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Abstract A stochastic parabolic equation on [0, 7] x R driven by a general stochastic mea-
sure, for which we assume only o-additivity in probability, is considered. The asymptotic be-
havior of its solution as t — oo is studied.
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1 Introduction
In this paper we consider the stochastic parabolic equation

Lu(t, x)dt + (@, x,u(t,x))dt +o(t,x)du(x) =0, |
u(0, ) = uo(x), ()

where (¢, x) € [0, T] x R, u is a general stochastic measure on the Borel o -algebra
on R (see Section 2), f, o are measurable functions, £ is the operator of the kind

92u(r, x) du(r, x)

Lu(t, x) = alt) =3 +b(1) ettt x) — 2402

ox ot @

Here a, b, c are defined on [0, T']. We prove that under certain conditions on a, b, c,
f, o the solution of (1), considered in the mild sense, tends to O a.s. uniformly on x.
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Note that regularity of the solution was proved in [2], the solution’s convergence in
the case of integrator’s convergence was proved in [18] and the averaging principle
for such an equation was established in [12].

The asymptotic behavior of the moments of solutions of a stochastic differential
system driven by a Brownian motion was considered in [5]. The problem of the con-
vergence of the solution of a nonautonomous logistic differential equation to zero as
time coordinate goes to infinity, with disturbance of coefficients by white noise, cen-
tered and noncentered Poisson noises, was studied in [4]. Asymptotics of the solution
of the stochastic heat equation with white noise, as time variable goes to infinity
for the fixed spatial coordinate, was studied in [10] while asymptotic properties of
the solution of the stochastic wave equation driven by a Lévy process were given in
[7]. Behavior of solutions of different equations with a general stochastic measure
when spatial coordinate goes to infinity was considered in [3] and [1]. In comparison
to [15], where asymptotics of the heat equation driven by a general stochastic mea-
sure when time coordinate tends to infinity was considered, we study a more general
parabolic equation.

The paper is organized as follows. Section 2 contains some general facts about
stochastic measures and integrals with respect to them. In Section 3 we prove some
technical facts and formulate the main result, which is proved in Section 4 jointly
with the auxillary lemma.

2 Preliminaries

Let (2, F, P) be a complete probability space and 55 be a Borel o-algebra on R.
Denote by Ly = Lo(£2, F, P) the set of all real-valued random variables defined on
(2, F, P). Convergence in Lo means the convergence in probability.

Definition 1. A o-additive mapping u : B — Ly is called stochastic measure (SM).

In other words, w is a vector measure with values in Ly. We do not assume any
martingale properties or moment existence for SM.

Consider some examples of SMs. If M, is a square integrable martingal then
Ww(A) = fOT 14(t) dM; is an SM. An «-stable random measure on B for ¢ € (0, 1) U
(1, 2], as it is defined in [19, Sections 3.2-3.3], is an SM in sense of Definition 1. For
a fractional Brownian motion W7 with Hurst index H > 1/2 and a bounded mea-
surable function f : [0, T] — R we can define an SM p(A) = fOT f(@®)1a(0) dwWH
see [13, Theorem 1.1]. Ref. [17] contains some other examples.

The integral [ 4 &du, where g : R — R is a deterministic measurable function,
A € Band p is an SM, is defined and its basic properties are given in [11, Chapter 7].
In that paper the integral with respect to general stochastic measure was constructed
and studied for u defined on an arbitrary o -algebra, but here we consider SM on
Borel subsets of R. Note that every bounded measurable g is integrable with respect
to (w.r.t.) any u.

In the sequel, u denotes an SM, C and C(w) denote positive constant and pos-
itive random constant, respectively, whose exact values are not important (C < oo,
C(w) < oo a.s.).

