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Abstract Reflected generalized backward stochastic differential equations (BSDEs) with one
discontinuous barrier are investigated when the noise is driven by a Brownian motion and an
independent Poisson measure. The existence and uniqueness of the solution are derived when
the generators are monotone and the barrier is right-continuous with left limits (rcll). The link
is established between this solution and a viscosity solution for an obstacle problem of integral-
partial differential equations with nonlinear Neumann boundary conditions.
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integral-partial differential equations
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1 Introduction

General nonlinear backward stochastic differential equations (BSDEs, for short) in
the framework of Brownian motion were first introduced by Pardoux and Peng [18]
and then extended to the case of jumps by Tang and Li [28] and Rong [26]. Since
then, the theory of BSDEs has grown rapidly and has been applied to various areas
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such as mathematical finance [4, 5], stochastic control and stochastic game theory
[13, 16] and the theory of partial differential equations [1, 19, 20, 22].

BSDEs have been extended to the reflected case by El Karoui et al. [6] in the
case of a Brownian filtration. In their setting, one of the components of the solution is
forced to stay above a given barrier which is a continuous adapted stochastic process.
Hamadene and Ouknine [11] treat the case where the filtration is generated by the
Brownian motion and a Poisson random measure when the square-integrable obstacle
has only inaccessible jump times. Later on, Essaky [9] and Hamadene and Ouknine
[12] have extended these results to a right-continuous left-limited (rcll) obstacle with
predictable and inaccessible jumps. In [8], one of the authors studied the reflected
BSDE driven by a Lévy process in both cited cases.

In another context, in order to provide a probabilistic representation for a so-
lution of a system of parabolic or elliptic semilinear PDEs with nonlinear Neumann
boundary condition, Pardoux and Zhang in [21] initiated a new class of BSDEs which
involves the integral with respect to a continuously increasing process, which is the
local times of a diffusion process on the boundary. This kind of equations is called
generalized BSDEs. Following this way, Pardoux in [17] considered the generalized
BSDE with jumps, El Otmani in [7] studied the generalized BSDE driven by Lévy
process, Ren and Xia [25] have introduced the notion of reflected generalized BSDEs
and Ren and El Otmani [24] have treated the reflected generalized BSDE driven by
Lévy process.

In this paper, we focus on the following reflected generalized BSDEs with jumps
and rcll barrier (reflected generalized BSDEs, for short)

T T T
Y;=§+/ f(S, YS! ZSa Vs)ds"f'/ g(s, Ys)dAs+KT_Kt_/ stWs
t t t

T
- / / V()N (ds. de).
t U

T
Y/ >L;,, t <T and / Y- — L,-)dK; =0,
0
. ey

where W is a standard Brownian motion and N is a compensated Poisson random
measure. The second condition in (1) indicates that the first component Y of the
solution is forced to stay above the barrier L and the role of K is to push Y upwards
in order to keep it above L in a minimal way according to the second part of this
condition, i.e. K increases only when ¥ = L. Note that in this case, the jumps can be
inaccessible (which stem from the stochastic integral with respect to N) or predictable
(which comes from the predictable negative jumps of the barrier L) (see, e.g., [3]).

Due to the presence of the process (K;);<7, the integral with respect to the contin-
uous increasing process (A;);<r, which is the local time of a solution for a reflected
stochastic differential equation with jumps, and the following special form of the co-
efficient:

f, x,y,z,r) = f(t,x,y,z,/r(e)y(x,e)k(de)),
U

we will establish that equation (1) provides, in a Markovian case, a probabilistic in-
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terpretation of the solution, in the viscosity sense, of the following obstacle problem
of parabolic integral-partial differential equation (IPDE) with nonlinear Neumann
boundary conditions

(u—20n (—E;—I; — Lu— f(t,x,u,(Vyuo), Bu)) =0, V(,x)e[0,T]xG;
u(T,x)=H((x), VxeG,

u
— +g(t,x,u) =0, Vx € 0G,
on

@

where:

* G is an open connected bounded domain of R’ (I > 1) which is such that for a
function ¢ € CI% (R), G and its boundary dG are characterized by G = {$ >
0}, 0G = {® = 0} and for any x € dG, V®(x) is the unit normal vector
pointing toward the interior of G.

* Z is the second-order integral-differential operator
ZL=R+S
with

R = %Tr[aaT(x)]wa, x) + (b(x), Vi (1, X)),
S¢ = /U(¢(t, x+c(x,e)) — d(t,x) — (Vi (1, x), cx, €)))A(de).
* % is an integral operator defined as
B = /U(¢(z, X +c(x,e) — p(t, x))y (x, e)r(de).

 For every x € 0G,

¢
o= (Vi VO (x)).

e f,8,H,¢ b,o,cand y are supposed to satisfy suitable assumptions.

Therefore, in the first part of this paper, the main objective is to prove the unique-
ness and existence of the solution of (1) when the coefficients f and g are only mono-
tone w.r.t. y and satisfy a linear growth condition. We first consider the case when the
coefficients f and g are Lipschitz, then we solve the problem when f and g depend
only on (¢, y) and we generalize the result using the fixed point theorem.

The second main aim of this paper is to deal with the obstacle problem of the
IPDE with nonlinear Neumann boundary condition (2). By using the results obtained
in the first part, i.e. related to the existence and uniqueness of the solution of (1) we
prove that equation (2) has a unique viscosity solution.

The paper is organized as follows. Section 2 is devoted to the study of the reflected
generalized BSDE: first, we establish a priori estimate of the solution, and then we
prove the uniqueness and existence of the solution. A comparison theorem will be
presented. Section 3 focuses on the link between this reflected generalized BSDE and
the obstacle problem of IPDE with nonlinear Neumann boundary conditions.
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Preliminaries and notations

Let T > 0 be a fixed time and consider a probability space (2,.%#, P) carrying a
standard d-dimensional Brownian motion (W;);<r and an independent martingale
measure (]\~/t)t <r corresponding to a standard Poisson random measure N on Rt xU
where U := R¥\ {0} (k > 1) is equipped with its Borel o-algebra % . Namely,
for any Borel measurable subset A € % such that A(A) < oo, it holds Ni(A) =
N;(A) —tA(A) where A is assumed to be a o -finite measure on (U, %) and satisfying
Jy (LA leHA(de) < oo.

We assume that %, := ZV v ZN where N = {f[o,s]xA N(du,de),s <
t,AeU).

We will denote by |.| the Euclidian norm on R? and for a given rcll process

(Xl‘)l‘STv
Xt— = h}any and AX[ = Xt - Xt—v < T.
st

Let (A;);e[0,7] be a continuous one-dimensional increasing .%; -progressively mea-
surable real valued process satisfying Ag = O.
For every u > 0, we denote:

o P (resp. 2%) is the o-algebra of .Z;-progressively measurable (resp. predict-
able) sets on [0, T'] x Q.

° Yi is the space of R-valued rcll .%;-adapted processes (¥;);<7 such that

112, = IE[ sup ef“‘f|Y,|2] < .

0<t<T

%’ﬁ 4 18 the space of R-valued rcll F;-adapted processes (Y;);<7 such that
T
Y12, = E/O i1y, 2d A, < oo,

° Jff is the space of R9-valued 2-measurable processes (Z;);<t such that

T
||Z||?%ﬂ#2 = ]E/ " A1 Z,2dt < oo.
0

. f/\z is the space of R-valued and #?¢ ® % -measurable mapping V : Q x
[0, T] x U — R such that

I3 =/U|V(e)|2x(de) < 00,

,Zl% ,, 1s the subspace of .,2”)? which contains the mapping V (¢, w, e) such that

T
2 A 2
V12, =1Ef ANV, 2 < oo,
2y 0
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e % is the subspace of the .%;-predictable, rcll and nondecreasing processes
(K:)/<7 such that Ky = 0 and E|K7|? < o0.

2 ._ 2 2 2 2 2 _ a2 2
o £ = (7, ﬂ%’A) X %’L X ‘zu,k and ®;, = £, x 7.
We consider the data (§, f, g, L) composed by:
(H1) A terminal value & which is a .%7-measurable variable such that

E[e”AT|$|Z] < 00.

