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Abstract This paper provides a multivariate extension of Bertoin’s pathwise construction of
a Lévy process conditioned to stay positive or negative. Thus obtained processes conditioned
to stay in half-spaces are closely related to the original process on a compact time interval seen
from its directional extremal points. In the case of a correlated Brownian motion the law of
the conditioned process is obtained by a linear transformation of a standard Brownian motion
and an independent Bessel-3 process. Further motivation is provided by a limit theorem corre-
sponding to zooming in on a Lévy process with a Brownian part at the point of its directional
infimum. Applications to zooming in at the point furthest from the origin are envisaged.
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1 Introduction

There are multiple examples of conditioning a univariate Lévy process in some limit-
ing sense, which alternatively can be described by Doob h-transforms, see [4, 12, 11]
and references therein. Most often the focus is on establishing properties directly re-
lated to these conditional processes. The case of conditioning to stay positive or neg-
ative is special in the sense that it is intimately related to the post- and pre-infimum
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processes [4], leading to various important applications. Further links to path decom-
position results can be found in [13].

Local behavior of a univariate Lévy process at its extremal points is studied
in [16], see also [4] for a self-similar case and [3] for a linear Brownian motion.
It is shown that zooming in at the point of infimum results in a pair of processes ob-
tained from the underlying self-similar Lévy process conditioned to stay positive and
negative. Further applications of this theory in the setting of high-frequency statistics
include estimation of threshold exceedance in [7] and optimal estimation of extremes
in [17]. Bertoin’s pathwise construction of conditioned processes in [4] plays a funda-
mental role in these works. For yet another application see [2] where the discretization
error in the two-sided Skorokhod reflection map is studied.

In this work we extend Bertoin’s construction to the multivariate setting to define
a Lévy process conditioned to stay in a half-space specified by some normal vector
η �= 0, see Section 3. Importantly, the link to post- and pre-extremum processes is
preserved, where extrema are understood with respect to the direction η. Furthermore,
in Section 4 we establish an associated invariance principle which, in particular, yields
a limit result when zooming in on a Lévy process at the point of directional extremum.
This is achieved via a short and direct argument relying on the path-wise construction.
Applications of this result to high frequency statistics and the study of discretization
errors in problems related to directional extrema and exceedance are anticipated.

In the multivariate case we have a continuum of possible directions, and the effect
of linear transformations is studied in Section 5. It is shown that conditioning with re-
spect to any direction η can be reduced to, say, conditioning an appropriately rotated
process so that its first component stays positive. Furthermore, we provide a simple
expression for the conditioned correlated Brownian motion in terms of a certain linear
transformation of independent standard Brownian motions and a Bessel-3 process. In
Section 6 we present the semigroup of the conditioned process in the general case,
which turns out to have an intuitive structure. In Section 7 we utilize the arguments
and insights from [9] to establish some important properties of the conditioned pro-
cess. This leads to a natural definition of the respective Feller process started from an
arbitrary point in the closed half-space.

We have attempted to present the multivariate theory in a streamlined and concise
form, while emphasizing the main novelties stemming from the multivariate setting.
Finally, in Section 8 we state a conjecture related to the local behavior at the point
furthest from the origin, which hints at even greater application potential of the mul-
tivariate theory.

2 Preliminaries

Fix an integer d ≥ 1 and let D denote the space of càdlàg functions ω : R → R
d∪{†},

where † is an isolated absorbing state. As usually we equip the path space D with the
Skorokhod topology and let F denote the Borel σ -field. Furthermore we denote the
coordinate process by X = (Xt ) and its natural completed filtration by (Ft ). Unless
stated otherwise we work with a subclass of processes satisfying Xt = 0 for t < 0,
and let ζ := inf{t ≥ 0 | Xt = †} ∈ [0,∞] be the lifetime.
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2.1 Directional infimum

We shall consider a fixed vector η ∈ R
d \ {0} and the respective open and closed

half-spaces

S := {x ∈ R
d | 〈x, η〉 > 0}, S := {x ∈ R

d | 〈x, η〉 ≥ 0};
for ease of notation we omit η here and in the following. The projected process is
defined by

Zt := 〈Xt, η〉 ∈ R ∪ {†},
where 〈†, η〉 = † by convention.