We use the following statement.
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Lemma 1~(Lemma 3.1in[14]). Let ¢ : R — R, I > 1, be measurable functions
such that ¢(x) = Zfil |1 (x)| is integrable w.r.t. ;1 on R. Then

2
Z(/ o} du> <00 as.
— R
We consider the Besov spaces BY,([c, d]),0 < a < 1, with a standard norm

e 2 —2a—1 172
gl B (e.an = N8 NLs(te.an + ( A (w2(g,r))r dr) , 3)
where

d—h 1/2
wagr) = sup (7 lgtr+ ) - g dy)

O<h<r

For any j € Z and all n > 0, put

The following lemma is a key tool for estimates of the stochastic integral.

Lemma 2 (Lemma 3 in [16]). Let Z be an arbitrary set, and the function q(z, s) :
Z x[j, j+1] = R be such that all paths q(z, -) are continuous on [j, j + 1]. Denote

Gn(z.s)= Y Q(Z,d((,f),l)n)lA](c.m(S)~

1<k<2n

Then the random function

n(z) =/ q(z,s)du(s), z € Z,
(,Jj+1]
has a version

() = / g0z, ) du(s)
(j.j+1]

+Z(/(

l‘l>1 ] j+1]

qn(z,8)du(s) — f

19 dp) @)
(Jj,j+1]

such that forall B >0, w € Q,z€ Z

~ . . n 1/2
@I < lat Hu(Gs j+ D1+ {327 3 g dd) - di )P

n>1 1<k<2n
—nB ) 172
< [>27 3 maghr) )
n>1 1<k=<2n

From Theorem 1.1 [9] it follows that, fora = (8 + 1)/2,
4 1/2
) ) 2
{22"’3 Z (z.d)) — (Z,d(,f_l)n)l } = Cllg IBg,@jj+1m-  (©)
n>1 1<k<2n
Lemma | implies that foreach 8 > 0, j € Z
Y2 S juAgHP < +oo as.

n>1 1<k<2n
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3 Formulation of the problem and the main result

We refer to the mild solution to (1), i.e. the measurable random function u(¢, x) =
u(t,x,w) : [0, T] x R x Q — R that satisfies

t
u(t,x)=/Rp(t,x;0, y)uo(y)dy+/0 dS/Rp(t,x;s,y)f(s,y,u(s,y))dy

t
+/Rdu(y)/0 p(t,x;s,y)o(s,y)ds, 7

for each (7, x) € [0, +00) x R a.s. The properties of such solutions are considered in
[2]. For example, solution of (7) exists, is unique and can be built as

u(t, x) = lim u™(,x), (8)

where 4@ (¢, x) = 0 and
t
u““)(r,x):/Rp(r,x;o, y)uo(y)dy+/0 dszp(t,x;s,y>f(s,y,u<"—”(s,y))dy

t
+fRdM(y)f0 p(t,x;s,y)o(s,y)ds. &)

The analogous iteration process for the stochastic heat equation is considered in more
detail in [14].
Let the coefficients of operator (2) satisfy the following assumptions.

Assumption 1. Functions a(t), b(t), c(t) are continuous and bounded on [0, +00),
and
la(n) —a@)| < Lln —nl*, a@) =3,

where t, 11, 1> € [0, +00), L, A, § are positive constants.
Assumption 2. There exists a constant ¢y > 0 such that c(t) < —co YVt > 0.

Assumption | implies that p(¢, x; s, y)=p(t, x—y; s, 0) foreach ¢, s € [0, +00),
x,y € R. We consider ug, f, o in (7) under the following conditions.

Assumption 3. up : R x Q — R is measurable and for all y, y;, y» € R

uo(y. @) < C(@),  uo(y1. @) — uo(y2, )| < Lyg(@)]y1 — y2l P4,
where C(w), L,,(w) are random constants, B(ug) > 1/2.

