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Abstract The term moderate deviations is often used in the literature to mean a class of large
deviation principles that, in some sense, fills the gap between a convergence in probability to
zero (governed by a large deviation principle) and a weak convergence to a centered normal
distribution. In this paper, some examples of classes of large deviation principles of this kind
are presented, but the involved random variables converge weakly to Gumbel, exponential and
Laplace distributions.
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1 Introduction

The theory of large deviations gives an asymptotic computation of small probabilities
on exponential scale; see [4] as a reference of this topic. The basic definition of this
theory is the concept of large deviation principle, which provides some asymptotic
bounds for a family of probability measures on the same topological space; these
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bounds are expressed in terms of a speed function (that tends to infinity) and a lower
semicontinuous rate function defined on the topological space.

The term moderate deviations is used for a class of large deviation principles
which fills the gap between a convergence to a constant (governed by a large deviation
principle with a suitable speed function) and an asymptotic normality result. In view
of the examples studied in this paper we explain the concept of moderate deviations
in the next Assertion 1.1, and our presentation will be restricted to sequences of real
random variables defined on the same probability space (�,F , P ); thus the speed
function is a sequence {vn : n ≥ 1} such that vn → ∞ (as in the rest of the paper).

Assertion 1.1 ((Classical) moderate deviations). Let {Cn : n ≥ 1} be a sequence of
real random variables such that the following asymptotic regimes hold.

R1: {Cn : n ≥ 1} converges in probability to zero, and this convergence is gov-
erned by a large deviation principle with speed vn and rate function ILD (such that
ILD(x) = 0 if and only if x = 0);

R2:
√

vnCn converges weakly to a centered normal distribution with (positive)
variance σ 2.

Then we talk about moderate deviations when, for every family of positive num-
bers {an : n ≥ 1} such that

an → 0 and anvn → ∞, (1)

the sequence of random variables {√anvnCn : n ≥ 1} satisfies the large deviation
principle with speed 1/an and rate function IMD defined by

IMD(x) = x2

2σ 2 for all x ∈ R. (2)

Moreover, one typically has

I ′′
LD(0) = 1

σ 2 . (3)

We have the following remarks.

Remark 1.1. We can recover the asymptotic regimes R1 and R2 in Assertion 1.1 by
setting an = 1

vn
and an = 1 respectively; note that, in both cases, one of the con-

ditions in (1) holds and the other one fails. So the class of large deviation principles
in Assertion 1.1 is determined by a family of positive scaling factors {an : n ≥ 1}
that fills the gap between the asymptotic regimes R1 and R2. Moreover, by (1), the
speed 1/an for the random variables {√anvnCn : n ≥ 1} has a lower intensity than
the speed vn (see R1).

Remark 1.2. Concerning the random variables {Cn : n ≥ 1} in Assertion 1.1, one
often has

Cn = Zn − z∞ for all n ≥ 1,

where {Zn : n ≥ 1} is a sequence which converges in probability to z∞ for some
z∞ ∈ R (see, for instance, (23) concerning Example 6.1 where z∞ = t); moreover
this convergence is governed by a large deviation principle with some speed vn, say,
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and rate function IZ , and one has IZ(z) = 0 if and only if z = z∞. Then, for the rate
function ILD in Assertion 1.1, one has

ILD(x) = IZ(x + z∞) for all x ∈ R.

Moreover, if we refer to the equality (3) at the end of Assertion 1.1, one typically has
I ′′
Z(z∞) = 1

σ 2 because I ′′
Z(z∞) = I ′′

LD(0).

Now we present a prototype example of the framework in Assertion 1.1, for which
one can refer to the law of large numbers and the central limit theorem. Without
loss of generality we restrict our attention to the case of centered random variables
{Xn : n ≥ 1} in order to have a convergence to zero (as in the asymptotic regime R1
in Assertion 1.1).

Example 1.1. We set

Cn := X1 + · · · + Xn

n
for all n ≥ 1

where {Xn : n ≥ 1} is a sequence of i.i.d. centered real random variables. Moreover,
we also assume that E[eθX1 ] < ∞ in a neighborhood of the origin θ = 0, and
therefore σ 2 = Var[X1] is finite (we also assume that σ 2 > 0 to avoid trivialities).
In such a case the sequence {Cn : n ≥ 1} satisfies the large deviation principle with
speed vn = n and rate function ILD defined by

ILD(x) = sup
θ∈R

{
θx − logE

[
eθX1

]}
for all x ∈ R.

This is a consequence of the Cramér theorem (see, e.g., Theorem 2.2.3 in [4]), and
one can check that I ′′

LD(0) = 1
σ 2 . Moreover, for every family of positive numbers

{an : n ≥ 1} such that (1) holds, the sequence of random variables {√annCn : n ≥ 1}
satisfies the large deviation principle with speed 1/an and rate function IMD defined
by (2); this is a consequence of Theorem 3.7.1 in [4] with d = 1. Actually this
prototype example can be presented for an arbitrary d (i.e. for multivariate random
variables) by taking into account the multivariate version of the Cramér theorem (see,
e.g., Theorem 2.2.30 in [4]).

The aim of this paper is to present some examples of noncentral moderate devia-
tions. We use this terminology to mean a class of large deviation principles which fills
the gap between a convergence to a constant (governed by a large deviation principle
with some speed vn and some rate function which uniquely attains the value zero at
that constant) and a weak convergence to some non-Gaussian law. This should hap-
pen in the same spirit of Assertion 1.1 for some positive scalings {an : n ≥ 1} such
that (1) holds.

The terminology of noncentral moderate deviations appears in three recent re-
sults: Proposition 3.3 in [13] (for possibly m-variate random variables), Proposition
4.3 in [15] and Proposition 3.3 in [2]. In the first two cases the weak convergence is
trivial because one has a family of identically distributed random variables. Another
result is Proposition 2.2 in [12], where the convergence in distribution is not trivial;
however the term noncentral moderate deviations does not appear in that paper.

The common line of the examples studied in this paper can be summarized as
follows.
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Assertion 1.2 (Common line of several examples in this paper). We consider a se-
quence of real random variables {Cn : n ≥ 1} such that the following asymptotic
regimes hold.

R1: {Cn : n ≥ 1} converges in probability to zero, and this convergence is gov-
erned by a large deviation principle with speed vn (we always have vn → ∞) and
rate function ILD (such that ILD(x) = 0 if and only if x = 0);

R2: vnCn converges weakly to a non-Gaussian law.
Moreover, for every family of positive numbers {an : n ≥ 1} such that (1) holds,

the sequence of random variables {anvnCn : n ≥ 1} satisfies the large deviation
principle with speed 1/an and a suitable rate function IMD.

Some interesting common features of the examples studied in this paper are given
by the following equalities: ILD(0) = IMD(0) = 0 (as in Assertion 1.1),

IMD(x) = I ′
LD(0+)x or IMD(x) = ∞ if x > 0

and
IMD(x) = I ′

LD(0−)x or IMD(x) = ∞ if x < 0.

Not all the noncentral moderate deviation results have these common features; for
instance they do not appear in Proposition 3.3 in [2]. This explains the interest of
non-central moderate deviations that, in our opinion, deserve to be investigated. We
also recall that the common features of the examples studied in this paper can be seen

as the analogue of the equality IMD(x) = I ′′
LD(0)

2 x2 stated in Assertion 1.1 for the
classical moderate deviations (it is a consequence of (2) and (3)).

Now we present the outline of the paper with a very brief description of the exam-
ples studied in each section. We start with some preliminaries in Section 2. Section 3
is devoted to Example 3.1 which concerns minima of i.i.d. nonnegative random vari-
ables. In Section 4 we study Example 4.1, which is based on maxima of i.i.d. random
variables in the maximum domain attraction (MDA) of the Gumbel distribution (see,
e.g., the family of distributions in Theorem 8.13.4 in [3] together with the well-known
Fisher–Tippett theorem, e.g., Theorem 8.13.1 in [3]). In Section 5 we study Exam-
ple 5.1 which concerns the classical occupancy problem (or the coupon collector’s
problem); in particular that is an example with a weak convergence to the Gumbel
distribution (as Example 4.1). Finally, in Section 6, we consider Example 6.1 which
is inspired by a recent replacement model for random lifetimes in the literature (see,
e.g., [5]).

We conclude with some notation used throughout the paper. We write an ∼ bn to
mean that an

bn
→ 1 as n → ∞; moreover we use the symbol [x] for the integer part

of x ∈ R, i.e.
[x] := max{k ∈ Z : k ≤ x}.

2 Preliminaries

We start with the definition of large deviation principle (see, e.g., [4], pages 4–5).
Let (X , τX) be a topological space and let {Zn : n ≥ 1} be a sequence of X -valued
random variables defined on the same probability space (�,F , P ). A sequence {vn :
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n ≥ 1} such that vn → ∞ (as n → ∞) is called a speed function, and a lower
semicontinuous function I : X → [0,∞] is called a rate function. Then the sequence
{Zn : n ≥ 1} satisfies the large deviation principle (LDP from now on) with speed vn

and rate function I if

lim sup
n→∞

1

vn

log P(Zn ∈ C) ≤ − inf
x∈C

I (x) for all closed sets C, (4)

and

lim inf
n→∞

1

vn

log P(Zn ∈ O) ≥ − inf
x∈O

I (x) for all open sets O. (5)

The rate function I is said to be good if every level set {x ∈ X : I (x) ≤ η} (for
η ≥ 0) is compact.