Assume for a moment that the lifetime is finite and strictly positive, ζ ∈ (0,∞).
Consider the directional infimum Z := inf{Zt | t ≥ 0} and the respective (last) time

τ := sup{t ≥ 0 | Zt ∧ Zt− = Z} ∈ [0, ζ ],
where z ∧ † = z. Letting X := Xτ 1{Zτ ≤Zτ−} + Xτ−1{Zτ >Zτ−} be the position of
X at the time of directional infimum, we define the (directional) post-infimum and
reversed pre-infimum processes by

X−→t
:=

{
Xτ+t − X if 0 ≤ t < ζ − τ,

† if t ≥ ζ − τ,
X←−t

:=
{

X(τ−t)− − X if 0 ≤ t < τ,

† if t ≥ τ,

see also Figure 1 for a schematic illustration. According to the above convention we
set X−→t

= X←−t
= 0 for t < 0. Note that X−→t

= † for t ≥ 0 if τ = ζ , and similarly
X←−t

= † for t ≥ 0 if τ = 0. The pair of processes (X←−, X−→) is a representation of
the process X seen from the time-space point (τ,X). Alternatively, we could have
defined a proper two-sided process.

2.2 Lévy processes

Throughout this paper P will be a probability measure on (D,F) such that X is a
d-dimensional Lévy process with infinite lifetime. We write X : P when there is a
need to specify the law of X explicitly. For a deterministic T ∈ (0,∞) the process
X : P sent to † at T is denoted by X : PT , and in particular PT (ζ = T ) = 1. By
default we work with P if no law is mentioned explicitly. The Lévy measure of X

is denoted by �(dx). Additional notation will be introduced in the following when
required.

Throughout this paper we assume (the excluded case is simple but somewhat
cumbersome):

Assumption A. For the chosen direction η the projected process Z is not a compound
Poisson process.

Under Assumption A it is well known that the process Z : PT achieves its infi-
mum once only (at the time τ ) a.s. This means that X−→ and X←− are inside the open
half-space S for strictly positive times preceding ζ . Our next result shows that X can-
not jump perpendicularly to η at τ , see Figure 1, and so X−→0

and X←−0
are either at

the origin or inside S ∪ {†}. For the definition of regular and irregular points we refer
to [5, p. 104].
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Lemma 1. The following trichotomy holds with respect to the projected process
Z : P.

(�) If 0 is regular for (−∞, 0) and for (0,∞) then X←−0
= X−→0

= 0 P
T -a.s.

(↑) If 0 is irregular for (−∞, 0) then X←−0
∈ S ∪ {†} and X−→0

= 0 P
T -a.s.

(↓) If 0 is irregular for (0,∞) then X←−0
= 0 and X−→0

∈ S ∪ {†} P
T -a.s.

Proof. The latter two statements are easy and follow from the univariate case. Sup-
pose instead that 0 is regular for both half-lines, in which case P

T (τ ∈ {0, T }) = 0.
We may choose a sequence (Tn) of stopping times, ranging over all jump epochs of
X. Applying the strong Markov property yields PT (ZTn = Z) = 0 since Z is regular
for (−∞, 0). Thus, if X jumps at τ then Zτ > Z P

T -a.s. The same argument applied
to the time reversed process (XT − X(T −t)−) having the law of X : PT shows that
Zτ− > Z if X jumps at τ P

T -a.s.; here we employ regularity for (0,∞). We conclude
that X is PT -a.s. continuous at τ and this proves the statement.

Fig. 1. Schematic illustration of the process in R
2 seen from its directional infimum: (↑) jump

into η-minimum (left), (↓) jump out of η-infimum (center) and an impossible case (right)

3 The fundamental representation and the limit object

We start with a fundamental representation of the law of the pair (X←−, X−→) : PT , which
extends a univariate construction by Bertoin [4] based, in turn, on an implicit identity
for random walks appearing in [14, Lem. XII.8.3]. Our representation is in terms of
time-changed stochastic integrals, since the construction in [4] in terms of the local
time at 0 does not have a simple analogue in the multivariate setting.

Consider the nonkilled process X and let X̃t := X(−t)− be its time-reversal, which
is a process with stationary and independent increments for negative times. Define
two (Ft )-adapted càdlàg processes Y± by

Y+
t := −

∫
[−t,0]

1{〈X̃s−,η〉>0} dX̃s, Y−
t := −

∫
[−t,0]

1{〈X̃s−,η〉≤0} dX̃s for t ≥ 0,

and Y±∞ := †. These stochastic integrals can be understood intuitively as∫ t

0 1{〈Xs,η〉>0} dXs and
∫ t

0 1{〈Xs,η〉≤0} dXs , where the integrands are not predictable.
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The cumulative times when X is and is not in S are denoted by A+ and A−
respectively. That is,

A+
t :=

∫ t

0
1{〈Xs,η〉>0} ds, A−

t :=
∫ t

0
1{〈Xs,η〉≤0} ds for t ≥ 0.