(H2) Two functions f : [0, T]xQxJRx]RdXCZ)L2 —> Randg: [0, T]xQxR —
R such that, for some xk > 0, « € Rand 8 < 0, for all t+ € [0, T] and
(., 2,0), (0,2, V) e Rx R x Z2:

i) 0= Y)f y.z,0)— ft,y,z,0) <aly — Y%
) [ft, y,z,v)— f@t,y, 2, 0) <k(z =2+ llv =210,
(i) (v — y)(g(t,y) — g, y)) < Bly — ¥'I%,

@v) [f(,y,0,0)] < ¢r +«lyland [g(z, y)| < ¢ + «|y| where ¢ and r are
two adapted processes with values in [1, +oo[ such that

T T
Ef e”A’|<p[|2dt+E/ M Ay Pd A, < +oo,
0 0

V) y— (f(t,y,2z,0), g(t,y)) is continuous for all (z, v), (¢, ®) a.s.

(H3) (L;):<r is an obstacle which is an .%#,;-progressively measurable rcil real-valued
process satisfying

E[ sup }e“A’(L,)+|2] <oo and Ly <&, P-as.
0<t<T

Remark 1.

1. Hypothesis (H2)(iv) implies that

T
E[e#47] < 1+,uE/ Ay Pd A, < +oo.
0

2. Asin [2, p. 1137] we can suppose w.l.o.g. that « = 0 and also from [21] we
can show that 8 < 0 is not a severe restriction.
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2 Reflected generalized BSDEs with rcll barrier

A solution of the reflected generalized BSDE is a quadruplet (Y, Z, V, K) satisfying

T T
@ E[ sup |Yt|2+/0 |Yt|2dA,+/0 1Z:2 + IViIB)di] < oo,

0<t<T

T T
(ii) Yt=‘§+/ f(s, Y, Zs, Vs)ds+/ g(s, Yo )dAs + K1 — K;
t t

T T y
- / Z;dWy — f f Vs(e)N(ds, de),
t t U

(i) Y, =L, t=T,

(iv) K is a nondecreasing rcll process with Ko = 0 and E|K T|2 < o0 and
K = K¢+ K9 where KC(resp.Kd) is the continuous
(resp. purely discontinuous) part of K and almost surely

/ (Y, — L)dKS =0 and AK? = (Y, — L,_) Ly, =1, 3.
0
3)
Remark 2.
1. The jump of the process Y can be inaccessible or predictable: the inaccessible

jumps come from the martingales ( fé f v Vs (e)l(’ (ds, de)); and the predictable
jumps are derived from the negative jumps of the process L.

2. The Skorokhod condition fOT (Y~ — L;—)dK; = 01in (1) and the characteriza-
tion (iv) in (3) are equivalent. Indeed, if the Skorokhod condition is satisfied,
then

T T
/ (Yy — Ly)dK¢ =0 and / (Yy— — Ly )dK? = 0.
0 0
The process K¢ does act only when the process ¥ has a predictable jump. In

this case, the role of K¢ is to make the necessary jump to Y in order to bring it
above L. Therefore, for every predictable stopping time t < T', we have

AKY =AY, = —(Y; = Yi) = (Le— — Y 1, _—v. yn(ar, <o)
= — L) L1, =y, ).
Conversely,

T T
| temriar = [ - Loaki + Y (e - Loakd
0 0 0<t<T

T
= / (Yz - Lt)dK,C + Z (Yt— - Lt—)(Yt - Lt—)ill{Y,,:L,,}
0 0<t<T

=0.
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2.1 A priori estimate
Proposition 1. Assume that (H1)—(H3) hold and let (Y, Z,V,K) and (Y',Z',V',K")
be the solutions of reflected generalized BSDE (3) with data (&, f,g,L) and

&', f', g, L), respectively. Then there exists a constant C = C(a, B, u, T, k) such
that

sup E[e’“"lY, - Yt’lz]

0<t<T

T
+E/0 M (1Y, = YIPdAs + [1Zs — ZU1* + Vs — V]I3]ds]

T
<C {E[el“‘ws —&'7] —HE/ et
0

f(s, YL Z, V) = f'(s, Y., 2, V))ds
T 2

+E/ e“AS|g(s, Yy) —g'(s, Y;)| dA;
0
T

+]E/O M [(Lg- — Y/ )dKs — (Yo~ — L;)dK;]} :

Proof. Denote i = R — RN for X = Y, Z,V, K. Using Itd’s formula (see [23,
Theorem 33, p. 81]), we can write, for some y > O and forallt < T,

T+ULAT &2
eV tr T|E|
= MY 2 4y f VAV P ds + / &P Y, P A
t t

T
- 2/ VAT [ £ (s, Yy, Zs, Vo) — £/ (s, YL, 2}, V))]ds

t

T T
> / PIHAT [g(s. V) — g (s, ¥))[dA, — 2E / AT 4R,
t

t

T T
+2 / eVSHHASY Z AWy + 2 / / eVSTHASY _V (e)N(ds, de)
t t U

T T
+ f eVSHHAS | Z Pds + / f eV sTids |Vs(e)|2N(ds,de).
t t U

Taking expectation and using assumption (H2), the Skorokhod condition and the in-
equality 2|ab| < ca’ + l;—z, we obtain

T
E[e" 4 Y, *] + E / eV STAY P (yds + pd Ay)

t

T
+E / eVSTHA (1 Z 12 + (V113 ds

t

T
< E[eyT-HLAT'g'Z] + (1 + 20l+ =+ 4K2)E/ e}/S-HLAs |?3|2ds

t

1 (7 - —
+ EE/ eVS+,uAs[|ZS|2 + ||VS||i]dS
t
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1 T
4B [ e lg(s, 1) - ¢ (5. ) Pan,

T
+E/ VSTIA (s, Y], ZL, V) = f'(s, Y, Z), V)| ds
t

T T
+ ZE/ eV THA(L- — Y )dK, — ZE/ eV S THA (Y- — L )dK].
t t

Choosing y = 1 + 2ot + 4k2, we get the desired result. O

Corollary 1. Let (Y, Z,V, K) be the solution of (3). Then there exists a constant
€ > 0 such that

T T
B sup TP E [ oM PAAE [ 12 PV s E K P
0 0

0<t<T

T
5‘5{E[e“AT|5|2]+E / eIy 2ds + 195 Pd A ]+ sup !e’“*‘(Lz)*}z}-
0

0<t<T

Proof. Remark that (Y, Z’, V', K’) = (0,0, 0, 0) is the unique solution of (3) with
data (&', 1/, ¢’, L) = (0,0,0,0). Then, directly by Proposition 1 we have, for all
t<T,

T T
sup E[et4Y,)*] + E / "1V PdAs + B / A [1Zs 12 + 1Vs 13 ]ds
0 0

0<t<T

T T
< CE[eﬂAT|s|2+ / H451 £(s,0,0,0)2ds + / 5|5, 0)Pd A,
0 0

T
+ / e“ASLXdKS}
0

T
< CE[e“AT|5|2+ f e“As[|sos|2ds+|wx|2dAs]]
0
1
+ pC°E sup |e"A’(L,)"'|2 + —E|K7|*.
0<t<T P

However, by (3)(ii) and (H2) we get by using the Holder inequality

T 2
ElKr|*> <6 {|Y0|2 +Elg? +E(/ | f (s, Ys, Zy, vs>|ds>
0
2

T T T
+IE(/ g (s, Ys)ldAs> —HE/ Zsd Wy / /Vs(e)ﬁ(ds,de)
0 0 0 U

T T
12
< 6|Yp* + 6E[£|* + 24TE f |<ps|2ds+—MJE / e A |y P A
0 0

2
+E

|

T T
+24/<2TE/ |Ys)2ds +6(1 +4K2T)JE/ [1Zs? + 1VslI3 ]ds
0 0
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12«2
+
n