The following Lemma 2.1 is quite a standard result (anyway we give briefly some
hints of the proof for the sake of completeness). All the moderate deviation results in
this paper concern the situation presented in Assertion 1.2, and they will be proved
by applying Lemma 2.1; more precisely, for every choice of the positive scalings
{an : n ≥ 1} such that (1) holds (with a further condition for Example 6.1, i.e. (24)),
we shall have sn = 1/an and I = IMD for some rate function IMD. We shall apply
Lemma 2.1 also to prove Proposition 6.1 (with sn = vn = n and I = ILD for a
suitable rate function ILD), which provides the LDP for the asymptotic regime R1
concerning Example 6.1.

Lemma 2.1. Let {sn : n ≥ 1} be a speed and let {Cn : n ≥ 1} be a sequence of
real random variables defined on the same probability space (�,F , P ). Moreover
let I : R → [0,∞] be a rate function decreasing on (−∞, 0), increasing on (0,∞)

and such that I (x) = 0 if and only if x = 0. Moreover, assume that:

lim sup
n→∞

1

sn
log P(Cn ≥ x) ≤ −I (x) for all x > 0; (6)

lim sup
n→∞

1

sn
log P(Cn ≤ x) ≤ −I (x) for all x < 0; (7)

lim inf
n→∞

1

sn
log P(Cn ∈ O) ≥ −I (x)

for every x ∈ {y ∈ R : I (y) < ∞}, and
for all open sets O such that x ∈ O.

(8)
Then {Cn : n ≥ 1} satisfies the LDP with speed sn and rate function I .

Proof. It is known that the final statement (8) yields the lower bound for open sets (5)
(see, e.g., condition (b) with eq. (1.2.8) in [4]). Here we prove that (6) and (7) yield
the upper bound for closed sets (4). Such an upper bound trivially holds if C is the
empty set or if 0 ∈ C, and therefore in what follows we assume that C is nonempty
and 0 /∈ C; then at least one of the sets C ∩ (0,∞) and C ∩ (−∞, 0) is nonempty.
For simplicity we assume that both sets C ∩ (0,∞) and C ∩ (−∞, 0) are nonempty
(in fact, if one of them is empty, the proof can be adapted readily). Then we can find
x1 ∈ C ∩ (0,∞) and x2 ∈ C ∩ (−∞, 0) such that C ⊂ (−∞, x2] ∪ [x1,∞), and we
have

P(Zn ∈ C) ≤ P(Zn ≥ x1) + P(Zn ≤ x2);
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thus, by Lemma 1.2.15 in [4] (together with (6) and (7)), we have

lim sup
n→∞

1

sn
log P(Zn ∈ C) ≤ lim sup

n→∞
1

sn
log{P(Zn ≥ x1) + P(Zn ≤ x2)}

= max{−I (x1),−I (x2)} = − min{I (x1), I (x2)}.
We conclude the proof noting that min{I (x1), I (x2)} = infx∈C I (x) by the hypothe-
ses.

3 An example with minima of i.i.d. nonnegative random variables

In this section we consider the following example.

Example 3.1. Let {Xn : n ≥ 1} be a sequence of i.i.d. real random variables, with a
common distribution function F . We assume that F is strictly increasing on (αF , ωF ),
where

αF := inf{x ∈ R : F(x) > 0} = 0 and ωF := sup{x ∈ R : F(x) < 1};
so {Xn : n ≥ 1} are nonnegative random variables. We also assume that F(0) = 0,
and that there exists

F ′(0+) := lim
x→0+

F(x) − F(0)

x
= lim

x→0+
F(x)

x
∈ (0,∞). (9)

In what follows we use the notation

F(x−) := lim
y↑x

F (y).

Throughout this section we set

Cn := min{X1, . . . , Xn} for all n ≥ 1. (10)

Assertion 3.1. We can recover the asymptotic regimes R1 and R2 in Assertion 1.2 as
follows.

R1: {Cn : n ≥ 1} converges in probability to zero (actually it is an a.s. conver-
gence); moreover, by Lemma 1 in [14], {Cn : n ≥ 1} satisfies the LDP with speed
vn = n and rate function ILD defined by

ILD(x) :=
{ − log(1 − F(x−)) if x ∈ [0, ωF ),

∞ otherwise.

R2: vnCn = n min{X1, . . . , Xn} converges weakly to the exponential distribution
with mean 1/F ′(0+); in fact, for every x > 0, by (9), we get

P(n min{X1, . . . , Xn} ≤ x) = 1 − P(n min{X1, . . . , Xn} > x)

= 1 − P n
(
X1 >

x

n

)
= 1 −

(
1 − F

(x

n

))n

= 1 −
(

1 − nF
(

x
n

)
n

)n

→ 1 − e−F ′(0+)x as n → ∞.
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Thus we are studying a sequence of random variables that has interest for any
possible concrete model related to the maximum domain of attraction of the Weibull
distribution (indeed, exponential distribution is a particular case of the Weibull distri-
bution). For instance, the random variables {Xn : n ≥ 1} could represent wind speed
data (to determine the viability of windmills).

Now we prove the moderate deviation result.

Proposition 3.1. For every family of positive numbers {an : n ≥ 1} such that (1)
holds (i.e. an → 0 and ann → ∞), the sequence of random variables {ann min{X1,

. . . , Xn} : n ≥ 1} satisfies the LDP with speed 1/an and rate function IMD defined by

IMD(x) :=
{

F ′(0+)x if x ∈ [0,∞),

∞ otherwise.

Proof. We apply Lemma 2.1 for every choice of {an : n ≥ 1} such that (1) holds,
with sn = 1/an, I = IMD and {Cn : n ≥ 1} as in (10).

Proof of (6). We have to show that, for every x > 0,

lim sup
n→∞

an log P(ann min{X1, . . . , Xn} ≥ x) ≤ −F ′(0+)x.

For every δ ∈ (0, x) we have

P(ann min{X1, . . . , Xn} ≥ x) = P n

(
X1 ≥ x

ann

)

=
(

1 − F

(
x

ann
−
))n

≤
(

1 − F

(
x − δ

ann

))n

and, by the relation limx→0+ F(x) = 0 and the limit in (9),

lim sup
n→∞

an log P(ann min{X1, . . . , Xn} ≥ x)

≤ lim sup
n→∞

ann log

(
1 − F

(
x − δ

ann

))

= lim sup
n→∞

ann

(
−F

(
x − δ

ann

))
= −F ′(0+)(x − δ);

so we obtain (6) by letting δ go to zero.

Proof of (7). We have to show that, for every x < 0,

lim sup
n→∞

an log P(ann min{X1, . . . , Xn} ≤ x) ≤ −∞.

This trivially holds as −∞ ≤ −∞ because the random variables {Cn : n ≥ 1} are
nonnegative (and therefore P(ann min{X1, . . . , Xn} ≤ x) = 0 for every n ≥ 1).

Proof of (8). We want to show that, for every x ≥ 0 and for every open set O such
that x ∈ O, we have

lim inf
n→∞ an log P(ann min{X1, . . . , Xn} ∈ O) ≥ −F ′(0+)x.
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The case x = 0 is immediate; indeed, since ann min{X1, . . . , Xn} converges in prob-
ability to zero by the Slutsky theorem (by an → 0 and the weak convergence in R2
in Assertion 3.1), we have trivially 0 ≥ 0. So, from now on, we suppose that x > 0
and we take δ > 0 small enough to have

(x − δ, x + δ) ⊂ O ∩ (0,∞).

Then

P(ann min{X1, . . . , Xn} ∈ O) ≥ P(ann min{X1, . . . , Xn} ∈ (x − δ, x + δ))

= P

(
min{X1, . . . , Xn} ∈

(
x − δ

ann
,
x + δ

ann

))

= P n

(
X1 >

x − δ

ann

)
− P n

(
X1 ≥ x + δ

ann

)

=
(

1 − F

(
x − δ

ann

))n

−
(

1 − F

(
x + δ

ann
−
))n

=
(

1 − F

(
x − δ

ann

))n

⎛
⎜⎝1 −

(
1 − F

(
x+δ
ann

−
))n

(
1 − F

(
x−δ
ann

))n

⎞
⎟⎠

=
(

1 − F

(
x − δ

ann

))n

⎧⎨
⎩1 − exp

⎛
⎝n log

⎛
⎝1 − F

(
x+δ
ann

−
)

1 − F
(

x−δ
ann

)
⎞
⎠
⎞
⎠
⎫⎬
⎭ .

Now notice that

log

⎛
⎝1 − F

(
x+δ
ann

−
)

1 − F
(

x−δ
ann

)
⎞
⎠

= log

⎛
⎝1 +

F
(

x−δ
ann

)
− F

(
x+δ
ann

−
)

1 − F
(

x−δ
ann

)
⎞
⎠ ≤

F
(

x−δ
ann

)
− F

(
x+δ
ann

−
)

1 − F
(

x−δ
ann

)

= −
F

(
x+δ
ann

−
)

− F
(

x−δ
ann

)
1 − F

(
x−δ
ann

) ≤ −
F

(
x

ann

)
− F

(
x−δ
ann

)
1 − F

(
x−δ
ann

)
and, again by the relation limx→0+ F(x) = 0 and the limit in (9),

n log

⎛
⎝1 − F

(
x+δ
ann

−
)

1 − F
(

x−δ
ann

)
⎞
⎠ ≤ −

annF
(

x
ann

)
− annF

(
x−δ
ann

)
an

(
1 − F

(
x−δ
ann

)) → −∞ as n → ∞,

because an

(
1 − F

(
x−δ
ann

))
→ 0 and

annF

(
x

ann

)
− annF

(
x − δ

ann

)
→ F ′(0+)(x − (x − δ)) = F ′(0+)δ > 0.