Consider now the right-continuous inverses α±
t := inf{s ≥ 0 | A±

s > t} of A±, and
define

X
↑
t := Y+

α+
t

, X
↓
t := Y−

α−
t

for t ≥ 0.

The processes X↑ and X↓ under PT are obtained by killing X↑ and X↓ at the times
A+

T and A−
T under P, respectively. The times A±

T are nondecreasing in T , which re-
sults in longer lifetimes ζ↑ and ζ↓ for larger time horizons T .

Theorem 2. Under PT for T ∈ (0,∞) there is the following identity in law:

(X←−, X−→)
d= (−X↓, X↑),

where −† = † by convention.

Proof. The proof is based on a random walk approximation and exchangeability of
increments as in the one-dimensional cases of [4]; it is deferred to Section A.

Importantly, the above construction of the pair (X↓, X↑) : PT depends on T via
the killing times A±

T alone. In particular, for 0 < T1 < T2 the paths of X↑ : PT1 and
X↑ : PT2 coincide up to the time A+

T1
when the former is sent to †, whereas the latter

is killed at A+
T2

≥ A+
T1

. It is convenient to think of paths growing as T increases. As

T → ∞ we obtain (X↓, X↑).

Corollary 3. It holds that

(X←−, X−→) : PT d→ (−X↓, X↑), T → ∞.

It is noted that the above weak convergence statement can be strengthened, see [4,
Cor. 3.2], but we prefer using Theorem 2 directly when needed. The pair (X↓, X↑)

is our main object of interest. According to Corollary 3, the process X↑ : P can be
called a limiting post-infimum process. In analogy to the univariate case we instead
call it X conditioned to stay in the half-plane S, and provide a justification below.

Observe that −X
↓
t , X

↑
t ∈ S ∪ {†} for t > 0 a.s., whereas the initial values are

classified according to the trichotomy in Lemma 1. In particular, X
↑
0 = 0 in cases

(�), (↑), and X
↓
0 = 0 in cases (�), (↓). Importantly, the projected conditioned pro-

cesses 〈X↑, η〉 and 〈X↓, η〉 coincide with the univariate Lévy process Z conditioned
to stay positive and negative, respectively. In particular, the lifetimes ζ↑ and ζ↓ can
be studied using the univariate theory, and so

ζ↑ = ∞ iff lim sup
t→∞

Zt = ∞, ζ↓ = ∞ iff lim inf
t→∞ Zt = −∞

with probability 1. Furthermore, ζ↑ > 0 unless Z is a nonincreasing process and then
ζ↑ = 0 a.s. Yet another useful observation is given by the following result.
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Lemma 4. The processes X↑ and X↓ do not jump at a fixed t > 0 a.s.

Proof. Assume that X←− : PT jumps at t > 0 with positive probability. Then by an
argument as in the proof of Lemma 1 we find that we must be in the case (↑). Hence
X has two jumps separated by time t with positive probability, which is impossible.
According to Theorem 2 we find that X↓ has no jump at t a.s. when excluding the
jump into †. The latter would imply P(ζ↓ = t) > 0, which is again impossible by a
similar argument. By time-reversal the same property is true with respect to X↑.

Importantly, (under Assumption A) the process X↓ is a.s. the same if the nonstrict
inequalities in its definition are replaced by strict inequalities, which follows from
basic properties of Lévy processes. In particular, we find that X↓ = −(−X)↑ a.s.
The respective equality in distribution can also be seen using the representation in
Theorem 2 and the standard time-reversal argument. Finally, observe a close link to
the classical Sparre Andersen identity [5, Lem. VI.15]: A+

T has the same law as the
time of the supremum of Z on [0, T ], which by time-reversal coincides with the law
of the lifetime of the respective post-infimum process.

4 Motivating limit theorem

Bertoin’s representation and its above stated generalization are indispensable in the
study of Lévy processes around their extremes. In the one-dimensional setting it has
been fundamental for the results in [7, 17]. We further demonstrate its usefulness by
establishing an invariance principle, see [10] and [16] for alternative approaches in
the univariate case (the latter needs a better justification of convergence of Markov
processes). The following short proof requires certain assumptions, and for simplicity
we consider only the case of an oscillating Zt = 〈Xt, η〉:

lim sup
t→∞

Zt = ∞ and lim inf
t→∞ Zt = −∞ a.s. (1)

Recall that this assumption implies that both X↑ and X↓ have infinite lifetimes.