Assumption4. f : R, x R x R — R is continuous, bounded, and

|f (s, y1.v1) — f(s, y2, v < Lg(ly1 — y2l + [vr — v2])
for some constant L and all s € Ry, yy, y2, v1,v2 € R

Assumption 5. o : Ry x R — R is measurable and

lo(s, V)] < Co(s), lo(s,y1) — (s, y2)| < Lo (s)y1 — 217,

for some constant 1/2 < B(o) < 1,all s € Ry, y;, y2 € R and bounded functions
Cys, Ls : Ry — R such that

Cy(s) >0, s >00;, Ls(s)—0, s —> o0.
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To proceed further, we need some statements about £ and p. The following
lemma [6, Theorem 10 §1] is formulated for our specific L.
Lemma 3. Assume that the function v(t, x) : [0, T] x R — R is bounded, Assump-
tions 1, 2 hold, |v(0, x)| < My, |Lv(t, x)| < M. Then
lu(t, x)| < e (M) + Mat).

Lemma 4. There exist positive constants v, 1, C such that for each x,y € R, t >
s > 0 the following estimates hold:

vx—y)?

Ip(t, x;5, 0| < Ct —s) Ve = "E , 1(Ct—9)b),  (10)
‘ap(t,x; s, y)‘ va—y)?
0x

<C@t—s)le en(l_S)E)\,x+1/2(é(t — M), (11

‘ap(t,x;s,y) _opxss )| C@)x — '[P — 5)~x

0x dax’

_ va—y? _ v/ =p)?

xmax{e = }en(’_‘Y)E;\,;L(C'(t—s))‘), (12)

where Eq g(2) = Y oo 1“(#:-;3) is the Mittag-Leffler function, ¢ < 1.
Proof. We represent p as
t
pt,x;s,y) =W(t, x;s,y) + / d@/ W(t,x;0,0)P0,¢;s,y)d¢
s R

(see, for example, [6, (4.18)]). Here

1 _ (—p?
W(t,x;8,y) = —————————e a0,

VAT (t — s)a(s)

the function ® (¢, x; s, y) is a solution of the integral equation

t
D, x;s,y) =£W(t,x;s,y)+/ d@/ LW(t, x;0,0)®0,¢;s,y)de. (13)
s R

It is easy to calculate that

IW(t, x;s,) 1 S y—x
— e t—s)a(s P EEE———
X VAt — $)a(s) 2(t — s)a(s)
2 . x—y)? — 2
°W(t,x;s,y) _ 1 e_m( (x—y) _ 1 )’
ax2 VAt — s)als) 4(r —5)2a%(s) 2t — s)a(s)

IW(t,x;s,y) 1 _a? o (x —y)? 1
= e =)l ( — )
4t — $)%a(s) 2(t —s)

at VA (t — s)a(s)

Using Assumption | and boundedness of the function x*e ™" on [0, 4+-00) for arbitrary
a > 0, we easily obtain that

W W
=0

O~ =0 (1
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W, x: s, )| < Ce - (t 5) 12, (15)
oW(t, x;s,y) — ey »?

| ox P <ce =1 - ) (16)
PW(t, x;s,) _

5| = -7, (17)

where 0 < v < (4sup,cg a(t))~'. The solution of (13) can be rewritten as

o
D1, x35,y) = ) lt, x3 5, ),

where
Di(t,x;8,y) =LW(t, x;5,y), Pry1(t,x;s,y)
t
:f d@/ LWt x10.0)®1(0, T 5. ) dc.
s R

Using (14)—(17), we obtain that

|P1(, x5 5, y)]

BZW(t X; S, y)‘—i—lb( )|’

aw
< |a(t)—a(s)|‘ M’Hcg)uwa x5,

va—y)?

<Ce "= ((t—S)*3/2“+(t—s)*1+(t—s)*1/2)

<Ce™ = (t 5) 73/ 2Hhgm=s)
Analogously to [6, (4.58)] we show that

C ~ v=y)?
(I) t, ), < C t — Mk—1 - s 771([—5) t — —3/2-’1‘)L7
[P ( xsy)|_—F((k—1)A+A)( (r—9)")"""e e (r—s)
(18)

where constants C, C depend on A. Taking the sum of (18) for each k > 1, we get the
inequality

va—y)? . ~
|(t, x;5,y)| < Ce™ v Mt — ) L (Ct -9, (19)