Some examples of noncentral moderate deviations 119

In conclusion, we get

lim inf
n→∞ an log P(ann min{X1, . . . , Xn} ∈ O)

≥ lim inf
n→∞ an log

(
1 − F

(
x − δ

ann

))n

+ lim inf
n→∞ an log

⎛
⎝1 − exp

⎛
⎝n log

⎛
⎝1 − F

(
x+δ
ann

−
)

1 − F
(

x−δ
ann

)
⎞
⎠
⎞
⎠
⎞
⎠

= lim inf
n→∞ ann log

(
1 − F

(
x − δ

ann

))

= lim inf
n→∞ ann

(
−F

(
x − δ

ann

))
= −F ′(0+)(x − δ);

so we obtain (8) by letting δ go to zero.

4 An example with maxima of i.i.d. random variables in the MDA of Gumbel
distribution

In this section we consider the following example.

Example 4.1. Let {Xn : n ≥ 1} be a sequence of i.i.d. real random variables, with
a common distribution function F . Let ωF be as in Example 3.1, and assume that
ωF = ∞. We also assume that, for x large enough, F is strictly increasing with
positive density f . Moreover let w be the function defined by

w(x) := F̄ (x)

f (x)
, where F̄ (x) := 1 − F(x),

and assume that w is differentiable for x large enough, limx→∞ w′(x) = 0 and w is a
regularly varying function with exponent 1−μ for some μ > 0, i.e. limx→∞ w(tx)

w(x)
=

t1−μ for all t > 0. So, it is well known that

w(x) = x1−μL(x) (11)

for a suitable slowly varying function L, i.e. a function such that

lim
x→∞

L(tx)

L(x)
= 1 for all t > 0

(this can be immediately checked by the definitions of regularly varying and slowly
varying functions).

Here we list some particular cases in which w is a regularly varying function with
exponent 1 − μ for some μ > 0.

1. Standard normal distribution (see, e.g., [18] (pp. 48, 50–51, 88–90) for the
asymptotic behavior of w(x))

F̄ (x) = 1√
2π

∫ ∞

x

e−t2/2dt (x ∈ R),
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w(x) =
∫ ∞
x

e−t2/2dt

e−x2/2
∼ 1

x
, μ = 2.

2. Gamma distribution for a > 0 (see, e.g., [1] (formula 6.5.32, p. 263), for the
limit of w(x))

F̄ (x) = 1

�(a)

∫ ∞

x

ta−1e−t dt (x > 0),

w(x) =
∫ ∞
x

ta−1e−t dt

xa−1e−x
→ 1, μ = 1.

3. Weibull distribution for a > 0

F̄ (x) = e−xa

(x > 0),

w(x) = e−xa

axa−1e−xa = x1−a

a
, μ = a.

4. Logistic distribution

F̄ (x) = 1

1 + ex
(x ∈ R),

w(x) =
1

1+ex

ex

(1+ex)2

= 1 + e−x → 1, μ = 1.

We need several consequences of the assumptions in Example 4.1. We start with
some results concerning the function L and the value μ (see (11)). In particular we
provide an estimate for

� := lim sup
x→∞

−L(x) log F̄ (x)

xμ
. (12)

Lemma 4.1. Under the assumptions in Example 4.1 we have L(x)
xμ → 0 (as x → ∞).

Proof. It is known (see, e.g., [8], Chapter VIII, Section 8, Lemma 2, p. 277) that, for
every ε > 0, there exists xε > 0 such that

x−ε < L(x) < xε for all x > xε.

Then, if we take ε < μ, we get

x−(ε+μ) <
L(x)

xμ
< xε−μ for all x > xε,

and we immediately get the desired limit by letting x go to infinity.

Lemma 4.2. Under the assumptions in Example 4.1 we have � ≤ 1
μ

(where � is
defined by (12)).
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Proof. Recall from (11) that F̄ (x)
f (x)

= x1−μL(x); thus L(x) does not vanish because

we have F̄ (x) �= 0 for all x since ωF = ∞. Therefore, for some x1, we get

f (x)

F̄ (x)
= xμ−1

L(x)
for all x > x1,

which yields ∫ x

x1

f (t)

F̄ (t)
dt︸ ︷︷ ︸

− log F̄ (x)+log F̄ (x1)

=
∫ x

x1

tμ−1

L(t)
dt.

Recall also the so-called Potter bound (see, e.g., Theorem 1.5.6(i) in [3]): for every
A > 1 and δ > 0 there exists x0 = x0(A, δ) such that

L(y)

L(z)
≤ A max

{(
z

y

)δ

,

(
y

z

)δ
}

for all y, z > x0.

Then we have

−L(x) log F̄ (x)

xμ
+ L(x) log F̄ (x1)

xμ
= L(x)

xμ

∫ x0

x1

tμ−1

L(t)
dt + L(x)

xμ

∫ x

x0

tμ−1

L(t)
dt;

moreover, by the Potter bound and some computations, we can estimate the last term
as

L(x)

xμ

∫ x

x0

tμ−1

L(t)
dt ≤ A

xμ

∫ x

x0

(x

t

)δ

tμ−1dt = A

μ − δ

(
1 −

(x0

x

)μ−δ
)

.

Then, by the definition of � in (12) and by Lemma 4.1, we get � ≤ A
μ−δ

by letting x

go to infinity; so we conclude by the arbitrariness of A and δ.

Remark 4.1 (A discussion on the inequality in Lemma 4.2). If we consider the four
distributions listed above for which the function w is regularly varying with exponent
1 − μ for some μ > 0, we have

lim
x→∞ L(x) = L(∞) for some L(∞) ∈ (0,∞); (13)

indeed we have L(∞) = 1 for standard normal, Gamma and logistic distributions,
and L(∞) = 1/a for Weibull distribution. Then, by the L’Hôpital rule we have

lim
x→∞

log F̄ (x)

xμ
= lim

x→∞
−f (x)/F̄ (x)

μxμ−1

= − lim
x→∞

1/w(x)

μxμ−1 = − lim
x→∞

1

μL(x)
= − 1

μL(∞)
,

and therefore

lim
x→∞ −L(x) log F̄ (x)

xμ
= − lim

x→∞ L(x) lim
x→∞

log F̄ (x)

xμ
= 1

μ
.
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In conclusion, we have shown that the limit of −L(x) log F̄ (x)
xμ as x → ∞ exists if (13)

holds (as it happens for the four distributions listed above). We are not aware of cases
in which the inequality in Lemma 4.2 is strict.

Some further preliminaries are needed. Firstly, under the assumptions in Exam-
ple 4.1, the following quantities are well defined for n large enough:

mn := F−1
(

1 − 1

n

)

and (in one of the following equalities we take into account (11))

hn := mnnf (mn) = mn

f (mn)

F̄ (mn)
= mn

w(mn)
= mn

m
1−μ
n L(mn)

= m
μ
n

L(mn)
. (14)

The following lemmas provide some properties of the function w and the sequence
{hn : n ≥ 1}.
Lemma 4.3. Under the assumptions in Example 4.1 we have w(xn) ∼ w(yn) for
xn, yn → ∞ such that xn ∼ yn.

Proof. By the well-known Karamata’s representation of slowly varying functions
(see, e.g., Theorem 1.3.1 in [3]), there exists b > 0 such that the function L introduced
above can be written as

L(x) = c1(x) exp

(∫ x

b

c2(t)

t
dt

)
for all x ≥ b,

where c1 and c2 are suitable functions such that c1(x) tends to some finite limit and
c2(x) → 0 (as x → ∞). Then we have to prove that

w(xn)

w(yn)
=

c1(xn) exp
(∫ xn

b
c2(t)

t
dt

)
x

1−μ
n

c1(yn) exp
(∫ yn

b
c2(t)

t
dt

)
y

1−μ
n

→ 1 as n → ∞.

By the hypotheses we only need to prove that

exp
(∫ xn

b
c2(t)

t
dt

)
exp

(∫ yn

b
c2(t)

t
dt

) = exp

(∫ xn

yn

c2(t)

t
dt

)
→ 1,

which amounts to

lim
n→∞

∫ xn

yn

c2(t)

t
dt = 0.

Let δ ∈ (0, 1) and ε ∈ (0, δ
1+δ

) be arbitarily fixed. Then there exists nε ≥ 1 such that
|c2(t)| < ε for t > nε and 1 − ε < xn

yn
< 1 + ε for n > nε. So, for n large enough to

have xn ∧ yn > nε, we get∣∣∣∣
∫ xn

yn

c2(t)

t
dt

∣∣∣∣ ≤
∫ xn∨yn

xn∧yn

|c2(t)|
t

dt ≤ ε

∫ xn∨yn

xn∧yn

1

t
dt = ε log

xn ∨ yn

xn ∧ yn
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and

1 ≤ xn ∨ yn

xn ∧ yn

=
{

xn

yn
if xn ≥ yn

yn

xn
if xn < yn

≤
{

1 + ε if xn ≥ yn
1

1−ε
if xn < yn

< 1 + δ.