Theorem 5. Let X(n) be a sequence of Lévy processes weakly convergent to a Lévy
process X satisfying (1) and Assumption A. Then for any sequence of finite determin-
istic times Tn → ∞ there is the weak convergence

(X←−
(n), X−→

(n)) : PTn
d→ (−X↓, X↑).

Proof. Fix an arbitrary finite T > 0. By the continuous mapping theorem we have
under PT :

(X←−
(n), X−→

(n))
d→ (X←−, X−→).

Indeed, for converging paths the directional infima and their (right) times must con-
verge assuming the limiting path has no jump at T and it achieves the directional
infimum only once (this is a.s. true). Furthermore, X has no jump perpendicular to η

at τ , see Lemma 1 and Figure 1 (right). Note that making all processes stay at 0 for
negative times is essential in the case when the limit process jumps at τ .
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According to Theorem 2 we have

(−X(n)↓, X(n)↑) : PT d→ (−X↓, X↑) : PT

for every T > 0, and the latter weakly converges to (−X↓, X↑) as T → ∞. Thus it
remains to apply a standard approximation result [6, Thm. 3.2] or [18, Thm. 4.28] to
obtain

(−X(n)↓, X(n)↑) : PTn
d→ (−X↓, X↑), (2)

and hence also the stated result (apply Theorem 2 to the left hand side). The crux of
the approximation result consists in showing that the Skorokhod distance (on each
compact time interval [0, t]) between the left hand side in (2) and the same object for
the time horizon T converges to 0 in probability as T → ∞ uniformly for large n. In
our case it is sufficient to check that

lim
T →∞ lim sup

n
P(A(n)±

Tn
∧ A(n)±

T > t) = 1, t > 0,

where the event corresponds to two identical paths on the time interval [0, t]. We may
assume that Tn ≥ T , implying A(n)±

Tn
≥ A(n)±

T , but the latter weakly converges to
A±

T . Finally, note that (1) implies A±∞ = ∞ a.s.

The above argument can be adapted to include the case where limt→∞ Zt = ∞
and limt→∞ Z

(n)
t = ∞ for all large enough n, as well as the case with −∞ limits.

That is, the infinite-time behavior of Z and the approximating sequence Z(n) is the
same. Otherwise, the proof becomes substantially more difficult and it is then required
to work with a compactified space where † is a point at infinity.

Finally, we show that zooming in on X at the time-space location of the directional
infimum results in the pair of conditioned processes corresponding to the underlying
Brownian part. This limit law is studied in Proposition 9 below.

Corollary 6. Let B be the Brownian part of the d-dimensional X, and assume that
〈B1, η〉 is not zero a.s. Then

√
n(X←−·/n

, X−→·/n
) : P1 d→ (−B↓, B↑).

Proof. Define a scaled time-changed process X
(n)
t = √

nXt/n and note that X(n) d→
B, see [5, Prop. 2] and [18, Thm. 15.17]. It remains to apply Theorem 5 with Tn = n.

5 Linear transformations and the Brownian example

Linear transformations play an important role in the multivariate theory as demon-
strated by the following result.

Lemma 7. Consider a d ′ × d matrix M and d ′-dimensional vector η′ �= 0 such that
M�η′ �= 0. Then (MX)↑ defined using η = η′ coincides with M(X↑) defined using
η = M�η′.
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Proof. Note that 〈MX, η′〉 = 〈X,M�η′〉 and use linearity of the stochastic integral
in the definition of Y±.

Consequently, it suffices to study conditioning for just one direction, say

η1 = (1, 0, . . . , 0)� ∈ R
d .

For any unit vector η ∈ R
d we may choose an orthogonal matrix R (RR� = I )

such that Rη = η1. Then X↑ coincides with R�(RX)↑ where the latter is defined for
the direction η1. Our next result allows us to reduce certain multivariate cases to the
univariate theory.

Lemma 8. Consider X = X′v + X′′, where X′ and X′′ are independent Lévy pro-
cesses with dimensions 1 and d respectively, and additionally 〈v, η〉 > 0, 〈X′′

t , η〉 =
0, t ≥ 0. Then X↑ d= X′↑v + X′′, where X′↑ is the univariate X′ conditioned to stay
positive and by convention † · v + x′′ = †.

Proof. Note that the process X−→ : PT has the same law as X′−→v + X′′ : PT , where

X′−→ is the post-infimum process of univariate X′. This is so, because Zt = 〈v, η〉X′
t

and the process X′′ is independent of τ , whereas X′v−→ = X′−→v under PT . It remains to
apply Corollary 3 and the continuous mapping theorem.