The following inequality plays an important role in further estimates

‘ X— 2 v(x
/(r—@)—l/z(e—s)—l/ze‘”(“ 2ot dc_\/>(t—s) 12,-5 (20
R

Now we use (19) and (20) to obtain (10).

t
a0 [ Wt.xi0.0000.ci5. ) de|
s R

! 1 _M E; 1 (CO — )" _ )2
<c | do | ¢ —0)ze A2 T emE=s), d
- /s ]R( ) 6 — )32 ¢
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t O — )* 02 (x—0)?
< conteos [[E2COE g [ -0y b -9t (B g
s -

va-y? ! -
_ Cem)(f — 5y 123 f(9—5)_1“EA,A(C(9—S)A)d9
A

v(x— ')2 ~
= Ct =) e = e E; (G —5)Y), @1)
where the last equality is a consequence of
Z
f E,  uP)t"ldt = 24 E, 1 (2P) (22)
0

[8, chapter III, (1.15)]. From (15), (21) and the inequalities t > s "™ > 1,
E; 3+1 (C(t — s)’\) > F(A1+1) we obtain (10). We prove (11) analogously, using

1 z
Vg f EpuO?) @ =0~ P tde = P 7V2E, L p (02
0

[8, chapter III, (1.16) with @« = 1/2] instead of (22).
In the proof of (12) we use

‘8p(t,x; $,y) _ 0p(t, x5, )

0x ox’
ap(t,x;s,y)  Op(t,x'ss,y)
= ‘ 9x - 9x’ ‘l(x’—x)2<A(t—s)
ap(t,x;s,y)  Ap(t,x'is,y)
+‘ T ar ‘l(x,,x)zzA(,,s), 23)

where A > 0. Firstly assume that (x’ — x)? < At —s); we prove that for such 7, x, s

ap(t,x;s,y)  apt,x'ss,y)
ox ox’

< C(@, Alx — 1% —5)7* x

vx=y)?

xe e E S (Ct —s)h). (24)

c x 1 _v(v:y)zd
o =t

Jx—x"

1 vl(x*—)')z 2 ! (v—vl)w2
<C——e =TT dw
(t — )3/ 0

\X*

1 net-p? T o —
<C———e / ( s) dw
(t —s5)3/2 0 w?

1 v *-p?
SCamepre Tk

Notice that

oW (t,x;s,y) BW(t,x/;s,y)) _
0x ox’ -

|1 21
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where 0 <1 < 1/2,x* =ex+ (1 —e)x’,0 <€ < 1,0 < v < v; here we used
the fact that the function x*e™* is bounded on [0, +00) for arbitrary & > 0. Now we
show that (x' — x)? < A(t — s) implies

v a*op? _ma=p?

e - < Ce ~ i (25)

where v > vy > 0, C, v, do not depend on y and x*, but C depends on A. We
consider two cases.

1. |x — y| < 3|x — x'|. We have the inequalities:

_netop? A _=n? A _G-»? v a-pn?
e T—s <1l<ee 15 <ee -9 =(Cje T—s

2. |x — y| > 3]x — x’|. In this case we have the estimates:

_va*-y)? Cvpa=y? v a—x®) et 2y) Cvp=»? vl )@=yl —x*)
e t—s =e t—s e 1—s <e t—s e t—s
_vGa-p? Ty =) _ 2 a—p)? _vpG=p)?
<e i—s e -5 —e¢ 9G—s) = Cze T—s

Now we set C = max{Cy, C»}, v = min{vy1, v} and obtain (25). Therefore, the
following estimate holds:

oW (t,x;s,y) OW(t,x';s,y) 1 _V2<)c:y>2 -2
= - = ’SC(z—s)3/2*le e — 22 (26)

Consider the expression

ap(t,x;s,y)  dplt,x'ss,y) (W, x;s,y) W, x'5s,y)
ox ax’ B ox ox’
! oW (t, x; 0,
+/ , zdefgw,c;s,y)dc
[_% R 3

X

! oW, x'; 0,
—/ zdef W08 g5, 115, y) de
t_|X’*X| R ox’

2A

W x?