The proof is complete.

Lemma 4.4. Under the assumptions in Example 4.1 we have hn ∼ μ log n (as n →
∞).

Proof. Firstly we recall that hn = m
μ
n

L(mn)
(see (14)); then hn → ∞ by taking into

account that mn → ∞ and by Lemma 4.1. Moreover, we have∫ mn

0

1

w(t)
dt =

∫ mn

0

f (t)

F̄ (t)
dt

= −
∫ mn

0

d

dt
log F̄ (t)dt =− log F̄ (mn) + log F̄ (0) = log n + log F̄ (0);

then hn ∼ μ log n if and only if hn ∼ μ
∫ mn

0
1

w(t)
dt , which amounts to

lim
n→∞

μ

hn

∫ mn

0

1

w(t)
dt = 1. (15)

So we prove the lemma showing that (15) holds. We take η > 0 and we write

μ

hn

∫ mn

0

1

w(t)
dt = μ

hn

∫ ηmn

0

1

w(t)
dt︸ ︷︷ ︸

=:I (1)
n (η)

+ μ

hn

∫ mn

ηmn

1

w(t)
dt︸ ︷︷ ︸

=:I (2)
n (η)

.

Now we estimate I
(1)
n (η) and I

(2)
n (η) separately.

• We have (make the change of variable r = F̄ (t))

I (1)
n (η) = μ

hn

∫ ηmn

0

f (t)

F̄ (t)
dt

= μ

hn

∫ F̄ (0)

F̄ (ηmn)

dr

r
= μ

hn

(log F̄ (0) − log F̄ (ηmn)),

where F̄ (0), F̄ (ηmn) < 1 because ωF = ∞. Thus

0 ≤ lim inf
n→∞ I (1)

n (η) ≤ lim sup
n→∞

I (1)
n (η) ≤ ημμ�,

because μ
hn

log F̄ (0) → 0 (since hn → ∞), − μ
hn

log F̄ (ηmn) ≥ 0,

− μ

hn

log F̄ (ηmn) = − μ

m
μ
n /L(mn)

log F̄ (ηmn)

= −μημ L(mn)

(ηmn)μ
log F̄ (ηmn) = μημ L(mn)

L(ηmn)

(
−L(ηmn) log F̄ (ηmn)

(ηmn)μ

)
,

and by taking into account that mn → ∞, L is a slowly varying function, and
Lemma 4.2.
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• We have (make the change of variable u = t
mn

)

I (2)
n (η) = μ

m
μ
n /L(mn)

∫ mn

ηmn

1

t1−μL(t)
dt

= μL(mn)

m
μ
n

∫ 1

η

mndu

(mnu)1−μL(mnu)
=

∫ 1

η

L(mn)

L(mnu)
μuμ−1du,

and, since L(mn)
L(mnu)

→ 1 uniformly on compact subsets of (0,∞) (with respect
to u) by Theorem 1.2.1 in [3] (here we again take into account that mn → ∞),
for all ρ > 0 there exists n0 = n0(η, ρ) such that for all n > n0

1 − ρ <
L(mn)

L(mnu)
< 1 + ρ for all u ∈ [η, 1],

and therefore

(1 − ρ)(1 − ημ) < I (2)
n (η) < (1 + ρ)(1 − ημ).

Finally we combine the estimates for I
(1)
n (η) and I

(2)
n (η), and we get (15) by the

arbitrariness of η > 0 and ρ > 0. This completes the proof.

Throughout this section we set

Cn := Mn

mn

−1 for all n ≥ n0, for some n0, where Mn := max{X1, . . . , Xn}; (16)

we have to consider n0 large enough in order to have a well-defined mn for n ≥ n0.

Assertion 4.1. We can recover the asymptotic regimes R1 and R2 in Assertion 1.2 as
follows.

R1: {Cn : n ≥ n0} converges in probability to zero (actually the authors have
checked the almost sure convergence with an argument based on Theorem 4.4.4 in
[9], p. 268). Moreover, as an immediate consequence of Proposition 3.1 in [11],
{Cn +1 : n ≥ n0} satisfies the LDP with speed vn = μ log n (or equivalently vn = hn

by Lemma 4.4) and rate function J defined by

J (y) :=
{

yμ−1
μ

if y ≥ 1,

∞ otherwise.

Then, since we deal with a sequence of shifted random variables, we deduce that
{Cn : n ≥ 2} satisfies the LDP with speed vn = hn and rate function ILD defined by

ILD(x) := J (x + 1) =
{

(x+1)μ−1
μ

if x ≥ 0,

∞ otherwise.

R2: vnCn = hn

(
Mn

mn
− 1

)
converges weakly to the Gumbel distribution by a

well-known result by von Mises (see, e.g., Theorem 8.13.7 in [3]).
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Thus we are studying a sequence of random variables that has interest for any
possible concrete model related to the maximum domain of attraction of the Gumbel
distribution. A possible example is when the random variables {Xn : n ≥ 1} represent
monthly and annual maximum values of daily rainfall and river discharge volumes.

Now we prove the moderate deviation result. We shall see that, for this example,
the rate functions ILD and IMD coincide when μ = 1.

Proposition 4.1. For every family of positive numbers {an : n ≥ 1} such that (1)
holds (i.e. an → 0 and anhn → ∞), the sequence of random variables {anhn(

Mn

mn
−

1) : n ≥ 1} satisfies the LDP with speed 1/an and rate function IMD defined by

IMD(x) :=
{

x if x ∈ [0,∞),

∞ otherwise.

Proof. We apply Lemma 2.1 for every choice of {an : n ≥ 1} such that (1) holds,
with sn = 1/an, I = IMD and {Cn : n ≥ n0} as in (16).

Proof of (6). We have to show that, for every x > 0,

lim sup
n→∞

an log P

(
anhn

(
Mn

mn

− 1

)
≥ x

)
≤ −x.

For m′
n := ( x

anhn
+ 1)mn we get

P

(
anhn

(
Mn

mn

− 1

)
≥ x

)
= P

(
Mn ≥ m′

n

)
= 1 − P

(
Mn < m′

n

) = 1 − Fn
(
m′

n

) = 1 − (
1 − F̄

(
m′

n

))n
= 1 − exp

(
n log

(
1 − F̄

(
m′

n

))) ≤ −n log
(
1 − F̄

(
m′

n

))
.

Thus

an log P

(
anhn

(
Mn

mn

− 1

)
≥ x

)
≤ an log

(−n log
(
1 − F̄

(
m′

n

)))
= an log n + an log

(
log

(
1 − F̄

(
m′

n

))
−F̄

(
m′

n

)
)

+ an log F̄
(
m′

n

)
and, noting that

lim
n→∞ an log

(
log

(
1 − F̄

(
m′

n

))
−F̄

(
m′

n

)
)

= 0,

because m′
n → ∞ (since mn → ∞), we obtain

lim sup
n→∞

an log P

(
anhn

(
Mn

mn

− 1

)
≥ x

)
≤ lim sup

n→∞
an

(
log n + log F̄

(
m′

n

))
.

Now we apply the Lagrange theorem (also known as the mean value theorem) to the
function g(z) = log F̄ (z); so there exists ξn ∈ (

mn,m
′
n

)
such that

log F̄
(
m′

n

) = log F̄ (mn) − f (ξn)

F̄ (ξn)

(
m′

n − mn

)
.
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Then, by the definitions of mn, w and hn, we get

log F̄
(
m′

n

) = − log n − mnx

w(ξn)anhn

= − log n − x

w(ξn)annf (mn)

= − log n − w(mn)x

w(ξn)annF̄ (mn)
= − log n − w(mn)x

w(ξn)an

,

and therefore

an

(
log n + log F̄

(
m′

n

)) = −xw(mn)

w(ξn)
.

So we get

lim sup
n→∞

an log P

(
anhn

(
Mn

mn

− 1

)
≥ x

)
≤ lim sup

n→∞
an

(
log n + log F̄

(
m′

n

)) ≤ −x

by Lemma 4.3 with xn = mn and yn = ξn (indeed ξn ∼ mn because

1 ≤ ξn

mn

≤ 1 + x

anhn

by construction, and 1 + x
anhn

→ 1). Thus (6) holds.

Proof of (7). We have to show that, for every x < 0,

lim sup
n→∞

an log P

(
anhn

(
Mn

mn

− 1

)
≤ x

)
≤ −∞.

For m′
n := ( x

anhn
+ 1)mn we get

P

(
anhn

(
Mn

mn

− 1

)
≤ x

)
= P

(
Mn ≤ m′

n

) = Fn
(
m′

n

) = (
1 − F̄

(
m′

n

))n
.

Thus

an log P

(
anhn

(
Mn

mn

− 1

)
≥ x

)
≤ ann log

(
1 − F̄

(
m′

n

)) ∼ −annF̄
(
m′

n

)
= − exp

(
log

(
annF̄

(
m′

n

))) = − exp
(
log an + log n + log F̄

(
m′

n

))
= − exp

(
log an + an

(
log n + log F̄

(
m′

n

))
an

)
.