< 6E[eM4T |£|?] + 24TE /
0

T
E / eHAs 1Y Pd Ay
0
T 12 T
e |gs|*ds + —E / e |y |7 d A,
w o Jo
2752 A 2 12«2 g Ay 2
+6(1+4x°T?) sup E[e"|Y, "]+ —E [ " |Y,|°d A,
W 0

0<t<T

T
+6(1+4CT)E [ 2, + 1Vl
0

Choosing p > max{6(1 + 4k2T?); 6(1 + 4x2T); %}, we obtain

T T
sup E[e"A’|Yt|2]+]E/ et 1Y Pd A +]E/ e [1Zs P + Vsl s
0 0

0<t<T

T
s%{E[e"ATlélz]JrlE fo N[ lgs Pds + |5 PdAs] + E sup |eﬂA'<L,>+|2},
0<t<T

implying that

T
EIKr)* <% {E[e’“‘%ﬂ +E / M (g5 P ds + || Pd As ]
0
+E sup |e“A’(L[)+|2 .
0<t<T

On the other hand,

T
E| sup ", 2] < E[e"T|g ] + (1 +2K+2K2)E/ M|, |2 ds
0<t<T 0

T 2
—HE/ e”AJ[|<ps|2ds+ Vsl dAS} +E|K7)>+E sup |e“A’(Lt)+|2
0 n

0<t<T

T T
/ MY Zid W / / "M Y- Vi(e)N (ds, de)
¢ t U

“

+2E sup
0<t<T

+2E sup
0<t<T

Applying the Burkholder—Davis—Gundy inequality (see, e.g., [23, Theorem 48, p. 195]),
there is a universal positive constant ¢ such that

T T
1
2E sup / MY ZdW| < —]E[ sup e“A’IY,|2]+4czE/ eMAs 17, 2ds

0<t<TI|Jt 4 0<t<T 0

and
T ~
2E sup / / " Y~ Vi(e)N(ds, de)
0<t<TI|Jt U
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1
T 2
< 2cE( / / ezl“‘ws|2|Vs<e>|21v<ds,de))
0 U

1 T
< Z]E[ sup e“A’|Y,|2] +402]E/ A5 |V, () 2N (ds, de)
0

0<t<T

! T
= —IE[ sup e“A’IY;IZ] +4C2]E/ e ||V l13ds.
4 0<t<T 0

Plugging those inequalities in (4), we conclude that

]E[ sup el |Y,|2]

0<t<T

T
5%3{E[e“AT|E|2]+E/ "4 [lgs2ds + |5 |*dAs] + E sup |e“A’(Lt)+|2}.
0 0

<t<T

The result is therefore verified. O

2.2 Existence and uniqueness results

Proposition 2. Under the hypothesis (H1)—(H3), the reflected generalized BSDE (3)
associated with the data (&, f, g, L) has at most one solution.

Proof. A direct consequence of Proposition 1. d

Our approach to prove existence is based on the following strategy: first, we es-
tablish uniqueness and existence when the coefficients f and g are Lipschitz, then
we solve the problem when f does not depend on (z, v) and then we generalize the
result using the fixed point theorem. The following proposition gives the first step.

Proposition 3. Suppose that the assumptions (H1)—(H3) hold for i > 1. We suppose
in addition that, forallt < T and vy, y' € R,

|f(ty.zo0) = f(t. Y, 2 0) + g, y) — gt ¥) < «'ly — ¥l

Then the reflected generalized BSDE (3) has a unique solution.

We can use two methods to prove this claim. We have omitted the first technique,
which is identical to that used in [9] and is based on a monotonic limit theorem and
penalization method. The fixed point argument is utilized in the second one. Here is
the proof of that.

Proof. First, let us endow the space Ei with the norm
T T
1Y, Z VI, = E[ f VMY, P+ Z, P+ Ve Jde + / e |Yt|2dA,].
0 0

We define the map W of (Si, II.1l,,.) into itself as follows: for every (Y, Z, V) € £2,
we put

(Y, Z,V)=(Y,Z,V),
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where (17, Z R \7, K ) is the solution of the reflected generalized BSDE associated with
& f(t,Y,Z,V),g(t,Y),L).

The process (Y, Z, V, K) is constructed as follows. Let n be the process defined
by

t

t
nt = éj-H{tzT} + LtH{I<T} +/ f(s, Y, Zg, Vy)ds +f g(s, Yo)dA;.
0 0

Note that 7 is rcll and E(supy<; <7 |n: |2) < 00. Let . (n) be the Snell envelope of n
given by o
1 (n) = esssup,c g E[ny|F1].
However, it is the smallest rcll supermartingale dominating the process n which veri-
fies
E sup |5@(n)|2 < 0.

0<t<T

Then, . (n) is of class [D]. Henceforth, it has the following Doob—Meyer decompo-
sition (see [23, Theorem 8§, p. 111]):

T

T
%(n)ZE[E‘i‘/ f(s, Y, Zs, Vs)ds+/ g(s, Ys)dAs“‘KTLth] - K
0 0

where K is an F-adapted rcll nondecreasing process (150 = 0) and ]El[% T |~2 < o0.
Through the martingale representation theorem, there exists two processes Z and V
such that

T T
E+/ fGs, Y, Zs, Vs)ds"f'/ g(s, Yy)dAs + Kr
0 0

T T
- IE|:§ + / f(s, Y, Zs, Vo)ds + / g(s, Yo)dAs + 1€T|%}
0 0

T T
+f stws+/ / Vi(e)N (ds, de),
0 0 U

where]EfOT |Zs|2ds < oo and ]EfOT [ VylI2ds < oo.
Then, if we denote

T

T
Yt =E€s8 Supfez E[gﬂ(r_T)+LrH(r<T)+ f(sv YSv ZSv Vv)ds+/ g(s, Ys)dAs|ytj|»
t t

we get
Yt+/ f(s, Y, Zs, Vs)ds+/ g(s, Yy)dAs; + K,
0 0
=S+ K

T T
=§+/ [, Y, Zs, Vs)ds+/ g(s, Yy)dAs + Kt
0 0

T T _ _
—/ Z,dW; —/ f Vs(e)N(ds, de).
' r Ju
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Hence

T T
7, =s+/ £, Ys,zs,vs)dwf g(s, YodA, + R — K,
t t

T 5 T 5 5
- f Z.dw, — f f V()N (ds, de).
t t U

To finish this construction it remains to show that
T _ . T _ ~
/ (Y- — L )dK? = f (Y, — L)dK¢ = 0.
0 0

First, recall that {AK? > 0} C {Z_(n) = n} where n, = limsup, -, ; (see, e.g., [6,
Proposition 2.34, p. 131]). So, we can write

T
/0 (Fy— = Lyo)dKY = ) (Voo = L) g gao ) AKY

O<s<T

= > Vo = L) (ne = Fm) Ty =5y =0

O0<s<T

By the property of the Snell envelope, we know that fOT (S,-(n) — n,-)dK; = 0 (see
Lemma A.4 in [15]), i.e.

T T
0= / (St—(ﬂ) - Ur—)th = / (Y;- — Ly-)dK;.
0 0
Therefore, we have fOT (Y, — L)dK¢ = 0.
The construction is now complete. Additionally, the fact that (17 , 7 , \7, K ) is in
@i results from estimations similar to those of Corollary 1.
Now let (Y, Z, V) and (Y',Z', V') € 2121, be such that
W(Y,Z,V)=(¥,2,V), w(Y.,z,v)=(Y Z V).
Applying It6’s formula, for y > 0 one has
5 =n2 T S =2
]E[eWJr“A’ (Yt — Y,/) ] + yE/ eV SHHAs |Ys — YY/| ds
t
T = =12
+ 1E f eV THA Y, — YII7d A,
t

T T
+ ]E/ eys+MAAv|Zs _ Z;|2ds + IE/ eV SHHA;s [IVs — V;||%ds
. '

T
< ZE/ eV THA (Vg — Y)Y (f (s, Yy, Zs, Vi) — f (5, Y0, Z, V)))ds

t

T
+ 21[«:f eVSTHA (Y, — ¥)) (g(s, Yy) — g(s, ¥)))d Ay
t
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T ~ ~ ~ ~

+2E / eV AV, — Y] )(dKy — dK}). Q)
t
First, let us show that
T ~ ~ ~ ~
B[ et - 7L aR, — k) <0,
t

Since ¥ and Y’ belong to Yl% and their jumps are nonpositive, the sets

8(w):={r €0, T, AY #0} and §(w):={t€[0,T], AY #0}

are at most countable. Using the Skorokhod condition, it yields

T
/ eys-HLAx(f/s, — ?5/—)(d[€f - dI%A/'C)

t
T T
= / eVSTHA (Y, — L)dK.® + / eV ST (Ly — Y{)dK¢
t t
<0.

