Modern Stochastics: Theory and Applications 2 (2015) 95-106
DOI: 10.15559/15-VMSTA23

The rate of convergence to the normal law in terms
of pseudomoments

Yuliya Mishura?, Yevheniya Munchak®*, Petro Slyusarchuk®

ATaras Shevchenko National University of Kyiv, Volodymyrska str. 64, 01601, Kyiv,
Ukraine
bUzhhorod National University, Pidhirna str. 46, 88000, Uzhhorod, Ukraine

myus @univ.kiev.ua (Yu. Mishura), yevheniamunchak @ gmail.com (Ye. Munchak),
petro_slyusarchuk @ukr.net (P. Slyusarchuk)

Received: 21 February 2015, Revised: 4 April 2015, Accepted: 10 April 2015,
Published online: 21 April 2015

Abstract We establish the rate of convergence of distributions of sums of independent iden-
tically distributed random variables to the Gaussian distribution in terms of truncated pseu-
domoments by implementing the idea of Yu. Studnyev for getting estimates of the rate of
convergence of the order higher than n—1/2
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1 Introduction

Applications of the central limit theorem and other weak limit theorems are closely
connected to the rate of convergence to the limit distribution. The rate of convergence
was studied by many authors; see [6] and the references therein. The simplest result
in this direction is the Berry—Esseen inequality. Let {§,, n > 1} be a sequence of in-
dependent identically distributed random variables (iidrvs) with distribution function
F(x), E& = 0, and D& = 02 < oo. Let f3 = [ |x[?dF(x) be the absolute 3rd
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< x},and let @ (x), x € R, be the standard normal

moment, &, (x) = P{w

distribution function. Then the Berry—Esseen inequality states that

CBs3
o3n’

This estimate gives the rate of convergence O (n~'/?) and the asymptotic expansions
of the distribution function of the sum of iidrvs in terms of semiinvariants, presented
in the book [6]. The same rate of convergence was obtained by Paulauskas [5] in
terms of pseudomoments. Let ¢ = 1. Then the “pseudomoment” function is defined
as H(x) = F(x) — ®@(x), the (absolute) third pseudomoment is defined as v =
Jg 1xPldH (x)|, and we have

sup| @, (x) — ¢ (x)| <
xeR

sup\tp,,(x) — (15(x)| < Cmax(v, v%)nf%.
xeR

However, this rate of convergence is slow, for instance, from the point of view of
financial applications. The conditions that allow one to improve the rate of conver-
gence were formulated by several authors. After the introduction of pseudomoments
in [10], they are widely used in limit theorems. Zolotarev [11] obtained very gen-
eral estimates in the central limit theorem using a different type of pseudomoments.
Studnyev [9] obtained the following estimate of the rate of convergence in terms
of pseudomoments. Let {§,,n > 1} be centered iidrvs with unit variance and char-
acteristic function f(¢), ux = f R x*dH (x) be the kth-order pseudomoment, and
V(x) = VX H(z) be the variation of the function H.

Proposition 1 ([9]). Let F(x) have finite moments up to the qth order for some g > 3
and satisfy the Cramer condition limy;|— ool f (1)| < 1. Then

q

el | 11 [V
sup|®, (x) — @ (x) =0< = +—7—/ a’x/ zqu(z)>.
xe]Ig’ | Z 5 anz \/ﬁ 0 |z\>x| |

k=3 nz

We can see that the condition uy = 0,3 < k < r supplies the rate of convergence
O(n#). The rate of convergence was also studied in [1, 3, 7]. In our work, we use
a different type of pseudomoments and get the same rate of convergence avoiding the
Cramer condition. Instead, we impose the boundedness of the truncated pseudomo-

ments and integrability of the characteristic function.

2 Generalization of Studnyev’s estimate. Main results

Let, as before, {§,, n > 1} be a sequence of iidrvs with E&; = 0, D§; = ole (0, 00),
distribution function F (x), and characteristic function f(¢), and let @, (x), x € R, be
the distribution function of the random variable

Sp= (o) N E +E 4+ E).