Now we can repeat the computations above in the proof of (6) with some slight
changes (we mean the part with the application of the Lagrange theorem; the details
are omitted), and we find

lim
n→∞ an

(
log n + log F̄

(
m′

n

)) = −x > 0,

and therefore

lim
n→∞ − exp

(
log an + an

(
log n + log F̄

(
m′

n

))
an

)
= −∞.

Thus (7) holds.
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Proof of (8). We want to show that, for every x ≥ 0 and for every open set O such
that x ∈ O, we have

lim inf
n→∞ an log P

(
anhn

(
Mn

mn

− 1

)
∈ O

)
≥ −x.

The case x = 0 is immediate; indeed, since anhn

(
Mn

mn
− 1

)
converges in probability

to zero by the Slutsky theorem (by an → 0 and the weak convergence in R2 in
Assertion 4.1), we have trivially 0 ≥ 0. So, from now on, we suppose that x > 0 and
we take δ > 0 small enough to have

(x − δ, x + δ] ⊂ O ∩ (0,∞).

Then, for m
(±)
n :=

(
1 + x±δ

anhn

)
mn, we get

P

(
anhn

(
Mn

mn

− 1

)
∈ O

)
≥ P

(
x − δ < anhn

(
Mn

mn

− 1

)
≤ x + δ

)
= P

(
m(−)

n < Mn ≤ m(+)
n

)
= Fn

(
m(+)

n

)
− Fn

(
m(−)

n

)
=

(
1 − F̄

(
m(+)

n

))n −
(

1 − F̄
(
m(−)

n

))n

.

Now we apply the Lagrange theorem to the function g(z) = (1 − F̄ (z))n; so there

exists ξn ∈
(
m

(−)
n ,m

(+)
n

)
such that

(
1 − F̄

(
m(+)

n

))n −
(

1 − F̄
(
m(−)

n

))n

= n
(
1 − F̄ (ξn)

)n−1
f (ξn)

(
m(+)

n − m(−)
n

)
︸ ︷︷ ︸

= 2δmn
anhn

.

Then, by the definition of hn, we obtain

an log P

(
anhn

(
Mn

mn

− 1

)
∈ O

)

≥ an

(
log n + (n − 1) log

(
1 − F̄ (ξn)

) + log f (ξn) + log
2δmn

anhn

)
= an

(
(n − 1) log

(
1 − F̄ (ξn)

) + log f (ξn) + log(2δ) − log an − log f (mn)
)

and therefore, by the definition of the function w,

lim inf
n→∞ an log P

(
anhn

(
Mn

mn

− 1

)
∈ O

)

≥ lim inf
n→∞ an

(
(n − 1) log

(
1 − F̄ (ξn)

) + log
f (ξn)

f (mn)

)

= lim inf
n→∞ an

(
(n − 1) log

(
1 − F̄ (ξn)

) + log
w(mn)F̄ (ξn)

F̄ (mn)w(ξn)

)



128 R. Giuliano, C. Macci

= lim inf
n→∞ an

(
(n − 1) log(1 − F̄ (ξn)) + log

w(mn)

w(ξn)
+ log

F̄ (ξn)

F̄ (mn)

)
.

Then we get (8) if we show the relations

limn→∞ an log w(mn)
w(ξn)

= 0, lim infn→∞ an log F̄ (ξn)

F̄ (mn)
≥ −(x + δ),

limn→∞ an(n − 1) log(1 − F̄ (ξn)) = 0,
(17)

and by letting δ go to zero. The first limit in (17) holds by Lemma 4.3 with xn = mn

and yn = ξn (indeed ξn ∼ mn because

1 + x − δ

anhn

≤ ξn

mn

≤ 1 + x + δ

anhn

by construction and 1 + x±δ
anhn

→ 1). The inequality in (17) holds since

an log
F̄ (ξn)

F̄ (mn)
≥ an log

F̄ (m
(+)
n )

F̄ (mn)
,

by a new application of the Lagrange theorem to the function g(z) = − log F̄ (z), and
by applying again Lemma 4.3 (we omit the details to avoid repetitions). Finally we
prove the last limit in (17) if we show that

lim
n→∞ annF̄ (m(±)

n ) = 0;

in fact

an(n − 1) log(1 − F̄ (ξn)) ∼ −annF̄ (ξn)

and

annF̄ (m(+)
n ) ≤ annF̄ (ξn) ≤ annF̄ (m(−)

n ).

We have

annF̄ (m(±)
n ) = an

F̄ (m
(±)
n )

F̄ (mn)
= exp

(
an(log F̄ (m

(±)
n ) − log F̄ (mn))

an

+ log an

)
;

moreover,

lim
n→∞ an(log F̄ (m(±)

n ) − log F̄ (mn)) = −(x ± δ) < 0

(this follows once more from an application of the Lagrange theorem to the function
g(z) = − log F̄ (z), and by applying again Lemma 4.3; the details are omitted). Thus

lim
n→∞

an(log F̄ (m
(±)
n ) − log F̄ (mn))

an

+ log an = −∞,

which yields the desired last limit in (17).



Some examples of noncentral moderate deviations 129

5 An example inspired by the classical occupancy problem

In this section we consider the following example.

Example 5.1. Let {Tn : n ≥ 1} be a family of random variables such that

Tn :=
n∑

k=1

Xn,k,

where {Xn,k : n ≥ 1, 1 ≤ k ≤ n} is a triangular array of random variables (i.e.
{Xn,k : 1 ≤ k ≤ n} are independent random variables for each fixed n), and each
random variable Xn,k is geometric with parameter pn,k := 1 − k−1

n
, i.e.

P(Xn,k = h) = (1 − pn,k)
h−1pn,k for all h ≥ 1.

It is well known that the random variable Tn can be seen as the number of balls
required to fill n boxes with at least one ball when one puts balls in n boxes at random,
and each ball is independently assigned to any fixed box with probability 1

n
; this is

known in the literature as the classical occupancy problem. From a different point
of view Tn can also be related to the coupon collector’s problem: a coupon collector
chooses at random and independently among n coupon types, and Tn represents the
number of coupons required to collect all the n coupon types. Throughout this section
we set

Cn := Tn

n log n
− 1 for all n ≥ 2. (18)

Assertion 5.1. We can recover the asymptotic regimes R1 and R2 in Assertion 1.2 as
follows.

R1: {Cn : n ≥ 2} converges in probability to zero (see Example 2.2.7 in [7]
presented for the coupon collector’s problem). Moreover, by Proposition 2.1 in [10],
{Cn + 1 : n ≥ 2} satisfies the LDP with speed vn = log n and rate function J defined
by

J (y) :=
{

y − 1 if y ≥ 1,

∞ otherwise.

Then, since we deal with a sequence of shifted random variables, we deduce that
{Cn : n ≥ 2} satisfies the LDP with speed vn = log n and rate function ILD defined
by

ILD(x) := J (x + 1) =
{

x if x ≥ 0,

∞ otherwise.

R2: vnCn = log n
(

Tn

n log n
− 1

)
converges weakly to the Gumbel distribution (see,

e.g., Example 3.6.11 in [7]).

Now we prove the moderate deviation result. We shall see that, for this example,
the rate functions ILD and IMD coincide. Several parts of the proof of the next Propo-
sition 5.1 have some analogies with the one presented for Proposition 2.1 in [10]; so
we shall omit some details to avoid repetitions.
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Proposition 5.1. For every family of positive numbers {an : n ≥ 1} such that (1)
holds (i.e. an → 0 and an log n → ∞), the sequence of random variables
{an log n( Tn

n log n
− 1) : n ≥ 1} satisfies the LDP with speed 1/an and rate function

IMD defined by

IMD(x) :=
{

x if x ∈ [0,∞),

∞ otherwise.

Proof. We apply Lemma 2.1 for every choice of {an : n ≥ 1} such that (1) holds,
with sn = 1/an, I = IMD and {Cn : n ≥ 2} as in (18).

Proof of (6). We have to show that, for every x > 0,

lim sup
n→∞

an log P

(
an log n

(
Tn

n log n
− 1

)
≥ x

)
≤ −x.

For every δ ∈ (0, x) we have (here the last inequality holds by a well-known estimate;
see, e.g., Exercise 3.10 in [17], page 58)

P

(
an log n

(
Tn

n log n
− 1

)
≥ x

)
= P

(
Tn ≥

(
x

an log n
+ 1

)
n log n

)

≤ P

(
Tn >

(
x − δ

an log n
+ 1

)
n log n

)
≤ n

1−( x−δ
an log n

+1) = n
− x−δ

an log n .

Thus

lim sup
n→∞

an log P

(
an log n

(
Tn

n log n
− 1

)
≥ x

)
≤ lim sup

n→∞
an log n

− x−δ
an log n = −x + δ,

and we obtain (6) by letting δ go to zero.

Proof of (7). We have to show that, for every x < 0,

lim sup
n→∞

an log P

(
an log n

(
Tn

n log n
− 1

)
≤ x

)
≤ −∞.