On the other hand,

- T
/ oV ST (fr . ?;,)(dlgf _ dIE;d) — / eys+uAs()7s, — 1?/7)de
t

Let us deal with the second part of the right-hand side of (6). We have
T ~ ~ ~
/ eV s THA (Yo — ¥ )dK)?
t

T
= X A RIAR 4 [ e (F - )k

t<s<T 4

_ Z eyx-i—uAs (As ?/)2

t<s<T
and

T T
/ eV TA (Y, —Y!)dK [ = / eV STHA (Y — L )dK[+ Y e””“AS(ASY’)Z.

4 4 t<s<T

Afterwards, we have

T
/ eVSTrAs (Y, — L-)dK ¢
t
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T
=— Y et ARIAR Y + / PIIAT, — L)1 5K}

t<s<T 4

>— Y e A AKRIAK,

t<s<T

since ftT eVSTIAs (Y, — Lr)]l{Aj:O}dIE'S’d > 0. In conclusion,

T
/ eV ST (Y- — ¥ )dK,? > 0.
'
In the same way, we can prove that
T ~ ~ ~
f eV A (Y- — Y )dK? < 0.
t

Now coming back to (5), one has

T
VE/

T
Y|ds+,uIE1/ — V/|7dA,

T
+]E/ P Zy = ZLP + 1V — V12]ds
0

T
0
3K/E r yS+uAsT|y Y/2 7 72 % v/ I121d
+? Oe HS_ S|+|S— g7+ Vs — S”)L]S

+ek'E /
0
Hence

(v —8K’)E/0T

— V/|dA, + ]E/ Y, — Y/[’dA;.

T
Y/| ds + (un —SK/)]E/ eVStTHAs |y Y| dA
0

T
+E/ eVSTHA|Zy — ZU1P + Vs — VI3 ]ds
0

3 / T
< ?K[Ef eV S THA (v, — Y;)2 +1Zg = ZLF + 1V — VI3 ]ds
0

T
—HE/ eV HuAS (y, — Ys/)szs:I-
0

Now, let ¥, > 1 and & be such that 3’ < ¢ < k'~ !(max{y, u} — 1). Then
W is a contraction mapping on Qi. Henceforth, there exists a triple of processes
(Y, Z, V) that is a fixed point of ¥ which, with K, is the unique solution of the
reflected generalized BSDE (3). |
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The next proposition gives the second step. This result is the key of our proof. We
assume that the coefficient f does not depend on the variables (z, v).

Proposition 4. Suppose that (H1)—(H3) hold. Then for any (2, V) € ,%”2 X fi Iy
the reflected generalized BSDE

T
Y,—$+ f(s Y;,Qﬁ,”f/)ds+f g(s, Y)dAs + (Kt — Ky)

T
—/ ZdWg — f/Vg(e)N(ds de), 0<t<T,
t

Y[ > L[ and / (Ylf — Llf)dKl = O, O <t < T,
0
(7

has a unique solution.

Proof. Let f(t,y, 27, 7;) = h(t,y). Considering Remark 1-(2), we shall assume
that « = 0 in the remaining part of this section. Then some assumptions in (H2) on
the function /& will be change as follows:

@) (y =y, y) —h(t, y)) <0,
(iv)" |h(t, )| < @ +«lyland |g(t, y)| < ¥ + K|y| such that
@ = ¢ + x| 25| + x| 7 and

T T
E / eh4 |G, 2dt + E / eH4 |y 2d A, < 4o,
0 0

) y > (h(t,y), g(t, y)) is continuous dP x dr a.e.
We split the proof in two parts.
Part 1. We suppose that

&1+ sup |@ |+ sup |y|+ sup |L| < M. ®)
0<t<T 0<t<T 0<t<T

What we would like to do is to construct a sequences of Lipschitz (globally in y,
uniformly w.r.t. (w, s)) functions 4, and g, which approximate # and g and which
are monotone. However, we only manage to construct a sequence for which each i,
(resp. gn) is monotone in a given ball (the radius depends on n). As we will see later
in the proof, this “local” monotonicity is sufficient to obtain the result. We shall use
an approximate identity.

Let a function p : R — R* be in C* and with a compact support in the unit ball
such that f,o(u)du = 1. Forany n > 1, we put p, (u) = np(nu).

Moreover, let 6, : R — [0, 1] be in C* such that 6,(y) = 1 if [y| < ¢ and
0,(y) = 0if |y| > g + 1, where the value of g(n) will be fixed later. For n > 1, we
set:

= {eMAT <n}§

h ( y) = ]l{e/“\t <n}(pn * 9q(n)+2h(t ))(y)
8n(t, ¥) = Lypnar <y (On * Ogn)+28 (1, ))(¥),
Ly = 1juar _pyLs.

®
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Clearly,
(@) hy(t,y) = h(t,y)and g,(t,y) — g(t,y) asn — 00,
(b) § and I:, satisfies respectively (H1) and (H3),

(¢c) hy, satisfies (H2)-(i)'-(ii)-(iv)’-(v)" and g, satisfies (H2)-(iii)-(iv)’-(v)" and also
they are Lipschitz in y uniformly w.r.t. (f, w). In fact, taking into consideration
that p is with a compact support in the unit ball, we have

|Vhu(t, )| <C,, and |Vg,(t, y)| < Cp,
where C), = n(M + kq(n) + 3«).

Then, for any n > 1, from Proposition 3 there exists a unique process
(Y, z", v* K") satisfying (3) and

T T T
Y/ =§+/ B (s, Yf)ds+/ gn(s, YDA As + (K7 —K?)—f ZgdWs
! t

t

T
—/ /VY”(e)I\?(ds,de), 0<r<T,
t U

T
Y'>L; and / Y —Li-)dK]!=0, 0<r<T.
0
(10)

Remark 3. Under assumptions (H1)—(H3) and with a computations similar to those
in Corollary 1, there exists a constant C independ of n, such that

T
sup]E|: sup e“A’IY,"|2+/ e"AS|YS”|2dAS
0

n 0<t<T
T
+/ A [1Z012 + IVIF]ds + |K;|2] <C. (11
0
Now the rest of this part is based on the following lemmas.
Lemma 1. Under (H1)—(H3), (8), (9) and with y, u > 1, we have
DA AN (12)
s.t. K (n) = co + cin + con® and g(n) = [Jﬁ/%], where [r] is the integer part of 1.

This justifies the choice of the integer g (n) above.

