiiejj ≤

√
u

(∗)
ii u

(∗)
jj .

The lemma is proved.



On the mean and variance of the estimated tangency portfolio weights for small samples 475

Fig. 10. The logarithm of F1 plotted for various values of p, N and d

In the following, let

k3 = n[p(n + 1) − 2]
p[p(p + 1) − 2] ,

k4 = n(p − n)

p[p(p + 1) − 2] .

Further, define g(L) = ∏n
i=1 |Li |+ and c(n, p) = (2π)np/22ns(n, p), where |Li |+

and s(n, p) are defined as on pages 128 and 129 in [28].

Lemma A3. Let an n × p matrix L satisfy LL′ = In. Then, for all α, x ∈ R
p,

(i)
∫
(α′L′Lα)(x′L′Lx)g(L)dL = k1c(n, p)(α′x)2 + k2c(n, p)(α′α)(x′x),

(ii)
∫
(α′L′Lx)2g(L)dL = k3c(n, p)(α′x)2 + k4c(n, p)(α′α)(x′x).

Proof. In accordance with page 130 in [28], we have

n(Ip2 + Kp,p) + n2vec(Ip)vec′(Ip)

= c(n, p)−1
∫

(L ⊗ L)′
{
p(In2 + Kn,n) + p2vec(In)vec′(In)

}
×

× (L ⊗ L)g(L)dL, (40)
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Fig. 11. The logarithm of F2 plotted for various values of p, N and d

where K·,· is the commutation matrix. Now note that

(α ⊗ x)′Ip2(α ⊗ x) = (α′α)(x′x), (41)

(α ⊗ x)′Kp,p(α ⊗ x) = (α′x)2, (42)

(α ⊗ x)′vec(Ip)vec′(Ip)(α ⊗ x) = (α′x)2, (43)

(α ⊗ x)′(L ⊗ L)′In2(L ⊗ L)(α ⊗ x) = (α′L′Lα)(x′L′Lx), (44)

(α ⊗ x)′(L ⊗ L)′Kn,n(L ⊗ L)(α ⊗ x) = (α′L′Lx)2, (45)

(α ⊗ x)′(L ⊗ L)′vec(In)vec′(In)(L ⊗ L)(α ⊗ x) = (α′L′Lx)2 (46)

and

(α ⊗ α)′Ip2(x ⊗ x) = (α′x)2,

(α ⊗ α)′Kp,p(x ⊗ x) = (α′x)2,

(α ⊗ α)′vec(Ip)vec′(Ip)(x ⊗ x) = (α′α)(x′x),

(α ⊗ α)′(L ⊗ L)′In2(L ⊗ L)(x ⊗ x) = (α′L′Lx)2,

(α ⊗ α)′(L ⊗ L)′Kn,n(L ⊗ L)(x ⊗ x) = (α′L′Lx)2,

(α ⊗ α)′(L ⊗ L)′vec(In)vec′(In)(L ⊗ L)(x ⊗ x) = (α′L′Lα)(x′L′Lx).
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Fig. 12. The logarithm of F † plotted for various values of p, N and d

Then, from equation (40) we can obtain the following two expressions:

(α ⊗ x)′
{
n(Ip2 + Kp,p) + n2vec(Ip)vec′(Ip)

}
(α ⊗ x)

= c(n, p)−1(α ⊗ x)′
[∫

(L ⊗ L)′
{
p(In2 + Kn,n) + p2vec(In)vec′(In)

}

× (L ⊗ L)g(L)dL
]

(α ⊗ x),

n(α′α)(x′x) + (n + n2)(α′x)2

= c(n, p)−1
∫ {

p(α′L′Lα)(x′L′Lx) + (p + p2)(α′L′Lx)2
}

g(L)dL, (47)

and

(α ⊗ α)′
{
n(Ip2 + Kp,p) + n2vec(Ip)vec′(Ip)

}
(x ⊗ x)

= c(n, p)−1(α ⊗ α)′
[∫

(L ⊗ L)′
{
p(In2 + Kn,n) + p2vec(In)vec′(In)

}

× (L ⊗ L)g(L)dL
]

(x ⊗ x),
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2n(α′x)2 + n2(α′α)(x′x)

= c(n, p)−1
∫ {

p2(α′L′Lα)(x′L′Lx) + 2p(α′L′Lx)2
}

g(L)dL. (48)

From equation (47) we can then derive∫
(α′L′Lα)(x′L′Lx)g(L)dL = c(n, p)n

p

[
(α′α)(x′x) + (n + 1)(α′x)2

]

−(1 + p)

∫
(α′L′Lx)2g(L)dL.