We have x
an log n

+ 1 ∈ (0, 1) eventually, and therefore (here the last inequality holds
by a well-known estimate; for instance, it is a consequence of Theorem 5.10 and
Corollary 5.11 in [16])

P

(
an log n

(
Tn

n log n
− 1

)
≤ x

)
= P

(
Tn ≤

(
x

an log n
+ 1

)
n log n

)

≤ 2

⎛
⎝1 − exp

⎛
⎝−

(
x

an log n
+ 1

)
n log n

n

⎞
⎠
⎞
⎠

n

= 2

(
1 − n

−
(

x
an log n

+1
))n

.

Thus

lim sup
n→∞

an log P

(
an log n

(
Tn

n log n
− 1

)
≤ x

)
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≤ lim sup
n→∞

an log

(
2

(
1 − n

−
(

x
an log n

+1
))n)

= lim sup
n→∞

ann log

(
1 − n

−
(

x
an log n

+1
))

= lim sup
n→∞

−annn
−
(

x
an log n

+1
)

= lim sup
n→∞

−ann
− x

an log n = lim sup
n→∞

−ane
− x

an = −∞,

and therefore (7) holds.

Proof of (8). We want to show that, for every x ≥ 0 and for every open set O such
that x ∈ O, we have

lim inf
n→∞ an log P

(
an log n

(
Tn

n log n
− 1

)
∈ O

)
≥ −x.

The case x = 0 is immediate; indeed, since an log n
(

Tn

n log n
− 1

)
converges in prob-

ability to zero by the Slutsky theorem (by an → 0 and the weak convergence in R2
in Assertion 5.1), we have trivially 0 ≥ 0. So, from now on, we suppose that x > 0
and we take δ > 0 small enough to have

(x − δ, x + δ] ⊂ O ∩ (0,∞).

Moreover, we also introduce the notation FTn(·) = P(Tn ≤ ·) for the distribution
function of Tn. Then

P

(
an log n

(
Tn

n log n
− 1

)
∈ O

)

≥ P

(
x − δ < an log n

(
Tn

n log n
− 1

)
≤ x + δ

)

= P

((
1 + x − δ

an log n

)
n log n < Tn ≤

(
1 + x + δ

an log n

)
n log n

)

≥ FTn

([(
1 + x + δ

an log n

)
n log n

])
− FTn

([(
1 + x − δ

an log n

)
n log n

]
+ 1

)
.

Thus, by adapting some computations in the proof of Proposition 2.1 in [10], we have

FTn

([(
1 + x + δ

an log n

)
n log n

])
− FTn

([(
1 + x − δ

an log n

)
n log n

]
+ 1

)

≥ An − (A(+)
n + A(−)

n ) = An

(
1 − A

(+)
n + A

(−)
n

An

)

where An, A
(+)
n , A

(−)
n are the following nonnegative quantities:

An :=
(

1 − e
− 1

n
[(1+ x+δ

an log n
)n log n])n

−
(

1 − e
− 1

n
([(1+ x−δ

an log n
)n log n]+1)

)n

, (19)

A(+)
n :=

∑
even k

(
n

k

)
e
− k

n
[(1+ x+δ

an log n
)n log n]

(
1 −

(
1 − k

n

) k
n
[(1+ x+δ

an log n
)n log n])
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and

A(−)
n :=

∑
odd k

(
n

k

)
e
− k

n
([(1+ x−δ

an log n
)n log n]+1)

(
1 −

(
1 − k

n

) k
n
([(1+ x−δ

an log n
)n log n]+1)

)
.

Thus, we can say that

an log P

(
an log n

(
Tn

n log n
− 1

)
∈ O

)
≥ an log An + an log

(
1 − A

(+)
n + A

(−)
n

An

)
,

and therefore

lim inf
n→∞ an log P

(
an log n

(
Tn

n log n
− 1

)
∈ O

)

≥ lim inf
n→∞ an log An + lim inf

n→∞ an log

(
1 − A

(+)
n + A

(−)
n

An

)
.

We conclude the proof of (8) (and therefore the proof of the proposition) if we
show that

lim inf
n→∞ an log An ≥ −(x + δ) (20)

and

lim
n→∞

A
(+)
n

An

= 0, lim
n→∞

A
(−)
n

An

= 0; (21)

in fact we obtain (8) by letting δ go to zero.

Proof of (20). Concerning An in (19) we apply the Lagrange theorem to the function
g(z) = (1 − e−z)n; so there exists

ξn ∈
(

([(1 + x−δ
an log n

)n log n] + 1)

n
,
[(1 + x+δ

an log n
)n log n]

n

)

such that

An = n(1 − e−ξn)n−1e−ξn

×
( [(1 + x+δ

an log n
)n log n]

n
−

([(1 + x−δ
an log n

)n log n] + 1)

n

)
.

Moreover,

(1 − e−ξn)n−1e−ξn ≥
(

1 − e− ([(1+ x−δ
an log n

)n log n]+1)

n

)n−1

e− [(1+ x+δ
an log n

)n log n]
n

≥
(

1 − e
−(1+ x−δ

an log n
) log n

)n−1
e
−(1+ x+δ

an log n
) log n =

(
1 − e

− x−δ
an

n

)n−1
e
− x+δ

an

n



Some examples of noncentral moderate deviations 133

and

[(1 + x+δ
an log n

)n log n]
n

−
([(1 + x−δ

an log n
)n log n] + 1)

n

=
[(1 + x+δ

an log n
)n log n] − 1 − [(1 + x−δ

an log n
)n log n]

n

≥
(1 + x+δ

an log n
)n log n − 1 − 1 − (1 + x−δ

an log n
)n log n

n
= −2

n
+ 2δ

an

.

Then

an log An ≥ an log

⎛
⎝(

1 − e
− x−δ

an

n

)n−1

e
− x+δ

an

(
−2

n
+ 2δ

an

)⎞
⎠

= an(n − 1) log

(
1 − e

− x−δ
an

n

)
− (x + δ) + an log

(
−2

n
+ 2δ

an

)
,

whence we obtain (20) from

lim
n→∞ an log

(
−2

n
+ 2δ

an

)
= 0

and

an(n − 1) log

(
1 − e

− x−δ
an

n

)
∼ −an(n − 1)

e
− x−δ

an

n
∼ −ane

− x−δ
an → 0.

Proof of (21). We remark that

lim
n→∞

(
1 − e

− 1
n
[(1+ x+δ

an log n
)n log n])n

= 1

and
lim

n→∞
(

1 − e
− 1

n
([(1+ x−δ

an log n
)n log n]+1)

)n

= 1,

because

1 = lim inf
n→∞

(
1 − e

− x+δ
an

+ 1
n

n

)n

≤ lim inf
n→∞

(
1 − e

− 1
n
[(1+ x+δ

an log n
)n log n])n

≤ lim sup
n→∞

(
1 − e

− 1
n
[(1+ x+δ

an log n
)n log n])n

≤ lim sup
n→∞

(
1 − e

− x+δ
an

n

)n

= 1,

and the second limit can be proved with a similar argument. Therefore

An =
(

1 − e
− 1

n
[(1+ x+δ

an log n
)n log n])n

−
(

1 − e
− 1

n
([(1+ x−δ

an log n
)n log n]+1)

)n

→ 1 − 1 = 0.
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Moreover,

An =
(

1 − e
− 1

n
([(1+ x−δ

an log n
)n log n]+1)

)n

×
⎛
⎜⎝

(
1 − e

− 1
n
[(1+ x+δ

an log n
)n log n])n

(
1 − e

− 1
n
([(1+ x−δ

an log n
)n log n]+1)

)n − 1

⎞
⎟⎠

∼
(

1 − e
− 1

n
[(1+ x+δ

an log n
)n log n])n

(
1 − e

− 1
n
([(1+ x−δ

an log n
)n log n]+1)

)n − 1

= exp

⎛
⎝n log

⎛
⎝ 1 − e

− 1
n
[(1+ x+δ

an log n
)n log n]

1 − e
− 1

n
([(1+ x−δ

an log n
)n log n]+1)

⎞
⎠
⎞
⎠ − 1,

where

lim
n→∞ n log

⎛
⎝ 1 − e

− 1
n
[(1+ x+δ

an log n
)n log n]

1 − e
− 1

n
([(1+ x−δ

an log n
)n log n]+1)

⎞
⎠ = 0. (22)

Here we note that the limit (22) can be checked with some tedious computations:

n log

⎛
⎝ 1 − e

− 1
n
[(1+ x+δ

an log n
)n log n]

1 − e
− 1

n
([(1+ x−δ

an log n
)n log n]+1)

⎞
⎠

= n log

⎛
⎝1 + e

− 1
n
([(1+ x−δ

an log n
)n log n]+1) − e

− 1
n
[(1+ x+δ

an log n
)n log n]

1 − e
− 1

n
([(1+ x−δ

an log n
)n log n]+1)

⎞
⎠

where
lim

n→∞ e
− 1

n
([(1+ x−δ

an log n
)n log n]+1) = 0

and
lim

n→∞ e
− 1

n
[(1+ x+δ

an log n
)n log n] = 0,

and therefore

n log

⎛
⎝ 1 − e

− 1
n
[(1+ x+δ

an log n
)n log n]

1 − e
− 1

n
([(1+ x−δ

an log n
)n log n]+1)

⎞
⎠

∼ n
(
e
− 1

n
([(1+ x−δ

an log n
)n log n]+1) − e

− 1
n
[(1+ x+δ

an log n
)n log n])

= e
log n− 1

n
([(1+ x−δ

an log n
)n log n]+1)

×
(

1 − e
− 1

n
[(1+ x+δ

an log n
)n log n]+ 1

n
([(1+ x−δ

an log n
)n log n]+1)

)
.