We assume that, for some m > 3, there exist the pseudomoments

uszxde(x), k=3,...,meN,
R
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where H(x) = F(xo) — @(x). The truncated pseudomoments are defined as

oD (m) = f| )
x|<on

(“truncation from above”) and

v? (m) = / X" |dH (x)]
|x|>0 /1

(“truncation from below”).

Theorem 1. Let the following conditions hold:
(1) The characteristic function is integrable: A = fR | f(®)|dt < oo;

(i) The pseudomoments up to order m equal zero, and the truncated pseudomo-
ments are bounded:

ur=0, k=3,...,m, forsomem >3, and
1
Vv, (m) = max{ m(m), v(z)(m)} Ee_%.

Then, for alln > 2,

n

3
de2 2
S g T v =

nz n2 n

sup|cb () — & (x)| < 2cH 2 s (m) oA

where

2 e

c) — ’ c? =200
" m(m + 1)! " m-l
2
T
b=expl———s—5——1t < 1.
eXp{ 2442522 + 71)2} =

Corollary 1. Let & be a random variable with bounded density p(x) < A1. Suppose
that condition (ii) of Theorem 1 holds. Then, for all n > 3,
46% e 3

@
(m)+2c<2> (m)+2 A2 v (m) S L
n 2 n-z b n

1
— = < 1.
964202(2+7)? b<1

sup| @, (x) — @ (x)| < 2C(1)
xeR

where by = exp{—

Note assumption (i) implies the existence of the density p,(x) of the random
variable §;,. Also, let ¢ (x) be the density of the standard normal law.

Theorem 2. Let the conditions of Theorem 1 hold. Then, for alln > 2,

o /n e2 e 3

(1) (2)
Vv
) nm(j/:/l) C(4) n (m) +bn 1 A+Un(m)_ )
2 T on

sup| pu (x) — p(x)| < CS
xeR n 2 n 2

where "
G) 1271"(% +1)

- , c® =2c® |
m 4 (m + 1)! m m—1
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3 Auxiliary results. Proofs of the main results

2
First we prove two auxiliary results. Denote w(t) = | f (ﬁ) —e 7).
Lemmal. Let uy =0,k =3,...,m. Then, forallt € R,
| |m+l

||
(D @
()_(+1),n()+ (m).

Proof. Recall that f(1) = [ e/"*dF(x). Therefore, f (%) = ffoooeit?xdF(x) =

i fooo ¢'"*d F (xo). By the condition of the lemma, the pseudomoments up to order m
equal zero. Hence, it is easy to deduce that

w(t) = V ei’xdF(xa)—/eitxddi(x)
R R

i e (itx)k
/R< "y >

= V e"*d(F(xo) — @(x))‘
R

itx (ltx) ‘dH
sze Z dH ().

k=0 k=0
Using the inequality ([12], p. 372)
. Y| 218 gt
T U S R PR 1}
m! m!(m + 1)8

with § = 1 and § = 0 we obtain

. (ztx)
w(t) 5/ e — ‘dH( ) +/
|x|<o/n Z | | |x|>0 /1

it —Z o ‘|dH( )|

k=0 k=0
x|t 2|tx|
< S —[dH(x)| + |dH( )|
\X|Sﬂf (m + D! |x|>0 /1
1w | | b@
—m n o (m) + ——v, 7 (m).
The lemma is proved. O

Now, denote T1(n, m) = /—21In(2ev,(m)). Then, in turn, we have that v,,(m) =
i exp{—%le (n, m)}. Note also that condition (ii) implies 71 (2, m) > 1.

Lemma 2. Suppose that condition (ii) of Theorem 1 holds.
1) For |t| < Ti(n,m), the characteristic function allows the following bound:
t2
If(5)] <e” 7.

2) For |t| > Ti(n,m), the characteristic function allows the following bound:
(DI = e+ Dvam)lr™ .