Proof of Lemma 1. By virtue of Itd’s formula with y, u > 1, we have

T T
|yl"|2+y/ e}/(S—t)ﬂt(Ax—Ar)|y5{1|2ds+'u/ eG4 =AY 2 A
t

t

T T
+/ ey(‘v_t)+“(As_A’)|Z;l|2dS+/ /eV(S—f)"‘lL(As—At)|V;1|2N(ds’de)
t t U
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T
— eV(T*f)+M(AT*At)|§|2 +2/ e)/(S*t)ﬂL(Ax*Ax)Ythn (S, st)ds

t

T
+2 / eV CTOTH A Ay g, (5, Y] )d A,
t
T
+2/ @V(s_t)—HL(AS_At)stZ?dWS
t
T ~
—|—2/ / ey(s_’)'H‘(AS_A’)YS", VS"(e)N(ds,de)
t U

T
—D) (A —A
+ / eV G—D+u( t)Y;’_dK;’l.
t
Taking conditional expectation E(.|.%;) L g (.), we obtain

T T
YR 4 BT / o7 SR =AD |y 2 g 4 BT / o7 DA =AD |yn 2 A

t 1

T
+ ]EJ’ / ey<S7t)+M(AS7A[)[|Z;L |2 + ” Vsn ”i]ds

t

T
5E%eﬂﬁowmr*mmz+2E%/ P OIRA A Iy (o )
t

T
+ EZ / e}’(S—l)-i-M(As—Ar)YSngn (S, YS")dAX
t
T
e / o7 SDHAAD ] ggen (13)
t
From assumption (H2), for all y we have
2 1
2yhn (s, y) < Liguas <y (v — Dy~ + 1)
and
2 1 2
2ygn(s, y) < Ljguas <y | (0 — Dy~ + mlﬁs .

Coming back to (13), using the above inequalities and taking into account the as-
sumption (8), one get for p > 0,

T T
|Y,”|2+E%/ ey<s7z>+u<A.fA,>|Y;1|2ds+E%/ ¢V DHRAA | yr g A

1 1

T
“FEL%/ eJ/(S*f)+//«(As*Az)[|Z;l|2+”V;l”ﬂds
t

T.M?n M?n 1 2
<eTM*nt el 4T — 4 pe’T > . M> + —E71 K} — K.
y—1 ulpn —1) 0

(14)
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Again by (H2), (8), Holder’s inequality and isometry property (see, e.g., Theorem 2.3.3,
p- 23 in [4]), we end up with

T 2
E7|Kp — K| < 6{|Y,"|2 +E7E? + B ( / | (s, Y;’)|ds>
t

T
/ Z1aw,
t

2

T
+E7 (/ lgn (s, Y;’)IdAs> +E7
t

T 2
/ / V™ (e)N(ds, de) }
t U

12 T
<6M* +12T°M* + —M*>n+6|Y|* + 1262 TE / |Y"%ds
w

t

2

+E7

12 Z r A 2 F, r 2 2
—i—TE / el As|y?| dAS+6E'/ [Z1F+ Vs ]ds.  (5)
t t

Plugging (15) in (14), we get

6 12T T
<1 — ;>|Yt"|2 + ( K )E/ / 4G f)+M(As—At)|YS”|2dS

12
( K ) ey(sfwwmsfm)|Y;1|2dAS

+(1_;>E¢/ e OO+ AAN 72 4y 2] ds

TM*n p Mn

+e’ .
y —1 pu(p —1)
1 2 2242 12 2
+—|6M> +12T°M*> + S M*n ).
P W

< (eVTMz.n +e'T, + ,o.e”T.nz.M2>

Choosing p such that

12«2
0 > max{6; 12K2T; x }
7
we obtain

|Yt"|2 < o+ cin + con’. O

Lemma 2. The processes (Y", Z", V", K") converge in ®,,.

Proof of Lemma 2. First, mention that s, and g, are not necessary monotone on the
entire space considered first, but they are monotone in the ball with the center O and
radius g (n) + 1. In fact, we have for any |y|, |y'| < g(n) + 1,

(y =) (ha(t, y)—ha(2,¥)) =/pn(w.(y—y’)(h(r,y—u)—h(r,y’—u))du <0,
and

(y=)(gnt, y)—gu(r,Y)) = / on).(y—y') (g, y—uw)—g(t, y' —u))du < 0.
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Let m > n. Using Itd’s formula and taking expectation, we end up with
T
E[e 4y — ¥!'1*] + yE / e’ A Y — Y ds
t
T
+ uE / eVSTHAs |lym _ ym 24 A
t
T
+ ]E/ VSTRA | Zm — Z0 12 4 |V — VI3 ]ds
t
T
<9 / A (YY) (i (5. Y)Y — By (5. Y1) )ds
t
T
+ 2E/ VS THA (Y — Y1) (gm (5, Y") — ga(s, YI'))d Ay
t
T
+2E / eVstuAs(ym — ¥ )(dK!" — dK?!).
t

We cannot use the priori estimates because the functions k,,, h,, g, and g, are not
globally monotone. Nevertheless, 4, and g, are monotone on the ball with radius
a =q(m)+ 1. Since |Y]"| < g(m)+ 1 and |Y]'| < g(n) +1 < g(m) + 1, in view
of (12), Y™ and Y" belong to this ball. As a result,

(Y;” - Ys”)(hm (s, Ysm) - h,,(s, Y:’)) < 2asup |y (s, y) — hy(s, y)I,

[yl<a

and

(V" =Y (gm(s, ¥5") — gn(s, Yy')) < 2a sup |gm(s, ¥) — gu(s, V).

[yl<a

On the other hand, we have
T
/ P FRAS (Y1 yn ) (dK™ — dK") < 0.
0
This implies that
T
E/ eVSTHA[|Zm — Z0 2 4+ ||V — VI3 ]ds
0

T
< 4aE/ eV STHA; sup | (s, y) — hy(s, y)|ds
0

ly|<a

T
+4a1Ef eVSTHAS Sup g, (s, ¥) — gu(s, Y)|d As.
0

[yl<a

Since y — h(t,y) and y — g(t, y) are continuous, h, (¢, .) converges towards A(t, .)
and g, (¢, .) converges towards g(¢, .) uniformly on the compact A ® [P a.s. Moreover,
it follows from assumption (H2)-(iv)’ and the dominated convergence theorem that
(Z", V") is a Cauchy sequence.
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Using the Burkholder—Davis—Gundy inequality, we can prove that

IE[ sup etAr|ym —Y,”|2] — 0.

0<t<T m,n— 00

This implies that Y” is a Cauchy sequence in 5”,% Then (Y, Z", V") converges in
L‘i, i.e. there exists a process (¥, Z, V) such that Y* — Y in 5”5 N f%’ﬁA, 7" — Z
in A7 and V' — Vin £7 .

Finally, for any n > 0, we have

T T T
K=Y -Y/ —/(; hn(s, st)ds—/o gn(s, Y;’)dAS+/(; ZidW;

T
+/ fV;lﬁ(ds,de).
0 U

E[ sup et Km —Kt”|2] — 0.

0<t<T m,n—00

Using the same argument, we get also

Then (Y, Z", V", K") is a Cauchy sequence in ;. O
Now we will end this part by demonstrating that the limiting process (Y, Z, V, K)
of Y",Z", V", K")in ©, is a solution of the reflected generalized BSDE (7). Ac-

tually, passing to the limit in the reflected generalized BSDE driven by £, hy, gn and
L, we have that Y/' converge to Y; in Y 2N %” 2 4 and we have also the following

convergences in L2 which are resulted by the martmgales representation:

T T T T
f z;’dws—>/ Z.dWy, / f‘{{’(e)ﬁ(ds,de)—)/ /vs(e)if(ds,de).
t t t U t U

On the other hand,

T 2
E[ sup / (hu(s, Y) = h(s, Y))ds }—>0,
0<t<TI|Jt

and using Remark 1-(1), we get

T 2
/ (gn(s, Y]) — g(s, Yy))d Ay ] — 0.
t

E[ sup
0<t<T

Also, we have the convergence

t t t
K; =Yy— /h(s Yo)ds— /g(s, YS)dAX—i_./O ZSdWS+/(; / Vs(e)ﬁ(ds,de).
U

Note that (K;); is an increasing process and E|K7|> < +00.
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Part 2 (General case). For any p > 1, we consider

PAlED,
—_— f
= T o 70
0, if £=0,
(p A A, 0)]) .
By, y) = | B ) —h(E 0+ ek 0), i R(0) #0,
h(t, y), if h(,0) =0,
(p Al8(t.0)) .
- — f
gyt y) = | 8OV~ 8O0+ mETER@ 0, i g(1,0) #0,
8t 7). if g(t,0)=0,
(p Asup, (L)) .
L= eyt ke s Lot #£0
0, if sup, (L)t =0.