2 d@f AW, x;0,8)  aW(t,x';60,¢)
R ox ox’

=Jo+Ji+ o+ J3.

t

o

s
We estimate J; in the following way:

t .
|11|='/ o dé’/wcb(e,;;s,y)d{'
7 S X

! -2 | =02 % Y
= C./ de/ e_‘)(%+('%9)) Ein (€O = 9)7) enl(G*S)dg
= Ix/ —x|2 R (t — 0)(9 — s)3/2_k

><I>(0,§;s,y)d§
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v(x—y)2 8 —5)* !
< Cem(t—s)e—%w ([—9)_1/2(9 —S))“_1 de
=92 Jwo

< Cen1<z_s)e——"<f:;'>2 E; 1 (C(t — SW( i |x" — XI2>A*1<|x/ - XI2>1/2
- (t —s)!/2 24 24

va—y)?

< CeMU=e™ "= (1 — 5) /E 3 (C(t — 5)M)|x — x). (27)

Here we used the inequality t — s — |x/2_ - 2 5% and (20). We estimate J, in
analogous way using (25):

! oW (t,x';0,0)
|J2|=V , zdefi, d <I>(0,;;s,y)d;‘
e S

X

v (x—p)?

< CeMU=e™ "= (1 —5) 3P E L (Cr — )M |x — X'). (28)

We apply (20) and (26) with A = 2A to prove the estimation for J3:

I —x[?

r— . /.
|73 </ B d9/ W x:0.6) AW x30.6)
s R 0x ox’

x/ = (o

2
7w () B, (G0 — )
SCIx—x’IHl/ d@/ ¢ = “(3(2 D 0= 4
: R (=032 —5)3h

=y’ E; . (C(t —s)*

t
(= )/(t—e)l—l(e—s)*—lde

v (x=y)? -
< Clx = x2S (- ), (Ca - )Y, (29)

‘Id>(9, gys, ylde

< C|)C _ x/|1—2[en1(t—s)e—

for arbitrary [ € (0, 1/2). Now (24) follows from (26), (27), (28) and (29).
Let (x’ — x)? > A(t — s). This implies

oW(t, x;s,y) OW(t,x';s,y) - oW (t,x;s,Vy)
0x dax’ - 0x

oW, x'; s,
+‘ ( / y)‘

0x

_1 _va=n? _wy?
<C(t—ys) maxie = e s }

r_ 1-21 v(x—y)? (' —y)?
SC(t—S)3/2+I(%> maX{e* e } (30)

where [ € (0, 1). On the other hand,

t .
/def —BW“”"9’“<I>(9,c;s,y>dz\
s R 8x

: C/tde/ ) Ex1(C6 ~ ") MO=5) g
s R (t —6)(0 — 5)3/2—*

X" — x[\1=2 —14A —1+41
( 6 — )" — 0)"Hap
)

_V(»’;:y)z E)L,)L(é(l — S))‘)

< Cenl(l‘_“‘)e
- (t —s)1/?
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v(xfy)z .X', — X 1-21 Jod
= CeM=5) (s — s)—3/2+1+/\e—T<| |) E; 3 (C(t —s)™),

VA
and the same estimates hold for [’ d6 [, 2V EX0D @9, ¢ 5, y) dt. Using (30), (24)
and (23), we obtain (12); in (23) we can set, for example, A = 1. O

The main result of the paper is this theorem.