2 2
Proof. Evidently, |f(£)| = |f(£) — e T e T <e +w(t) Now consider
two cases.
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1) Let |t| < Ty (n, m). Then we can deduce from Lemma 1 that

2

t _= _t_ r_
(7)) = Fet wefom)
<ot (1 (M b + 2 Sion))
- m+ 11"
2 T(nm) L, m) e Tlm_2(n,m) )
=¢ 4(1+e ( AT
T2 (nm) " Yn,m) 27" %(n, m)
=¢ (HM ' Mm)( R YR— >)
B zT 1, _T1<;“") " Y, m) Tmfz(n,m)
= (Hz_t ((m—i—l)! R )) M

Consider the function f1(x) = exp{—%}xm’l. It attains its maximal value at the
point x = /2(m — 1), and this value equals

m—1

-1 m—1
Jlmax = eXP{—mT}(Z(m -1)?

Furthermore,
w{_m—wam—nﬁ L epltrhem )T
L m+ D!~ mm+ DV/2Zmm = D(m — 1yn—le—m=D
~ ( 2e )mzl ] 1
T \m-1 2r(m — 1) m(m + 1)
PR
“mim+1)

The last fraction attains its maximal value at the point m = 3. Therefore,

1
< —.
m+D! ~ 12

le(n,m) Tlm_l(n,m)
Xﬂ_ 4 }

Similarly,

n Z
From (1) together with two last bounds it follows that

! AN YR I A A I
. 2 \1273))=¢ 12
15

2
and the proof of the first statement follows.

b)

T2(n, m) | 217" 2 (n, m _1
exp{— } ml

o
[N}

t

<e ¥,

)

<e “el
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2) Now, let |t| > T1(n, m). Then we get from Lemma 1 that

t
‘f(—) e o)
o
le(n.m) | |m+ | |
- v (2)
<e + —
< e (m)
< vam( 20 4+ 2 20" @)
v, S — .
=T T T
Recall that Ty (n, m) > 1. Then |t| > Ti(n, m) > 1, and from (2) we get that
t |t|m+1 2|t|m+l 3
‘f(;) < vn<m)<2e|t|'"+1 ot T ) = (2e g Jeatmle™
whence the proof follows. |

Now we are in position to prove the main results.

Proof of Theorem 1. Let F and G be two distribution functions with characteristic
functions f and g, respectively, and suppose that G has a density function, which we
denote G’. We shall use the following inequality from [4], p. 297:

dt 24sup|G/|

sup|F(x) — G(x)|<—[ If(t)—g(t)i —

xeR

Taking F(x) = ®@,(x) and G(x) = @ (x), we have

splon - o) = 2 [ () et 2 )
== su x)— P(x — —e T |—+ —.
S L o o/n t - w2aT

Let n > 2. First, from the elementary inequality

n
" — ") < Ju— v Yl o

k=1

and from Lemma 1 it follows that, for ¢t < Tj(n, m)/n,
"(em) = F) ol (R
o/n Jn P o/n
t " 2 n—1 t 2
— “% o < — -
w(ﬁ) ol = w(ﬁ)"e
tm+ t2
< n(7| v + 2 <2><m)) exp{——}
(m+ Din™ mins 12

2 m+1
(m+ Dn" iyt m!nT
“4)

k—1

IA

IA
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Second, introduce the following notation:

12"7 (gl

c) _ L@ —ach
" m 4+ 1)) b
1
Ty(n,m) =
V2T (Chivy (m) + Chius? (m)
Then ®
M coum, s)
n\/ZnTz(n,m) nz nz
Let T3(n, m) = (T1(n, m)x/n) A To(n, m). Then it follows from (3) and (5) that
2 (Dm t 2ldt 2 [Dom t \|"dt
EEY e —eE a2 [y “
T Jo O'ﬁ t T JTyn,m) O’ﬁ t
2 [hem - 2gy 24
+= / T e
Ts3(n,m) A/ 2n T (n, m)
= I,(n, m) + L(n, m) + I3(n, m)+c<‘>”" (m) +c@n Y w (m) 6)
n 2 nT
Since T3(n, m) < Ti(n, m)/n, from (4) we get that
2 (Bomy g 2| dt
Ii(n,m) = = —e T |2
) nfo f(oﬁ) -
2 T3 (n,m) m 2t m—1 2
< —/ <7 D m) + 7v,§2)(m))e_tl_2dt
T Jo (m+1Dln 2 mln 2
m+| m4+1 m
_ e )(1)() 2.12% 1;()0)()
JT(m+l)'n 7 amn~z
2)
" (m) v, (m)
=CDL >+ CP L2 (7
nT n-2