We are now ready to treat the basic example of a conditioned Brownian motion. In
this regard note that a univariate standard Brownian B(1) conditioned to stay positive

is a Bessel-3 process which we denote by B(1)↑.

Proposition 9. Let X be a (driftless) Brownian motion with a covariance matrix 	

such that 	η �= 0. Then

X↑ d= −X↓ d= MR(B(1)↑, B(2), . . . , B(d))�,

where B = (B(1), . . . , B(d))� is a standard Brownian motion in R
d , and the square

matrices M and R satisfy

MM� = 	, RR� = I, R�M�η =
√

η�	ηη1.

Proof. The first distributional equality is a consequence of −X
d= X. Next, using

X
d= MRB and Lemma 7 we find that X↑ has the law of MR(B↑) for the direc-

tion R�M�η, where the latter is proportional to η1. It remains to apply Lemma 8 to

find that B↑ for the direction η1 has the law of (B(1)↑, B(2), . . . , B(d))�.

Example 10. Take d = 2, η = (a, b)� and a Brownian motion X with standard
deviations σ1, σ2 > 0 and correlation ρ ∈ (−1, 1). Then Proposition 9 yields

X↑ d= 1√
a2σ 2

1 + 2abσ1σ2ρ + b2σ 2
2

(
aσ 2

1 + bσ1σ2ρ −bσ1σ2

√
1 − ρ2

aσ1σ2ρ + bσ 2
2 aσ1σ2

√
1 − ρ2

) (
B(1)↑

B(2)

)
,

where we used a Cholesky square-root M .
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Fig. 2. Two independent paths simulated from the common law of −X↓ and X↑ for the di-
rection η = (1, 2)�, where σ1 = σ2 = 1 and ρ = −0.8. The red line is the boundary of the
corresponding half-space

In particular, simulation of X↑ over a grid is a trivial task when X is a driftless
Brownian motion. We depict two independent sample paths in Figure 2.

Further insight can be obtained from Figure 3 consisting of three plots, each con-
taining 500 simulations of X

↑
1 for different values of ρ.

Fig. 3. Simulated values of X
↑
1 for the direction η = (1, 2)� and for different values of ρ. The

standard deviations are σ1 = σ2 = 1

6 The law of the limit pair

We need some additional notation. Consider an extension of the probability space
(D,F ,P) supporting a standard exponential random variable e1 independent of ev-
erything else. Define eq = e1/q, an exponential random variable of rate q > 0, and
let X : P

eq be the process X : P killed at eq . Finally, the process X : P
eq
x corre-

sponds to the shifted process Xt + x1{t≥0} killed at eq , and in the case of no killing
we write Px .
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6.1 Exponential time horizon

As in the univariate case the characterization of the law of the limit object (−X↓, X↑)

proceeds by first studying the respective pair of processes under Peq , that is, when the
killing time of the original process is an independent exponential random variable of
rate q > 0. We start with a simple observation that under Peq (and Assumption A) we
have

(X←−, X−→)
d= (−X−→,−X←−),

which readily follows by time-reversal; alternatively one may use Theorem 2. The
following splitting result is based on some classical arguments, and we only provide
appropriate references.

Proposition 11. Under P
eq the processes X←− and X−→ are independent Markov pro-

cesses. The semigroup of X−→ is given by

P
eq
x (Xt ∈ dy,Zt > 0)P

eq
y (Z > 0)

P
eq
x (Z > 0)

= P
eq
x (Xt ∈ dy|Z > 0), t > 0, x, y ∈ S.

Moreover, in case (↓) the initial distribution is given by

P
eq (X−→0

∈ dy) = P
eq
y (Z > 0)�(dy)/

(
q +

∫
{〈z,η〉>0}

P
eq
z (Z > 0)�(dz)

)
, y ∈ S.

Proof. The fact that X−→ is Markov with the stated semigroup is proven in [19]. Inde-
pendence of the processes follows by discretizing the local time of Z at its infimum
as in the proof of [5, Lem. VI.6]. The initial distribution in case (↓) can be obtained
analogously to [15, Prop. 3.3] using an enumeration of jumps of X.

6.2 Infinite time horizon

We are now ready to characterize the law of the limit object (−X↓, X↑). Consider a
so-called renewal function associated to the ladder height process H corresponding
to −Z:

h(x) :=
∫ ∞

0
P(H t ≤ x)dt,

where the scaling of local time is arbitrary, see also [5, p. 157, 171]. This is exactly
the h-function appearing in the Doob h-transform corresponding to the univariate Z

conditioned to stay positive, see [4, 9] for alternative representations. The function h

is finite, continuous and increasing.