Moreover,

lim
n→∞ e

log n− 1
n
([(1+ x−δ

an log n
)n log n]+1) = 0
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and
lim

n→∞ e
− 1

n
[(1+ x+δ

an log n
)n log n]+ 1

n
([(1+ x−δ

an log n
)n log n]+1) = 0,

whence we obtain (22). Now, coming back to An, by (22) we can say that

An ∼ n log

⎛
⎝ 1 − e

− 1
n
[(1+ x+δ

an log n
)n log n]

1 − e
− 1

n
([(1+ x−δ

an log n
)n log n]+1)

⎞
⎠ ;

moreover, by using some manipulations as above for

1 − e
− 1

n
[(1+ x+δ

an log n
)n log n]

1 − e
− 1

n
([(1+ x−δ

an log n
)n log n]+1)

,

we get

An ∼ n
(
e
− 1

n
([(1+ x−δ

an log n
)n log n]+1) − e

− 1
n
[(1+ x+δ

an log n
)n log n])

= ne
− 1

n
[(1+ x+δ

an log n
)n log n] (

e
− 1

n
([(1+ x−δ

an log n
)n log n]+1−[(1+ x+δ

an log n
)n log n]) − 1

)
.

Then

An ∼ ne
− 1

n
[(1+ x+δ

an log n
)n log n]

×
(
e
− 1

n
([(1+ x−δ

an log n
)n log n]+1−[(1+ x+δ

an log n
)n log n]) − 1

)
≥ ne

− 1
n
(1+ x+δ

an log n
)n log n

(
e
− 1

n
((1+ x−δ

an log n
)n log n+1−((1+ x+δ

an log n
)n log n−1)) − 1

)
= n

1

n
e
− x+δ

an

(
e
− 2

n
+ 2δ

an − 1
)

= e
− x+δ

an

(
e
− 2

n
+ 2δ

an − 1
)

=: Ãn.

Now, by using the same computations as in the proof of Proposition 2.1 in [10],
there exists a constant C > 0 such that

0 ≤ A(+)
n ≤ C

n

[(
1 + x + δ

an log n

)
n log n

]
× e

− 1
n
[(1+ x+δ

an log n
)n log n]

(1 + e
− 1

n
[(1+ x+δ

an log n
)n log n]

)n−2

and

0 ≤ A(−)
n ≤ C

n

([(
1 + x − δ

an log n

)
n log n

]
+ 1

)
× e

− 1
n
([(1+ x−δ

an log n
)n log n]+1)

(1 + e
− 1

n
([(1+ x−δ

an log n
)n log n]+1)

)n−2.

Then, by observing that ann = an log n n
log n

→ ∞,

lim
n→∞(1 + e

− 1
n
[(1+ x+δ

an log n
)n log n]

)n−2 = 1
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and
lim

n→∞(1 + e
− 1

n
([(1+ x−δ

an log n
)n log n]+1)

)n−2 = 1,

we get

0 ≤ lim sup
n→∞

A
(+)
n

An

≤ lim sup
n→∞

C(log n + x+δ
an

) 1
n
e
− x+δ

an

Ãn

= lim sup
n→∞

C(log n + x+δ
an

) 1
n

e
− 2

n
+ 2δ

an − 1
= 0

and

0 ≤ lim sup
n→∞

A
(−)
n

An

≤ lim sup
n→∞

C(log n + x−δ
an

+ 1
n
) 1
n
e
− x−δ

an

Ãn

= lim sup
n→∞

C(log n + x−δ
an

+ 1
n
) 1
n

e
− 2δ

an (e
− 2

n
+ 2δ

an − 1)
= 0.

Thus the limits in (21) are checked.

6 An example inspired by the replacement model in [5]

In this section we consider the following example.

Example 6.1. Let F and G be two continuous distribution functions on R such that
F(0) = G(0) = 0, and assume that they are strictly increasing on [0,∞). More-
over we assume that, for some t > 0, there exist F ′(t−) and G′(t+), i.e. the left
derivative of F(x) at x = t and the right derivative of G(x) at x = t , and that
F ′(t−),G′(t+) > 0. Then let {Zn : n ≥ 1} be a family of random variables defined
on the same probability space (�,F , P ) such that, for some t > 0 and β ∈ (0, 1),
their distribution functions are defined by

P(Zn ≤ x) :=
⎧⎨
⎩ β

(
F(x)
F (t)

)n

if x ∈ [0, t],
1 − (1 − β)

(
1−G(x)
1−G(t)

)n

if x ∈ (t,∞).

Note that, for every n ≥ 1, the distribution function P(Zn ≤ ·) is continuous.
Moreover, if β = F(t), after some easy computations one can check that

P(Z1 ≤ x) :=
{

F(x) if x ∈ [0, t],
F (t) + 1−F(t)

1−G(t)
(G(x) − G(t)) if x ∈ (t,∞).

Then Z1 is the random lifetime that appears in a replacement model recently studied
in the literature (see eq. (5) in [5]) where, at a fixed time t , an item with lifetime
distribution function F is replaced by another item having the same age and a lifetime
distribution function G.

In general, the distribution functions of the random variables {Zn : n ≥ 1} are
suitable modifications of the distribution function of Z1, P(Zn ≤ t) = β for every
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n, and the distribution of Zn becomes more and more concentrated around t as n

increases.
This example does not seem to have interesting applications to concrete models.

However it could give some interesting ideas for the construction of more advanced
examples based on other replacement models (see, e.g., the replacement model in
[6]). The study of some possible new examples could be the subject of a future work.

Throughout this section we set

Cn := Zn − t for all n ≥ 1. (23)

Assertion 6.1. We can recover the asymptotic regimes R1 and R2 in Assertion 1.2 as
follows.

R1: {Cn : n ≥ 1} converges in probability to zero because {Zn : n ≥ 1} converges
in probability to t; in fact, we have

lim
n→∞ P(Zn ≤ x) =

⎧⎨
⎩

0 if x ∈ [0, t),

β if x = t,

1 if x ∈ (t,∞).

Moreover, {Cn : n ≥ 1} satisfies a suitable LDP with speed vn = n, that will be
presented in Proposition 6.1 below.

R2: vnCn = n(Zn − t) converges weakly to a suitable asymmetric Laplace dis-
tribution with distribution function H (see below). In fact, we have

P(n(Zn − t) ≤ x) = P
(
Zn ≤ t + x

n

)

=
⎧⎨
⎩ β

(
F(t+ x

n
)

F (t)

)n

if x ≤ 0,

1 − (1 − β)
(

1−G(t+ x
n
)

1−G(t)

)n

if x > 0,

=

⎧⎪⎪⎨
⎪⎪⎩

β
(

F(t)+F ′(t−) x
n
+o(1/n)

F (t)

)n

if x < 0,

β if x = 0,

1 − (1 − β)
(

1−G(t)−G′(t+) x
n
+o(1/n)

1−G(t)

)n

if x > 0,

=

⎧⎪⎪⎨
⎪⎪⎩

β
(

1 + F ′(t−)
F (t)

x
n

+ o(1/n)
)n

if x < 0,

β if x = 0,

1 − (1 − β)
(

1 − G′(t+)
1−G(t)

x
n

+ o(1/n)
)n

if x > 0,

and therefore

lim
n→∞ P(n(Zn − t) ≤ x) = H(x) for every x ∈ R,

where H is defined by

H(x) :=
⎧⎨
⎩ β exp

(
F ′(t−)
F (t)

x
)

if x ≤ 0,

1 − (1 − β) exp
(
− G′(t+)

1−G(t)
x
)

if x > 0.
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So we have: an exponential distribution with mean 1−G(t)
G′(t+)

on (0,∞) with weight

1 − β; an exponential distribution with mean F(t)
F ′(t−)

on (−∞, 0) with weight β.

Now we prove the LDP concerning the convergence to zero in R1 of Asser-
tion 6.1.

Proposition 6.1. Let {Cn : n ≥ 1} be the sequence defined by (23). Then {Cn : n ≥ 1}
satisfies the LDP with speed n and rate function ILD defined by

ILD(x) :=

⎧⎪⎨
⎪⎩

∞ if y ∈ (−∞,−t],
− log F(x+t)

F (t)
if x ∈ (−t, 0],

− log 1−G(x+t)
1−G(t)

if x ∈ (0,∞).

Proof. We apply Lemma 2.1 with sn = n, I = ILD and {Cn : n ≥ 1} as in (23).

Proof of (6). For every x > 0 we have

lim sup
n→∞

1

n
log P(Cn ≥ x) = lim sup

n→∞
1

n
log(1 − P(Zn < x + t))

= lim sup
n→∞

1

n
log

(
(1 − β)

(
1 − G(x + t)

1 − G(t)

)n)

= log

(
1 − G(x + t)

1 − G(t)

)
= −ILD(x).

Proof of (7). For every x < 0 we have (when x ≤ −t we use the convention log 0 =
−∞)

lim sup
n→∞

1

n
log P(Cn ≤ x) = lim sup

n→∞
1

n
log P(Zn ≤ x + t)

= lim sup
n→∞

1

n
log

(
β

(
F(x + t)

F (t)

)n)
= log

(
F(x + t)

F (t)

)
= −ILD(x).