If T3(n,m) = Th(n, m), then I(n, m) = 0 and I3(n, m) = 0. Therefore, we consider
the case T3(n, m) = Ty (n, m)+/n. Then

2 Tr(n,m) t
rom =2 [ ()|

3(n,m)
Now we apply the following result of StatuleviCius [8]: if a random variable with
characteristic function f(¢) has a density p(x) < d < oo and variance o2, then, for
any ¢ € R,

dt 9 Tanm)/o/n dt
— == /T [fol"=

1(n,m)/o

2
|f@)] Sexp{—m}~ (3)

It follows from condition (i) that the density p(x) of any &, can be obtained as the
inverse Fourier transform p(x) = % fJR e " f(t)dt and p(x) < % fooo |f(®)|dt =

A . . t2 . . .
o Besides, the function Gorin)? is increasing for ¢+ > 0. Therefore, for |f| >
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Ti(n, m)/o (recall that Ty (n, m) > 1),
2
T
[yl < e)(1){_24A%;2(2+ n)z} =b
and 0 < b < 1. Then
2 (hem/oyn dt 2o o0 oA
L(n,m) = —/ fol"— < —b"—lf |f(®)]dt = —b""1. (9)
T JTi(n,m)/o t 3 0 4

Finally, we bound I3(n, m). Note that I3(n, m) is nonzero only if Ty (n, m)/n <
T»(n, m). Therefore,

nle(n,m)
2 [ _r_ dt  2e 2
(n,m) < = e
Tﬂmm)ﬁ t T waTiHn,m)
n—1
212 " 4 - 4e-e” 7
< (2evy(m)) ev, (m) (2eVn(m))n 1S V() e-e
mn mn mn
3 n
de2 e 2
= v, (m)——. (10)
T n
Relations (6)—(10) supply the proof of Theorem 1. g

Remark 1. Let the following conditions hold: uz =0,k =3, ..., m, m > 3. Then

sup| @1 (x) — @ (x)| = su£|F(xa) — & (x)|

xeR

6 2 o
= <rr(m N + - 271) max(vl(m), (Vl(m)) +2)'

Indeed, let n = 1. Theorem is obvious when vi(m) > 1. Let vi(m) < 1. Put
1
= (vi(m))” m+2 into (3). Then from Lemma 1 it follows that

= suﬂg@l(x) — o) = sup|F(xcr) — P ()]

2 (17 pmt |z| (2) dt 24
55/0 <<m+1)' Vi )> AT

2 Tm+1
<

((m+1) (m 4+ 1)! g

(1}1(171))'"*2(2 2 )
Tm+1)! " 727

Proof of Corollary 1. Proof is similar to that of Theorem 1. We apply inequality (8)
and recall again that the function ﬁ is increasing for + > 0. Therefore, for
|t| > T1(n, m)/o (recall that T (n, m) > 1),

v (m) 2 (v1(m)) 72
n\/ﬁ

IA

1
- 1 =:b
|f(r)|sexp{ 96A%02(2+7[)2} I
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and 0 < b1 < 1. It follows from [2], p. 510, that ffooo | £(2)|?dt < 27 A;. Therefore,

2 hmmjoyn dt 2 o0
L(n,m) = —/ |f ()|” Gb" 2/ |f@)[dt =20 410772,
T

1(n,m)/o
Corollary 1 is proved. O
Remark 2. For n = 2, we can get estimates similar to those in Remark 1.