Theorem 12. The processes −X↓ and X↑ are independent Markov processes, and
the former has the law of (−X)↑. The semigroup of X↑ is given by

p
↑
t (x, dy) := h(〈y, η〉)

h(〈x, η〉)Px(Xt ∈ dy,Zt > 0), t > 0, x, y ∈ S.

Furthermore, in case (↓) and if Z is nonmonotone we have

P(X
↑
0 ∈ dy) = h(〈y, η〉)�(dy)/

∫
{〈z,η〉>0}

h(〈z, η〉)�(dz), y ∈ S. (3)
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Proof. We apply Theorem 2 with T = eq and Proposition 11, and then let q ↓
0. Since eq → ∞ we indeed retrieve −X↓ and X↑. The Markov property follows
from the strong convergence result implied by Theorem 2 upon recalling that the
distribution of ζ↑ has no atoms, see Lemma 4. Let us check that the semigroup in
Proposition 11 has the stated weak limit. From the univariate theory [9, Eq. (2.5)] we
know that for a certain cq > 0

P
eq
x (Z > 0)/cq → h(〈x, η〉), x ∈ S,

as q ↓ 0, and it remains to apply the dominated convergence theorem as in [9, Prop.
1].

With respect to the initial distribution (for the assumed case) we observe that

P
eq (X−→0

∈ A) → P(X
↑
0 ∈ A),∫

A

P
eq
y (Z > 0)/cq�(dy) →

∫
A

h(〈y, η〉)�(dy) < ∞

for any bounded Borel set A, also bounded away from 0 (by the dominated conver-
gence theorem). It remains to recall that ζ↑ > 0 and X

↑
0 ∈ S a.s., and A can be

chosen so that
∫
A

h(〈y, η〉)�(dy) > 0. The latter is true since h(z) > 0 for z > 0 and
necessarily �(S) > 0.

In the univariate case the initial distribution formula (3) is known in the case of no
negative jumps, where H(t) = t , implying h(x) = x, see [8] and also [9, Eq. (2.12)].
Let us also stress the following relation to the univariate conditioned processes.

Remark 13. Choosing the direction η1 = (1, 0, . . . , 0)� we observe that

p
↑
t (x, dy) = p

(1)
t

↑
(x(1), dy(1))Px(2:d) (X

(2:d)
t ∈ dy(2:d)|X(1)

t = y(1), X
(1)
t > 0),

where X = (X(1), X(2:d)) and p
(1)
t

↑
corresponds to X(1) conditioned to stay positive.

7 Starting away from the origin

Theorem 12 characterizes the law of X↑ in case (↓), but otherwise it lacks conver-
gence of the semigroup as x → 0. In this section we address this issue and also
state a number of further useful properties. The proofs follow closely the univariate
analogues in [9] and thus we only state the main steps and observations.

It is easy to see that the semigroup p
↑
t (x, dy) of X↑, see Theorem 12, is conser-

vative and satisfies the Feller properties on Ŝ := S ∪ {†}. Note that the hyperplane
defining this half-space has been excluded. We write X : P

↑
x for the respective Feller

process indexed by [0,∞) and started at x ∈ Ŝ, and note that it satisfies the strong
Markov property [18, Thm. 19.17].

Observe that the law of the Markov process with the semigroup in Proposition 11
when started in x ∈ Ŝ can be conveniently written as

X|Z > 0 = X|Xt ∈ Ŝ ∀t ≥ 0, under P
eq
x . (4)
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Furthermore, [9, Prop. 1] readily generalizes to

P ↑
x (�, t < ζ) = lim

q↓0
P

eq
x (�, t < ζ |Z > 0), � ∈ Ft , t > 0, x ∈ S, (5)

which explains the name ‘conditioned to stay in a half-space’. Note that 〈X, η〉 : P
↑
x

is the univariate process 〈X, η〉 conditioned to stay positive and started from 〈x, η〉.
Proposition 14. For any x ∈ S the process Zt = 〈Xt, η〉 under P

↑
x has a unique and

finite time of infimum, X−→ and X←− are independent under P
↑
x , and

X−→ : P ↑
x

d= X↑.

Furthermore,

X : P ↑
x

d→ X↑, as S � x → 0,

where by convention the sample paths satisfy ωt = 0, t < 0.

Proof. It follows from the calculations in [9, p. 956] that the time of infimum is finite.
Consider the process in (4) and establish a splitting result analogous to Proposition 11.
The post-infimum process has the law of X−→ : P

eq , and so we can apply (5) and
Theorem 2 to get the first statement.