Theorem 1. Let Assumptions 1-5 hold. Then there exists the version of the solution
of (7) such that for each @ € Q:

sup |u(t, x)| — 0, t — oo. (€2))
xeR

4 Proof of the auxillary lemma and the main result

To prove Theorem 1, we consider the integral

t
/Rdu(y)/o p(t,x;s,y)o(s,y)ds. (32)

Lemma 5. Assume Assumptions 1, 2, 5 hold. Then there exists a version v (t, x) of
integral (32) such that for each w € Q2

sup [vi (¢, x)| = 0, t = oo. (33)
xeR

Proof. It follows from Lemma 2 and (6) that a version vy (¢, x) of integral (32) exists
such that foreachx e R,t >0, w € Q

i@ 0l <Y g, x, HuGe j+ 101+ C Y Nl x )l sg 1

JjeZ JEZ
00 2" )
Zz—l’l(2a—l) Z |M(A,({Jn))|2
n=1 k=1

. 1/2 o 1/2
= (Xlatx pP) (O . j+ 10P)

172

JjEZ JEZL
12
C(leq(t,x,~)||§;§2([,-,,-+1 ) (ZZZ e ”Zl (A ) . (34)
JEL Jj€Z n=1

where ,
q(t,x,y) =/ p(t,x;s, y)o(s,y)ds.
0

Next we prove that v (¢, x) satisfies (33). In order to estimate the Besov norm on
[j, j + 11, we consider

t
lg@, x,y+h)—q(, x, ) 5/0 Ip(t,x;s,y +h)— p(t,x;s,¥)||o(s, y)lds
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t
+f lp(t, x:s,y +Wllo(s,y +h) —o(s,y)lds =11 + I,
0

where y, y +h € [j, j + 1]. Denote
Qun = (s, +00) x R) \ ([s, s + M) x (y — N,y + N)),
Qyy = (%) 1 d(Quw, (1, %)) < v},

1
Mm@) = CeP 11y veR?, f n@ydv =1,
RZ

ne(v) = e 1 (ve™h,
2
Oy = Qv \ Qun) N{t > s},
where M, N, y > 0. To estimate I, we introduce the function
plt,x;s,y) = pt, x; 8, V=V, x5 5, ),

where
W(t,x;s,y):/ Ny —vi,x —vp)dv, v=(vi,v2).

Y

MN
It is obvious that, for each 0 < y < min{M /2, N/2} and arbitrary fixed pair (s, y),
p belongs to a class Cl’z([O, 400) x R) as a function of (¢, x). It is easy to obtain
that p(¢, x; s, y) —p(t x;s,y)if (t,x) € Quny and p(t, x;s,y) = 0 if (¢, x) €
([0 +00) x R) \ Q n U {s > t}. Moreover, boundedness of p(, x; s, y) on Q
{t <T}foreachT > O and the fact that || < 1 imply boundedness of p(z, x; s, y)
on ([0, T] x R). Now we estimate £p. Taking into consideration properties of p, it
is easy to see that £Lp = 0 outside the set @yM - And inside @K,I N

ap I ap W
Lp=L(pV)=WLp+ pL¥ +2a LI 20 rg 12,227 (35
0x 0x 0x 0x

For the derivatives of n.(v) we have the following well-known inequalities:

‘3778(1))’ < e ’82778(1))’
= ’ 2

<Ce™t, i=1,2, (36)
Bvi

where the constant C does not depend on ¢. Let us prove, for example, the first in-
equality in (36):

‘3'75(1)) -3
— & max

d
= ‘ r}l(v)‘ :C8_3s
av; v <1

0 Vi
where we used that | € C°(R?). From (36) and the fact that ne = 0 outside the ball
with radius ¢ it follows that

o Sl |5

x| =5V = ox2

Using estimates (35), (10) and (11) we obtain the inequality

2B C=9h - Ej412(Ct = )M
A= t—s

2| =er

1Ll < Ce™ " im gt ”(y
(37)
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for each (¢, x) € ®K,,N. Let y € (0, 1/3) be fixed; consider ¢ > 3y. Thus, I> can be
rewritten in following way:
t—3y
h= / Pt x5,y + Do (s y + h) — (s, y)l ds
0

t
+/ \ lp, x; 8,y +M)|o(s,y+h) —o(s, y)ds = I + In.
t=3y

We estimate the first summand using the function p(t, x; s, y) for M = N = 3y.
Note that # — s < 3y on the set ®X,,N; moreover, f —s > y or |[x — y| > y. In the
first case we have the following consequence of (37):

ILp] < C¥y 2 (Expp1 (CBYYY) + Ering12(C3Y)Y)).
In the second case,
ILp| < Cey (B 5 11(CBY)Y) + Eras12(C3y)M)).