Inserting this expression into equation (48) yields

∫
(α′L′Lx)2g(L)dL = n

p

(p(n + 1) − 2)(α′x)2 + (p − n)(α′α)(x′x)

c(n, p)−1(p(p + 1) − 2)
,

and then we finally obtain

∫
(α′L′Lα)(x′L′Lx)g(L)dL = n

p

(α′α)(x′x) + (n + 1)(α′x)2

c(n, p)−1

−(p+1)
n

p

(p(n+1)−2)(α′x)2+(p−n)(α′α)(x′x)

c(n, p)−1(p(p + 1) − 2))

= c(n, p)n

p

(
1 − (p + 1)(p − n)

p(p + 1) − 2

)
(α′α)(x′x)

+c(n, p)n

p

(
1 + n − (p + 1)(p(n + 1) − 2)

p(p + 1) − 2

)
×(α′x)2,

completing the proof.

Lemma A4. Let nS ∼ Wp(n,�), p > n + 3 and � > 0. Then, for all α, x ∈ R
p,

(i) E[(α′S+x)2] ≤ (2c1 + c2)(λ1(�
−1))4

[
k1(α

′�x)2 + k2(α
′�α)(x′�x)

]
,

(ii) E[(α′S+x)2] ≤ (λ1(�
−1))4(2c1 + c2)(α

′α)(x′x).

Proof. First, let Y′�−1/2 = TL, where LL′ = In, L is an n × p matrix and T is a
lower triangular n×n matrix with positive elements. Further, note that in accordance
with page 131 in [28], for p > n + 3, we have that

E[vec(S+)vec′(S+)] = c(n, p)−1
∫

(c1(Ip2 + Kp,p)(P ⊗ P)

+c2vec(P)vec′(P))g(L)dL,

where

P = �1/2L′(L�L′)−1(L�L′)−1L�1/2.
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Then, with equalities similar to (41)–(46),

(α⊗x)′ E[vec(S+)vec′(S+)](α⊗x) = c(n, p)−1(α⊗x)′
∫

(c1(Ip2 + Kp,p)(P⊗P),

+c2vec(P)vec′(P))g(L)dL(α ⊗ x),

E[(α′S+x)2] = c(n, p)−1
[
(c1 + c2)

∫
(x′Pα)2g(L)dL

+ c1

∫
(x′Px)(α′Pα)g(L)dL

]
. (49)

Now, by Lemma A5, we have that (x′Px)(α′Pα) ≥ (x′Pα)2. Further, combining this
inequality with (49) and Lemma 2.4 (i) in [28], we have

E[(α′S+x)2] = c(n, p)−1
[
(c1 + c2)

∫
(x′Pα)2g(L)dL

+ c1

∫
(x′Px)(α′Pα)g(L)dL

]

≤ c(n, p)−1(2c1 + c2)

∫
(x′Px)(α′Pα)g(L)dL

≤ c(n, p)−1(2c1 + c2)(λ1(�
−1))4

×
∫

(α′�1/2L′L�1/2α)(x′�1/2L′L�1/2x)g(L)dL

= (2c1 + c2)(λ1(�
−1))4

[
k1(α

′�x)2 + k2(α
′�α)(x′�x)

]
,

where Lemma A3 (i) has been applied in the last equality. On the other hand, if we
instead apply the inequality in Lemma 2.4 (ii) of [28], we obtain

E[(α′S+x)2] ≤ c(n, p)−1(λ1(�
−1))4 [(2c1 + c2)(α

′α)(x′x)
] ∫

g(L)dL

= (λ1(�
−1))4 [(2c1 + c2)(α

′α)(x′x)
]

where Lemma 3.1 (i) in [28] gives the equality and concludes the proof.

Lemma A5. Let A be a p × p symmetric positive definite matrix. Then for any
c, d ∈ R

p,

(c′Ac)(d′Ad) ≥ (c′Ad)2.

Proof. Let A = QRQ′ denote the eigenvalue decomposition of A, such that Q is
orthogonal and R is a diagonal matrix with positive elements. Make the substitutions

f = R1/2Q′c,
g = R1/2Q′d,

so that the inequality (c′Ac)(d′Ad) ≥ (c′Ad)2 can be written as

(f′f)(g′g) ≥ (f′g)2. (50)
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Further, since (f′g) = ‖f‖‖g‖cos(θ), where ‖·‖ denotes the Euclidean norm and θ is
the angle between the vectors f and g, the inequality (50) becomes

‖f‖2‖g‖2≥ ‖f‖2‖g‖2cos(θ)2,

which holds since cos(θ)2 ≤ 1. The lemma is proved.
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