In view of the first part, it is only required to show that the pre-infimum process
X←− : P

↑
x becomes negligible in probability as x → 0. The arguments of [9, Thm.

2] still apply, and we additionally show that the maximal fluctuation of the pre-limit
process perpendicular to η is negligible. This can be done by considering the stopping
time ν = inf{t ≥ 0|‖Xt −x‖ > ε} and employing similar analysis based on the strong
Markov property. In case (�) and (↓) we then need to show that Px(Zν > 0) → 0,
which is indeed true.

The above proof, in fact, shows that

X : P ↑
x

d→ x0 + X↑, as S � x → x0, 〈x0, η〉 = 0.

In cases (�), (↑) the process x0+X↑ starts at x0 and according to Lemma 4 it does not
jump at fixed times. Hence in these cases we may extend our Feller process X : P

↑
x

to the state space S ∪ {†}, the closed half-space with an absorbing state, by setting

X : P ↑
x0

:= x0 + X↑ for any x0 with 〈x0, η〉 = 0.

Note that this definition coincides with the result of the construction presented in
Section 3 if we take X started at x0 and let Y+

t = − ∫
[−t,0] 1{〈X̃s−,η〉≥0} dX̃s which

yields an a.s. identical process in the original case.

8 Conjecture: zooming in at the maximal distance from the origin

For a possible further application we turn our attention to the local behavior of a Lévy
process at the time when it reaches the maximal distance from the origin. Assuming
finite life time, ζ ∈ (0,∞), we let

τ := sup{t ≥ 0 | ‖Xt‖ ∨ ‖Xt−‖ = sup
s≥0

‖Xs‖} ∈ [0, ζ ]
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be the (last) time when the Euclidean norm is maximal. Consider the respective posi-
tion M := Xτ if ‖Xτ‖ ≥ ‖Xτ−‖ and M := Xτ− otherwise, and define the processes

−→
X t :=

{
Xτ+t − M if 0 ≤ t < ζ − τ,

† if t ≥ ζ − τ,

←−
X t :=

{
X(τ−t)− − M if 0 ≤ t < τ,

† if t ≥ τ.

Observe that the pair (
←−
X ,

−→
X ) coincides with (X←−, X−→) studied above for the (path-

dependent) direction η = −M , see also Figure 4 for a schematic illustration.

Fig. 4. Schematic illustration of zooming in at the maximal distance

Inspired by Corollary 6 and using the intuition from the one-dimensional stable
convergence in [16], we conjecture the following result; proving it seems to be ex-
ceedingly challenging at the moment. We anticipate that the convergence is again
stable [1] but avoid complicating the statement.

Conjecture 15. Let B be the Brownian part of X with a nonsingular covariance
matrix. Then √

n(
←−
X ·/n,

−→
X ·/n) : P1 d→ (−B⇓, B⇑),

where the limit pair is a mixture of (−B↓, B↑) for the independent direction η =
−M : P1.

We illustrate this conjecture by a simulation study where X = B is a 2-dimen-
sional Brownian motion with correlation ρ = −0.8 as in Section 5. We simulate K

(approximate) copies of the random vector
√

n
−→
X 1/n under P1 for n = 1000 using

discretization with step size 10−5. The K samples of the limit quantity B
⇑
1 are con-

structed by reusing the directions η = −M : P1 and then independently sampling B
↑
1

according to Example 10.

Note that
−→
X may have a lifetime strictly smaller than 1/n, making

√
n
−→
X 1/n

undefined. In our simulation we exclude these cases, effectively conditioning
−→
X to

have a lifetime larger than 1/n. We simulated 5000 times, resulting in K = 4833
(conditional) samples of

√
n
−→
X 1/n. The respective bivariate densities are presented in

Figure 5, and we observe that they are indeed rather close.
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Fig. 5. Estimated bivariate densities for
√

n
−→
X 1/n and B

⇑
1 on the left and right respectively. A

darker shade of blue indicates a higher density. The dashed line is the line through the origin
with slope −1

It is noted that the Brownian motion X with correlation ρ tends to achieve its
maximal distance from the origin in the NW or SE direction, which leads to the two
clusters of points in Figure 5.

A Proof of Theorem 2

A.1 Discrete time

We begin by stating a discrete-time version of Theorem 2. Fix ζ ∈ N and consider
a process X ∈ R

d over the index set {0, . . . , ζ } together with the projected process
Zi := 〈Xi, η〉. Let τ := sup{i ≤ ζ |Zi = Zi} be the index of the (last) minimum of Z,
and X := Xτ be the value of the directional minimum. The directional post-minimum
and reversed pre-minimum chains X−→ and X←− are given by

X−→i
:=

{
Xτ+i − X if i ≤ ζ − τ,

† if i > ζ − τ,
X←−i

:=
{

Xτ−i − X if i ≤ τ,

† if i > τ.