Anyway,
ILp] = C(y) ¥ (1, x) € [0, +00) x R.

Using Lemma 3 for arbitrary 7 > ¢, we obtain
1P, x55, )| < Cy)e 't

where the constant C does not depend on 7. On the other hand, taking into account
that p(¢, x; s, y) = p(t,x;s,y) if t —s > 3y we obtain

|Li] < C(y)hP@e=012 5 0, t — 0. (38)

Now we estimate I5>. We get

t 1 vx—y)? ! ~
|| < CHP®) / L B B, (E = ) Lo () ds
=3y VI —§ 7
< ChP@ e E; 5 1(CBy))  sup  |Le(s)| = 0,1 — oco.  (39)
se[t—3y,t]

For further estimates we use the function

pt,x;s,y,h) = (pt,x;s,y+h) — plt,x;s, )= W(t, x5 5, ).

Let M > 2y, N > 1+ 2y. Then function p has properties, which are analogouos to
the properties of p. For example, p(¢, x; s, y,h) = p(t,x;s,y +h) — p(t,x;s,y)
when (¢, x) € Qpyy, p is bounded on ([0, T] x R), where T > 0, p = 0 when
(t, x) € ([0, 400) x R) \ Qi}l’N U {s > t}. Now we estimate £p. Notice that Lp = 0
outside the set @yM - and for each (¢, x) € @’/M  the following estimates hold:

‘Cﬁ = E((py—t—h - py)\p)

(py+n — py) OV
= WL(pyn = py) + (Pyyn — PYLY + 20—

0x 0x



Asymptotic properties of the parabolic equation driven by stochastic measure 495

Lp=0 (Py+h — Py) OV
e (th_py)/;\p_an#_
ox ox

where for convenience we denote py = p(z, x; s, y). (11) and (12) imply that

)

‘ op(t,x;s,y+h) dp(t,x;s,y) ’
0x dIx

_ v(x—y)2

<Ch@ -7 sup e = TIVEL(CH —9));

yelj,j+1]
/X*y 3p(t,v;s,0)d )
— av
x—y—h dv

|p(t, x;s,y +h) — p(t,x;s,9)| =

=y 1 vvz . ~ A
< / e = e"IE; 5 41(Ct — )M dv
x—y—h T —8§

h va—y)? ~
< sup e~ = en(t_S)E)\,x-i-l/z(C(f — M.
=58 ye[j,j+1]

A

14
Therefore, for each (7, x) € O3,y

ILpl <
7V(x—y)2 .
< Ch? sup e 5 107
yelj,j+1]
LE (Ct—9" | E(C—5)")
2 LA x+1/2 1 s
40
x(y t—s Tty (t —s)3/2 (40)

We rewrite 1] as
t—3y
I =/ Ip(t,x;s,y+h)—pit, x;s,y)|lo(s, y)lds
0
t
+/ Ip(t, x;5,y+h) — p(t,x;s, )| o(s, y)lds =11 + I12.
t—3y

Consider the function p(z, x; s, y, h) for M = 3y, N = 3y + 1. We estimate [
analogouosly to 5. It follows from (40) and Lemma 3 that
1p(t, x; 8,9, )| < C(y)h%e 't V(z, x) € [0, +00) x R.