Proof of Theorem 2. As it was mentioned before, condition (i) implies the existence
of a density for the random variable &, so the random variable S, has the density

= [

Since ¢ (x) = \/__ 7 is the density of the standard normal law, we have ¢ (x) =

[§)

% o e e g dt and

1 * itx gn 4 * ity 12
_ - - dt — “HreT 2 dt
[Pu) = ¢ ()| = 7 /_Ooe f (Gﬁ) /_Ooe e
1 e n t 2
— —e 7|dt.
T 27 /_Oo f (aﬁ) ¢
Therefore,

dt

) e
f<oﬁ>_e

)l

t2
e 2dt

|pn () — (x)|_2/
T 1t <Ty(n,m)/n

278 Jit1>1 (,m)/m
1

2 |t]>Ty (n,m)/n
=1+ 1L+ 1. 11

From the conditions of the theorem, Lemmas 1 and 2, and from (4) (n > 2) we obtain
3
the following: for |¢t| < T1(n, m)s/n and v, (m) < %e‘i,

L= f”( ! ) -5 |ar
1= —e
27 Ji=riomyyal \ow/n
m1 (1) ) s
<L <|r| e m) 20l ((”))e—mn
270 Jii<timy i\ (m + 1)In"T" min’s
2
TrE v m 2012 g o@m)
4n(m+1)' an*‘ 4rm! 2
3 vn (m) 4 Vn (m)
_C()i_;’_c() — (12)

n2 n 2
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n

dt

From the conditions of the theorem, similarly to (9), we get
1
270 Jjtj> 1y (nmy i

(5)
o oJ/n

= |f@|"dz < b"!
27 Jiz)>Ty (nm) fo 27
1 _2 1 & _2
I3 = — e 2dt < — e 2dt
27 Jit1> 11 (nmy 270 J 1y (n,m)
nTIz(n,m)
e 2 < (261)”(}11))"

<
T 2n/nTi(n,m) —  2mi/n

< Onlm) —at (m)ég (14)
TJn " Un

Relations (11)—(14) supply the proof of Theorem 2. O

Ip)

A. (13)

4 Example

We give an example of application of Theorem 1. It is similar to the example of
[12], p. 375, where the discrete distribution was considered. Define the distribution
function F(x) as

@ (x) if [x] > €,
D(—e) if —e < x < —0e,
Fx) = D (€) if fe < x < e,

D(e)—1 .
%—i— (Z)e Zx if |x] < Oe,

where 0 < € < 1,and 0 < 8 < 1 is the root of the equation

€ ) B (96)2 _l
/Oxdcp(x)_ : (zp(e) 2). (15)

This equation has a unique solution because foe x2d®(x) < %(qﬁ(e) — %). Indeed,
on one hand,

.x2 x4 .x6 .x8
[ — 1__+___+__... R
() 4/_27,( 2 T 2217 2331 T 2k )

and therefore,

() 1 /6()d 1 €3+65 €’ n
€)— == x)dx = e——+———==4+--- ).
2 0<p V2 6 40 7-.233!

So
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On the other hand,

/e 240 () = — /E CNEANE SR AR

o T T A b U T2 T T s *
1 (€ e5+ 7 &9 N
T 2z \3 10 " 7-2221 9.2331
- 1 (e & . e’
T V2r\3 10 56

1 (2 & & 1 (1 23 ,

< — — — — J— — € -
“V2z\3 10 56 Jor \3 280

and we immediately get that

‘do (o !
/Ox (x)_§< (6)7)‘

It is obvious that the density function is bounded. Moreover, F'(x) is symmetric.
Therefore, ;11 = 0 and 3 = 0. Furthermore, taking into account (15), consider

00 fe b (€) — 1
o? =/ xzdF(x) =/ x2d®(x) —i—/ xZde
[x|=€

—00 —be Oe

_1 o0
:/ x2d® (x) + %%(eeﬁ :/ x2d®(x) = 1.
|x|>€ e 3 —00

This means that 1, = 0. Consider further the pseudomoments

v4=/ x4|d(F(x)—q>(x))|=/ MNd(Fx) — o))

—00

<t /6 |d(F(x) —@())| < 644<(P(6) — %)

’

€
v{D(3) = / Hd(Fx) —o)| = / xHNd(Fx) — @ (x)
|x|<o/n
where € can be chosen so that vy < %e’% and v,gl)(3) < %e’%. Then

v (3) = / x| (F (x) — @(x))| = 0.
|x|>0 /1

Hence, condition (ii) of Theorem 1 holds. Therefore, the function F(x) satisfies the
conditions of Theorem 1 with m = 3.
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