Next, define

A+
i :=

i∑
j=1

1{Zj >0}, A−
i :=

i∑
j=1

1{Zj ≤0} (6)

when i ≤ ζ , and let α±
i := inf{j ∈ N | A±

j = i} denote the inverses of A±. With

�Xj := Xj − Xj−1 we define the chains X↑ and X↓ by

X
↑
i :=

{∑α+
i

j=1 1{Zj >0}�Xj if i ≤ A+
ζ ,

† if i > A+
ζ ,

X
↓
i :=

{∑α−
i

j=1 1{Zj ≤0}�Xj if i ≤ A−
ζ ,

† if i > A−
ζ .

We are now ready to state the discrete analogue of Theorem 2.
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Theorem 16. Assume that ζ ∈ N and X has exchangeable increments. Then the pairs
of processes (X↓, X↑) and (−X←−, X−→) have the same law.

Proof. The proof of [4, Thm. 2.1] is easily adapted to this setting.

A.2 Continuous time

The proof of Theorem 2 proceeds much like the proof of [4, Thm. 3.1]. We discretize,
apply Theorem 16 and take the limit.

Recall that we are considering a Lévy process X : PT up to a finite time hori-
zon T > 0. For each n ∈ N let Xn be the chain given by Xn

i := Xi/n, and let Xn↑
and Xn↓ be the chains obtained from Xn by the procedure in Section A.1. Define

Yn+
i :=

i∑
j=1

1{〈Xn
j ,η〉>0}�Xn

j ,

and note that almost surely

Yn+
[tn] = −

−1∑
i=−[tn]

1{〈X̃i/n,η〉>0}(X̃(i+1)/n − X̃i/n).

By [18, Cor. 17.13] we have

sup
0≤t≤T

‖Yn+
[tn] − Y+

t ‖ P→ 0.

Consider further the increasing chains An± obtained from Xn through the con-
struction in (6), and let αn± be the inverses. Note that 1

n
An+

[tn] → A+
t for all t ≥ 0 a.s.

since the zero set of 〈X·, η〉 is a Lebesgue null-set a.s. It follows that almost surely
1
n
αn+

[tn] → α+
t for all t ∈ C(α+), where C(α+) is the set of continuity points for α+.

To see this, observe first that

inf{s ≥ 0 | 1
n
An+

[sn] > t} = inf{s ≥ 0 | An+
[sn] ≥ [tn] + 1} = 1

n
αn+

[tn]+1.

Almost surely the expression on the left converges to α+
t for all t ∈ C(α+). This basic

convergence of right-continuous inverses is easy to prove (e.g., using the arguments in
the proof of [20, Prop. 0.1]). Lastly one verifies that 1

n
αn+

[tn]+1 can indeed by replaced

by 1
n
αn+

[tn].
Let f : [0,∞) → R

d be a continuous function. Then it follows from the obser-
vations above that

1

n

[T n]∑
i=0

〈f (i/n), X
n↑
i 〉 P→

∫ T

0
〈f (s), X↑

s 〉 ds,

where we make the convention that 〈a, †〉 = ∞ for a �= 0 and 〈0, †〉 = 0. To prove
this we use the fact that α+ is strictly increasing and has at most countably many
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discontinuities, with the former implying that Y+ jumps at α+
t for at most countably

many t .
Similarly, if g : [0,∞) → R

d is a continuous function we obtain the convergence

1

n

[T n]∑
i=0

〈g(i/n),X
n↓
i 〉 P→

∫ T

0
〈g(s),X↓

s 〉 ds.

Using the fact that almost surely (Xt )t∈[0,T ] reaches its infimum in the direction
given by η exactly once, it follows that almost surely

1

n

[T n]∑
i=0

〈f (i/n), X−→
n

i
〉 →

∫ T

0
〈f (s), X−→s

〉 ds,

and

1

n

[T n]∑
i=0

〈g(i/n), X←−
n

i
〉 →

∫ T

0
〈g(s), X←−s

〉 ds,

where f and g are as above. By Theorem 16 we obtain the distributional identity

(∫ T

0
〈g(s),X↓

s 〉 ds,

∫ T

0
〈f (s), X↑

s 〉 ds

)

d=
(

−
∫ T

0
〈g(s), X←−s

〉 ds,

∫ T

0
〈f (s), X−→s

〉 ds

)

under PT , thus proving Theorem 2.
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