On the other hand, the equality p(z, x; s, y, h) = p(t, x; s,y +h) — p(t, x; s, y) for
t —s > 3y implies that

1] < C()hPe™"t? — 0, 1 — oco. (41)

117 is estimated in the following way:

t =y C R) vvz ~
Il < C f ds / T M 1 Ca —5)
t—3y x—y—h bt —

B h/2 t
< CAV s pCBYY) sup 1Ca(s)] / v dv / (t =)' ds
se[t—3y,t] 0 t—3y



496 B. Manikin

= CME; ;412(C3y))  sup |Gy TR 50,1t - 00,  (42)
se[t—3y,t]

where [ € (0, 1/2). We can choose [, ¢ such that 1 — 2] = B(0), ¢ = B(0).
Now assume that foreach y € [j, j+1] and some m € N the following inequality
holds:
[x =yl =m+1. (43)

Then we consider the functions p(z, x; s, y) and p(z, x; s, y, h) with M = 3y and
N = 3y +m. For such M and N, provided that (43) holds, (¢, x) € Qn. Moreover,
using (37), (40), the fact that (43) implies

_wa—y?  _ym? _Uovpa—p? v
sup e s <e ¥ sup e i=s V(t,x) € Oy, 0 <vi <,
yelj,j+1] yelj,j+1l

and Lemma 3, we obtain:

m2

. _hm=
Ip(t, x;5,y)| < C(y)e e 5,

n12

Ip(t, x;s,y +h) — p(t,x;s,y)| < C(y)hﬁ(a)e—cotte—g_y.

Now it is easy to estimate 1, I:

v m2

I < COORP@ e 2™ 5 < CORF@ e 2=l 50, 1 — 00,  (44)
v mz

b < CONMP@ e 2™ 5 < CoP@e0 2= 50,1 - co.  (45)

Note that we estimate |g (¢, x, y)| analogously to I>. From (38), (39), (41), (42), (44),
(45) it follows that there exists G, (¢) : [0, +00) — [0, +00) such that G, (z) — 0,
t — 00, and
wa(g,r) < G, (PO Ve, r>0,j€Z,x eR;
|Q(t’x, J)l S G)/(t) Vt 2 07] € va € R7

wa(g,r) < Gy(t)rﬂ(”)mfl Vi, r>0,j€Z,x€R: max |x—y|>m+1;
Yelj,j+1]

lg(t, x, )| < G,(tOm 'Vt >0,j€Z,x eR: max |x—y|>m+]1.
yeljj+1]

From this it follows that for each o € (1/2, B(0)) the following inequalities hold:
llg(z, x, B, @), j+1) < CGy(OVt =20, j € Z,x €R;

.
llg(z, x, ) B j,j+11) < CGy(O)m

Vi >0,je€Z,xeR: max |x—y|>m+ 1.
yelj.j+11

These estimates imply

1
Y gt x, HP < CGA(1) +CGL() Y — = CGA (1),
JEZ meN "
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1

Z llg(z, x, .)||23§2([j,j+1] =< CG)%(I) + CG)%(Z‘) Z — = CG}%([)
JjeL meN mn
for each x € R. On the other hand,
> Iu(( j + 1D < coas.,
JEL
oo 2" '
Z Z Z2_71(206_1)|M(A,({j,,))|2 < o0 as.
j€Zn=1k=1

Therefore, for each version that satisfies (34) we have
iz, x)| < C(@)Gy (7).

Taking a supremum on x and sending ¢ to infinity, we obtain the statement of the
lemma. ([

Now we return to the proof of Theorem 1.

Proof. We use the iteration process (9). For each n € N we consider the function
(n) ! |
n —
v (1, x) = f p(t, x; 0, y)uo(y>dy+f dsf plt, x5, 9) f (s, y, u""V(s, y))dy.
R 0 R

From [6, Theorem 2 §4] it follows that the function vé") is a solution, bounded on
[0, T] x R, of the Cauchy problem

Lo(t,x)=—f, x,u" D, x)), v0,x)=upx),
for each w € @2, T > 0. Using Lemma 3, we obtain
Wi (2, )| < Ce™ ' (1 +1). (46)
Now from (8) and (46) it follows that

lu(t, x)| < Ce™ ' (1+1) + sup v (z, x)|.
xeR

Taking a supremum on x, sending ¢ to infinity and using Lemma 5, we obtain the
statement of the theorem. O
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