(16)

It is easy to see that, when p — oo,

T
IE|:€”AT|EP —EP+ f e Mlhp(t, 0) = h(t, 0)*dt
0

T
+ / e i)g,(t,0) — g(t, 0>|2dA,]
0

— 0.

Obviously, (7, hy, gp, L?) satisfies the hypothesis of the previous step. Then the re-
flected generalized BSDE associated to the parameters (§7, hp, g,, L?) has a unique
solution (Y?, ZP, VP, KP)in®,,.

Now we are going to show that the sequence (Y7, Z?, VP, K?) is a Cauchy se-
quence in . Let g > p, using It6’s formula, the definition of £7, k), g, L? and
the same arguments in Proposition 1 with the Burkholder-Davis—Gundy inequality,
we end up with

T
]E[ sup etAryd —vP)? + / et As|yd — YP1Pd A,

0<t<T 0

T
+ / etAs[1z8 = 2P+ v - Vs”ni]ds]
0
T
< CE[eﬂAqu —EP+ / e[y (s, 0) = hp (s, 0)*ds
0

T
+/0 e A51g, (s, 0) — g, (s, 0) 2 d Ay

T
+f MN(LT — Yl )dKY — (YL — Lf)szp]]. (17)
A s A A s
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Remark that, since ¢ > p, we have LY > L?,0 <t < T. Then
q p q q p q
(LL —yl)dkd < (LI — LY )dK].

Since L; — L} N\ 0and (L; — L}) is arcll process, by the generalized Dini’s theorem
(see [3, p. 202]), the convergence holds uniformly in [0, T], i.e.

. As(1 2
nlgIc}oE[O;l;ngeM (LS L;’)| ]—> 0 as n— oo.

Then using Remark 3, we get

T
E/ (L1 — LV )dK! <E[ sup e (LS — LD)P]2.(BIKEP)?
0 ! : 0<s<T

— 0 as p,qg — oo.

The right-hand side of (17) tends to 0 as p, g — oo.
Finally, for any p > 1, we have

T T T
K =vy-v/ —f hy(s, Y{)ds —/0 gp(s, Y )d A +/ zZlaw;

0 0
T ~
+ / / VP N (ds, de).
0 U

E[ sup et K — K,p|2] — 0.

OStST q,p—>0

We also get

Thus the sequence (Y7, ZP, VP, KP) is a Cauchy sequence in D . Then it converges
towards a progressively measurable process (Y, Z, V, K). It remains to verify that the
limiting process solves the reflected generalized BSDE (7). Hence, by the same argu-
ment as in Part 1, the process (Y, Z, V, K) is a solution of the reflected generalized
BSDE (7) and the proof is complete. O

With the help of Proposition 4, we can now construct a solution (¥, Z, V, K) to
the reflected generalized BSDE (3). We claim the following result.

Theorem 1. Suppose that the assumptions (H1)-(H3) hold. Then the reflected gen-
eralized BSDE (3) has a unique solution.

Proof. The uniqueness is already established in Proposition 2. For the existence, we
will use a fixed point argument. We define the map W of (Ei, II-1ly,.) into itself as fol-
lows: forevery (Y, Z, V) € Si weput W(Y,Z, V)= ()7, Z, \7) where (17, Z, ‘7, I€)
is the solution of the reflected generalized BSDE associated with
&, f(, )7, zZ,V), g, f’), L) which exists by Proposition 4.

Now (Y,Z,V) € Si is a solution of the reflected generalized BSDE (3) if
and only if it is a fixed point of W. Let (Y, Z, V), (Y, Z", V') € Ei be such that

W(Y,Z,V)=(,Z, V)and W(Y', Z, V)= (Y, Z, V).
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Applying Itd’s formula and taking expectation, one has

Y, — f’s’|2ds

T
E[er 147, - 7/ + yE/ oVSHAS
t

Y, — V/[2dA,

T
t
T A = 5112 7 72
E/ I Z, — ZIP 4 Vs — V1R)ds
t
T ~ ~ ~ ~
< 2115/ eVSHIA (T, — 1) (f (s, By Zs, Vo) — f(5. ¥, 20, V!))ds
t

T
2B [T = 7)) (g(5. o) — gls. T))dA,
t

T
1 2E / AT 71V (dR, — dRY).
t

In particular, if we use assumption (H2) and Remark 1-(2), we get, by choosing y >
1 +4x?and p > 1, that

T 5 T R
E/ eV S THA (Yo — ¥]) ds +]E/ eVSTHA (Y, — Y]) d Ay
0 0

T
+E / eV A1 Z, = Z(P + Vs = V{I7]ds
0

IA

1 T
JE /0 o7 A2y — ZU12 + || Vs — VI13]ds

IA

1 T
EE[/O eV ALYy — Y2+ |Zy — ZUP + Vs — V117 ]ds
T
+ f eV A |y — Y;|2dAS].
0
Then

- - ~ o~ - - 1
2 2
1Y =Y (Z2=Z), (V= V)l = 5IY =Y) (2= Z). (V= V)l e
Then W is a contraction mapping on (Si, Iy, ). Henceforth, there exists a triple of
processes (Y, Z, V) that is a fixed point of W which, with K, is the unique solution
of the reflected generalized BSDE (3). O

2.3 Comparison theorem

In general, we do not have a comparison result for solutions of BSDEs driven by a
Brownian motion and an independent Poisson process, reflected or not (see, e.g., [1]
for a counter-example). But in some specific cases, when the coefficients satisfy some
properties, we have a comparison result.
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We establish two results of the comparison. The first one is when the coefficient f
does not depend on the variable v. But in the second one, we impose some monotonic-
ity w.r.t. v. So assume there exists another quadruple of processes (Y', Z’, V', K')
being a solution for the reflected generalized BSDE with one lower rcll reflecting
barrier associated with (¢/, f’, g/, L).

Theorem 2. Assume that:
i) f isindependent of v;
ii) P-a.s, foranyt < T,
f Y. Z) < f1(e. Y. 2. V), g(t.Y)) =g/ (t.Y]) and & <&
Then P-a.s., foranyt < T, Y; <Y/. Additionally, if f' does not depend on v then we
have also K; — Ky > K] — K|, forany0 <s <t <T.
Remark 4.
i) Using Remark 2-(2), since Y < Y’, we obviously have P-a.s., for any s < ¢,
d d d d
K — K; ZKZ’ —KS’ .
ii) If the barriers are not the same, as it is assumed in the previous theorem, we
can still get the comparison result of Y's, but the comparison of K's could fail.

The second result extends the comparison results in [27] to the case of reflected
generalized BSDE with monotone generators. The three assumptions (H1), (H2) and
(H3) hold, but (H2)-(ii) is replaced by:

(H2)-(ii)': f is Lipschitz continuous w.rt. z with constant «, and for each
(v,z,v,V) e R x R? x (£)2, there exists a predictable process & = Vv
Q x [0, T] x U — R such that

f@y.z0) = f(t.y.2,0) < /U (v(e) — V(@) """ (@) (de)

with P ® m ® A-a.e. for any (y, z, v, V')
R AR O}

o 14757 (o) < w(e) where w € £,
Now, we are able to establish our comparison theorem.

Theorem 3. Let (Y, Z,V,K)and (Y', Z', V', K') be solutions of the reflected gener-
alized BSDE with one rcll reflecting barrier associated, respectively, with (&, f, g, L)
and (&', f', g', L) which satisfy all the assumptions (HI)—(H3). Assume that:

i) £ <&, P-as.;
ii) P-a.s, foranyt < T,

f(t’ Yt,Z[,Vf)Sf/(t,Yt,Zt,V[) and g(tle‘)Sg/(t’ YZ)

Then P-a.s., for any t < T, Y; < Y/. Additionally, if f and f' do not depend on v,
then we have also K; — Ky > K] — K, forany0 <s <t <T.
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3 Applications to the obstacle problem for integral-partial differential equa-
tions with Neumann boundary condition

With the help of BSDEs, the Feynman—Kac formula provides a probabilistic interpre-
tation for semilinear second-order PDEs of elliptic or parabolic types, which has been
generalized to systems of quasilinear second-order PDEs by Peng [22], Pardoux and
Tang [20], see also Darling and Pardoux [2] and references therein. The case of PDE
with nonlinear Neumann boundary conditions have been first treated by Pardoux and
Zhang [17] and extended to several cases, see, e.g., [7, 24, 25]. Through the case of
BSDEs with jumps these results have been generalized to treat a class of second-order
integral-partial differential equations (IPDEs), see, e.g., [1].

The main result of this section is to prove that the solution of the reflected general-
ized BSDE (3) provides a probabilistic formula for a viscosity solution for an obstacle
problem of a class of second-order integral-partial differential equations (IPDEs) of
parabolic type with nonlinear Neumann boundary condition.

3.1 A class of reflected diffusion process

First of all let us recall some notions. Let G be an open connected bounded domain
of R! (I > 1). We suppose that G is a smooth domain, which is such that for a
function ® € Cl% (R), G and its boundary dG are characterized by G = {® > 0},
0G = {® = 0} and for any x € G, V®(x) is the unit normal vector pointing toward
the interior of G. In addition, the interior sphere condition holds (see [21, p. 551]),
i.e. there exists m > 0 such that for any x € 3G, x’ € G,

|x’—x|2+m(V<I>(x),x’—x)20. (18)

Now from [14], we know that for every (¢, x) € Rt x G there exists a unique pair
of progressively measurable process (X5~ Aé’x)xzo being a solution to the following
reflected stochastic differential equation (reflected SDE) with jumps:

tvVs tVvVs tVvVs
XY = x4+ /t b(X:"ydr + /t o (X!YdW, + /t /U o(X!*, e)N(dr, de)
tVvs
+/ VO (XLNdALY, 0<s <T,
tVvs !
AY :f Lixiveacyd A7

' (19)

where b : R! - Rl and o : R! — R/*! satisfy, for k > 0 and for any (x, x) € R,

{ @ 1b(x) = b+ lo(x) —o ()| < klx —x'],

(i) b)) + lo ()] < ie(l + [x]). (20)

Moreover ¢ : R! x U — R is a measurable function which satisfies, for any e € U
and x, x’ € R! , the following conditions:
() le(, )l < k(1A lel), o
(i) le(x, e) —c(x', &) < klx —x'|(1 A le]).
Under assumptions (18), (20) and (21) we state some properties of the processes
(X*, AY™)5=0 which can be found in [14] and [10].
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Proposition 5. For each T > 0, there exists two constants Ct and C ’T such that for
allt <t <Tandx,x' € G,

E[ sup [X¥ — X4 < Cr(Ix —x/1* + 1t — 1']?),

t'<s<T

E[ sup [ALY — A4 < Cp(1x — 1+ [t = 1'?).

t'<s<T

Furthermore forall0 <t <s <r, we have
X0E = x5 X (22)

Characterization (22) implies the Markov property of the process (X5™*);>0 that
allows the relationship with integral-partial differential equations to be established.

3.2 Viscosity solution for the obstacle IPDE with Neumann boundary condition

For all (1, x) € [0,T] x G, let (X;"*, Ay")s>0 denote the solution of the reflected
SDE (19). Let us set
5 = H(X7"),
Ly() = £(s. X3™),
fls,0,y,2,0) = f(s,Xi’x,y,Z,f v(e)y (Xg™, e)r(de)),
g(s, w, ) 1= g(s. Xy, ), 0

(23)

Wherethet:unctionsf : [0, T]XGXR_XRdXR—)RaHdgi[O, T1xG xR — R,

and H : G - Rand ¢ : [0,T] x G — R are continuous and satisfy, for some
constants, o, 8 € Rand«, C, p > O:

@ 1f(#x,0,0,0)] + [g(t, x, 0)] + [H(x)| + [£@#, x)| < C( + |x|P),
(11) (y - y/)(f(f,?ﬁ Y, Z) - f(t,x, y/v Z)) =< 05|y - yl|25
(111) |f(t’ X, ¥, 2, U) - f(t’xv Y, Z/’ U/)l < K(|Z - Z/| + ”U - v/“)»)a
(iv) the mapping r — f(t, x, y,z,r) is nondecreasing,
) (=) x,y) —gt.x,¥) < Bly —y'|% i
(vi) £ e CY? suchthat ¢(T,x) < H(x), Y(t,x) €[0,T] x G.
24

Moreover we suppose that the function y : R/ x U — R satisfies, for any e € U and
x,x’ € G, the conditions

{ (i) y(r e <k Ale], )
(i) 1y (x,0) =y ) = sefx =11 A Je]).

It follows from Theorem 1 that, for all (z, x) € [0, T] x G, there exists a unique
quadruple (Y{™*, Z*, V¥, KI*);<s<r being a solution of the following reflected
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generalized BSDE:

T T
@) E[sup [¥P+ / Y RAALT 4 / (Z1P + VI 2)ds] < oo,
t<s<T t t

T
i) Y =HX;)+ / fQr, XL* ¥hY Z0Y viSdr

N

T T
+/ g(r, X175 YP ) dA, + Ki' — K —f ZEEdW,
p s

T
- / VI¥(e)N(dr,de), t<s<T,
U

5
(i) Yy© > (s, XyY), t<s<T,

T
(iv) / (Y5 —t(s, X1 )dKY =0, P-as.
t

(26)
The process Yi** is .Z!-adapted and (Z,*, V", Ki*) are .%;-predictable where

f;:a(Ws—W,,N(]t,s],A),tgsSr,Ae%)\/JV.

Now, we consider the following related obstacle problem for a parabolic integral-
partial differential equation with nonlinear Neumann boundary conditions

(u(t, x) — £(z, x))
A (—(r;—l:(t,x) — ZLu(t,x) — f(t,x,ut,x), (Viuo)(t, x), Bu(t, x))) =0,

Y(t,x)€[0,T] x G,
u(T,x)=H(x), VxegG,

0
a—u(t,x) + ot x, u(t, x) =0, VxedG,
n
27
where .7 is the second-order integral-differential operator

L =R+S
with

R$ = %Tr[aoT(x)]D£¢(t, x) + (b(x), Vi (1, x)),
S¢p = /U(q)(t, x+c(x,e)) — ot x) — (Vi (1, x), c(x, e)))A(de),
and 4 is an integral operator defined as
B = /U(qb(t, x+c(x,e)) — g, x))y(x, e)r(de),

and for every x € G,

d¢

— =(Vig, VO(x)).

on

Now, according to Definition 3.1, Remark 3.2 and Lemma 3.3 in [1], we give a defi-

nition of the viscosity solution of (27).
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Definition 1. Let u be a function which belongs to € ([0, T'] x G, R). Then:

(a) Itiscalled a sul_)solution of 27), if u(T,x) < H(x), Vx € G, and for any ¢ €
C12([0, T] x G) such that whenever (7, x) € [0, T] x G is a local maximum
of u — ¢, we have, suppressing dependence on (¢, x),

Uu—O AN~ — Lo~ f(t,x,u, Voo), Bp)] <0, xeqG,
[(u - 6) A [—§0t - f‘ﬂ - f(t9x9 u, (V¢0)9 e%@)]]

0
A[—a—(p —g(t,x,u)] <0, x € 9G.
n

In other words, if u(¢, x) > £(t, x) then
[—pr — Lo — f(t,x,u,(Vpo), Bp)] <0, x€Gq,
[—pr — Lo — f(t,x,u, (Vpo), By)]

9
A[—a—(p —g(t,x, )] <0, x €dG.
n

(b) Itis called a supersolution of (27), if u(T', x) > H(x),Vx € G, and for any ¢ €
Cl’z([O, T] x G) such that whenever (¢, x) € [0, T] x G is a local minimum
of u — ¢, we have, suppressing dependence on (¢, x),

w—-O N[~ — Lo~ ft,x,u,(Voo), Bp)] >0, x¢eG,
[(u - 6) A [_got —ffp - f(t,x,u, (VQOU),QQD)]]

9
v[—a—‘p —e(t,x, )] >0, x€dG.
n

In other words, if u(¢, x) > £(¢, x) then
[—pr — Lo — f(t,x,u,(Vpo), Bp)] >0, x€G,
[_(pl - D‘Z(p - f(t7 X, U, (pro')’ %‘P)]

9
v[—a—"’ —e(t,x,u)] >0, x €dG.
n

(c) u € C([0,T] x G) is said to be a viscosity solution of (27), if it is both sub-
and supersolution.

Now, we denote
u(t,x)=Y", (28)

Obviously, this function is deterministic. By the uniqueness of the solution of (26), it
is not hard to see that

1,x
Yt = Y;Y,Xs = u(s, X_i’x), Vi<s<T.

Next we will indicate some basic properties of this function.
Proposition 6. u € C([0, T] x G, R).
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Proof. First, we define for all (¢, x) the solution Ys’ Y foralls € [0, T] by choosing
Y = Y,’ ¥ for 0 < 5 < t. Note that, for each sequence (t,, x,,) which converges to
(t, x), the following converges as n — oo:

2] — 0,
n—oo

Bl (X — H (X ™)

T
E /0 M| F(r XU VI ZEE V) = f(n X Y, 2t i) Fdr — o,

T
E/o e[ g (r, X0, YE) = g (r, Xton, YiT) P Al — o,

T
IE/ etkr
0

T
i 2
IE‘/(‘) etkr (E(r, Xéx) - E(r, X?”x”)) AK, =2 0,

8l X1 V) Plaars —dap) — 0

n—oo

with k £ |A| + A"*n where A = A"* — A'*n and | A| is the total variation of A and
AK := K" — K" Those convergences follow from the continuity assumptions
of f, g, H and ¢ and Proposition 5. As in the proof of Proposition 1, we can derive
the desired result. O

We now prove that our reflected generalized BSDE provides a viscosity solution
of (27).

Theorem 4. The function u defined in (28) is a viscosity solution of (27).

Proof. First let us show that u is a viscosity subsolution of (27). A similar argument
would show that is a viscosity supersolution of (27). Let ¢ € C 1.2(10, T1 x G) and
(to, x0) € [0, T] x G such that o(to, x0) = u(ty, xo) and @(t, x) > u(t, x) for all
(t,x) €[0,T] x G.

Step 1. Suppose that u (9, x9) > £(t9, x0) and xo € G, and that

—@1 (10, x0) — Lp(to, x0) — f (t0, X0, ulto, x0), (Voo )(to, x0), By (1o, x0)) > 0,

and we will find a contradiction.

It follows from the continuity of f, g, b, o, ¢ and ¢ that there exist ¢ > 0 and
ne > Osuch thatforall (¢, x),70 <t <ty+ne and {x : |x —xg| < n.} C G, we have
u(t,x) > £(t,x) + € and

— @i (t,x) — ZLo(t, x) — f(t,x,ut, x), (Voo )(t, x), Bp(t,x)) > e.  (29)

Define
T =inf{s > 19 : [X0% — xo| > ns} A (0 + ne). (30)

Note that for all s € [tg, T], we have

u(s, X?”xo) > Z(s, Xéo’xo) + &.
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Consequently, the process (K70*0) is constant in [fg, ] and, for all fp < s < 7, we
have

T T
10, X 10, X 10, X 10, X 10, X 10, X 10, X
Yso 0 — Yro 0 +f f(r, Xro 0, Yro 0, Zro 0, Vro O)dr _/ Zro odW,
N s

— / / V00 ()N (dr, de).
s U

On the other hand, applying Itd’s formula to ¢ (s, X*°) yields that

(p(T, X€0>x0)

T T
:(P(S,Xéo,xo)_F/ E;_go(r’ Xﬁo,xo)dr*_/ Vgo(r, Xio’xo)dXﬁo’XO
s r s
T
+1/ DZ(p( Xl() XO)(O_O.T)(XI() xo)dr
o[ [ et X e ) o x20)

— Vo (r, X2)e (X100, ¢)|N (dr, de)
= (p(s, X;nyo)

+ /Sf[g_f(r,Xﬁo’xo)-{-V(p(r,X;O’Xo)b(X;O*XO)_i_%D2¢(F’X£O,x0)(UGT)(Xio’XO):Idr
N
/ | ol X2+ (x022, €)) = ol X020 ] ¥, e
o [Tl X e, ) =)
= Vo(r X20)e(X27, o) Jr(deydr.
Then
o=t 8 ]
s
—/IW(V X000 (X10X0)d W,

f / r, XlO 0 4 c( x'oxo, e)) —o(r, X;"_’xo)]]\?(dr, de),

O<S<‘[

Now, by assumption (29), we have

|:£;(p + f(p] (s, X10¥0)
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— f(s, X200 (s, X00), (Vo) (s, X10%0), By(s, X00)) > e.

Also,
(p(t, Xio,xo) > u(‘r, X;OJCO) — leo-,XO_

We deduce with the help of Theorem 3 that

@(to, x0) > ¢(to, X,2°) — e(t — t0) > uto, x0)

which contradicts our assumption.

Step 2. If we continue to assume that u(#, xo) > £(fo, x9) and xo € G, and that
[—¢: (10, x0) — L(t0, x0) — f(t0, x0,u(to, x0), (Vo) (to, x0), Be(to, x0))]

%
A —%(lo, x0) — g(10, x0, ¢ (10, x0)) | > 0,

we will find a contradiction.

It follows from the continuity of f, g, b, o, ¢ and ¢ that there exist ¢ > 0 and
ne > 0 such that for all (¢, x), 0 <t <ty + ne and {x : |x — xo| < 5.}, we have
u(t,x) > £(t,x) + € and

[_(pl(tv-x) - g‘p(t’x) - f(tv-x7 M([,X), (V(pa)(t7x)s '@(p(tv-x))] (31)

A I:—g—i(t, x) — g(t, x, o(t, x))i| >e. 32)

Let 7 be the stopping time defined as above in (30), and let us note that for all s €
[to, T] we have

u(s, Xéo‘x‘)) > e(s, Xé"’x") +e.

Consequently, the process (K'0-*0) is constant in [fp, ] and for all 7p < s < T, and
we have

T
10,X0 _ vy!10,X 10, Xi 10, X 10, X 10, X
Yso O_YTO o+/ f(r, Xro OerO O’Zr() OerO O)dr
s

T
+/ g(r, X}{O,X()’ Yrto’xo)dAio’xo
)

T T
— / ZoX0gwW, — / / V0¥ (e)N (dr, de).
s s U

On the other hand, applying It&’s formula to ¢ (s, X §°’x°) we end up with
(p(s, va(),x())

T T
— QD('L', X;o,xO) _ / |:8_¢ + $¢:| (r, Xﬁo,xo)d,. +f 8_(’0(,-’ Xﬁo,xo)dAio,xo
s LOr s on

T
— f Vo(r, X100)o (X900 dW,

N



108

M. Elhachemy, M. El Otmani

T
— / / [o(r, X2 + (X127, €)) — o(r, Xio_’xo)]](f(dr, de), ty<s<rt.
N U

Now, by assumption (31), we have

<_

dg
[a + f(pi| (s, X[0¥0)

— F (s, X0, (s, X109, (Vgor) (5. X100, B, x;o’xo)))

A [_z_:(s,x?”“’) —g<s,xzo’xo,w(s,x?’”))] =

Also,

o(. XP70) = u(r, XP0) = Y,

We deduce with the help of Theorem 3 that

(to, x0) > @(to, X2°) — e(x — 19) = Y™™ = u(ty, x0).

which leads to a contradiction. O

Remark 5. The uniqueness of the viscosity solution will be obtained by the com-
parison of sub- and supersolutions of IPDE with nonlinear Neumann boundary con-
ditions. It follows from an adaptation of standard techniques and the proof of Theo-
rem 3.5 in [1], taking into account the continuity of the solution u and the obstacle ¢
which enables us to focus exclusively on the results on [0, T] x G, and when u > £.
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