Proof of (8). We want to show that, for every x > −t and for every open set O such
that x ∈ O, we have

lim inf
n→∞

1

n
log P(Cn ∈ O) ≥

{
log F(x+t)

F (t)
if x ∈ (−t, 0],

log 1−G(x+t)
1−G(t)

if x ∈ (0,∞).

The case x = 0 is immediate; indeed, since Cn converges in probability to zero, we
have trivially 0 ≥ 0. So, from now on, we suppose that x > −t with x �= 0 and we
have two cases: x ∈ (−t, 0) and x ∈ (0,∞).

If x ∈ (−t, 0) we take δ > 0 small enough to have

(x − δ, x + δ) ⊂ O ∩ (−t, 0).

Then

P(Cn ∈ O) ≥ P(Cn ∈ (x − δ, x + δ))
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= P(Zn < x + δ + t) − P(Zn ≤ x − δ + t)

= β

((
F(x + δ + t)

F (t)

)n

−
(

F(x − δ + t)

F (t)

)n)

= β

F(t)
(F (x + δ + t) − F(x − δ + t))︸ ︷︷ ︸

>0

×
n−1∑
k=0

(
F(x + δ + t)

F (t)

)k (
F(x − δ + t)

F (t)

)n−1−k

︸ ︷︷ ︸
≥
(

F(x+δ+t)
F (t)

)n−1
>0

,

and therefore

lim inf
n→∞

1

n
log P(Cn ∈ O) ≥ log

(
F(x + δ + t)

F (t)

)
.

Then we get (8) for x ∈ (−t, 0) by letting δ go to zero (by the continuity of F ).
If x ∈ (0,∞) we take δ > 0 small enough to have

(x − δ, x + δ) ⊂ O ∩ (0,∞).

Then

P(Cn ∈ O) ≥ P(Cn ∈ (x − δ, x + δ))

= P(Zn < x + δ + t) − P(Zn ≤ x − δ + t)

= 1 − (1 − β)

(
1 − G(x + δ + t)

1 − G(t)

)n

−
(

1 − (1 − β)

(
1 − G(x − δ + t)

1 − G(t)

)n)

= (1 − β)

((
1 − G(x − δ + t)

1 − G(t)

)n

−
(

1 − G(x + δ + t)

1 − G(t)

)n)

= 1 − β

1 − G(t)
(G(x + δ + t) − G(x − δ + t))︸ ︷︷ ︸

>0

×
n−1∑
k=0

(
1 − G(x − δ + t)

1 − G(t)

)k (1 − G(x + δ + t)

1 − G(t)

)n−1−k

︸ ︷︷ ︸
≥
(

1−G(x−δ+t)
1−G(t)

)n−1
>0

and therefore

lim inf
n→∞

1

n
log P(Cn ∈ O) ≥ log

(
1 − G(x − δ + t)

1 − G(t)

)
.

Then we get (8) for x ∈ (0,∞) by letting δ go to zero (by the continuity of G).
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Now we prove the moderate deviation result. We shall see that, for this example,
the family of positive numbers {an : n ≥ 1} such that (1) holds (i.e. an → 0 and
ann → ∞) has to verify also the stricter condition

an log n → 0. (24)

Obviously (24) yields an → 0.

Proposition 6.2. For every family of positive numbers {an : n ≥ 1} such that (1)
and (24) hold (i.e. an log n → 0 and ann → ∞), the sequence of random variables
{ann(Zn − t) : n ≥ 1} satisfies the LDP with speed 1/an and rate function IMD
defined by

IMD(x) :=
{

−F ′(t−)
F (t)

x if x ≤ 0,
G′(t+)
1−G(t)

x if x > 0.

Proof. We apply Lemma 2.1 for every choice of {an : n ≥ 1} such that (1) and (24)
hold, with sn = 1/an, I = IMD and {Cn : n ≥ 1} as in (23).

Proof of (6). For every x > 0 we have

lim sup
n→∞

an log P(ann(Zn − t) ≥ x)

= lim sup
n→∞

an log

(
1 − P

(
Zn < t + x

ann

))

= lim sup
n→∞

an log

⎛
⎜⎝(1 − β)

⎛
⎝1 − G

(
t + x

ann

)
1 − G(t)

⎞
⎠

n
⎞
⎟⎠

= lim sup
n→∞

ann log

⎛
⎝1 − G

(
t + x

ann

)
1 − G(t)

⎞
⎠

= lim sup
n→∞

ann log

(
1 − G(t) − G′(t+) x

ann
+ o( 1

ann
)

1 − G(t)

)

= lim sup
n→∞

ann log

(
1 − G′(t+)

1 − G(t)

x

ann
+ o

(
1

ann

))

= − G′(t+)

1 − G(t)
x = −IMD(x).

Proof of (7). For every x < 0 we have (note that t + x
ann

> 0 for n large enough)

lim sup
n→∞

an log P(ann(Zn − t) ≤ x)

= lim sup
n→∞

an log P

(
Zn ≤ t + x

ann

)
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= lim sup
n→∞

an log

⎛
⎜⎝β

⎛
⎝F

(
t + x

ann

)
F(t)

⎞
⎠

n
⎞
⎟⎠ = lim sup

n→∞
ann log

⎛
⎝F

(
t + x

ann

)
F(t)

⎞
⎠

= lim sup
n→∞

ann log

(
F(t) + F ′(t−) x

ann
+ o(1/(ann))

F (t)

)

= lim sup
n→∞

ann log

(
1 + F ′(t−)

F (t)

x

ann
+ o

(
1

ann

))

= F ′(t−)

F (t)
x = −IMD(x).

Proof of (8). We show that, for every x ∈ R and for every open set O such that
x ∈ O, we have

lim inf
n→∞ an log P(ann(Zn − t) ∈ O) ≥

{
F ′(t−)
F (t)

x if x ≤ 0,

− G′(t+)
1−G(t)

x if x > 0.

The case x = 0 is immediate; indeed, since ann(Zn − t) converges in probability
to zero by the Slutsky theorem (by an → 0 and the weak convergence in R2 in
Assertion 6.1), we have trivially 0 ≥ 0. So, from now on, we suppose that x �= 0 and
we have two cases: x ∈ (−∞, 0) and x ∈ (0,∞).

If x ∈ (−∞, 0) we take δ > 0 small enough to have

(x − δ, x + δ) ⊂ O ∩ (−∞, 0).

Then (note that t + x±δ
ann

> 0 for n large enough)

P(ann(Zn − t) ∈ O) ≥ P(ann(Zn − t) ∈ (x − δ, x + δ))

= P

(
Zn < t + x + δ

ann

)
− P

(
Zn ≤ t + x − δ

ann

)

= β

(F (t))n

((
F

(
t + x + δ

ann

))n

−
(

F

(
t + x − δ

ann

))n)

= β

(F (t))n

(
F

(
t + x + δ

ann

)
− F

(
t + x − δ

ann

))
︸ ︷︷ ︸

=F ′(t−) 2δ
ann

+o
(

1
ann

)

×
n−1∑
k=0

(
F

(
t + x + δ

ann

))k (
F

(
t + x − δ

ann

))n−1−k

︸ ︷︷ ︸
≥
(
F
(
t+ x+δ

ann

))n−1

,

and therefore (in the final step we use the condition an log n → 0 in (24))
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lim inf
n→∞ an log P(ann(Zn − t) ∈ O)

≥ lim inf
n→∞ an log

⎧⎪⎨
⎪⎩
(

F ′(t−)
2δ

ann
+ o

(
1

ann

))⎛
⎝F

(
t + x+δ

ann

)
F(t)

⎞
⎠

n−1
⎫⎪⎬
⎪⎭

= lim inf
n→∞

⎧⎨
⎩an log

(
F ′(t−)

2δ

ann
+ o

(
1

ann

))
+ an(n − 1) log

⎛
⎝F

(
t + x+δ

ann

)
F(t)

⎞
⎠
⎫⎬
⎭

= lim inf
n→∞

{
−an log n + an(n − 1) log

(
F(t) + F ′(t−) x+δ

ann
+ o(1/(ann))

F (t)

)}

= lim inf
n→∞

{
−an log n + an(n − 1) log

(
1 + F ′(t−)

F (t)

x + δ

ann
+ o

(
1

ann

))}

= F ′(t−)

F (t)
(x + δ).

So we obtain (8) for x ∈ (−∞, 0) by letting δ go to zero.
If x ∈ (0,∞) we take δ > 0 small enough to have

(x − δ, x + δ) ⊂ O ∩ (0,∞).

Then

P(ann(Zn − t) ∈ O) ≥ P(ann(Zn − t) ∈ (x − δ, x + δ))

= P

(
Zn < t + x + δ

ann

)
− P

(
Zn ≤ t + x − δ

ann

)

= 1 − β

(1 − G(t))n

((
1 − G

(
t + x − δ

ann

))n

−
(

1 − G

(
t + x + δ

ann

))n)

= 1 − β

(1 − G(t))n

(
G

(
t + x + δ

ann

)
− G

(
t + x − δ

ann

))
︸ ︷︷ ︸

=G′(t+) 2δ
ann

+o
(

1
ann

)

×
n−1∑
k=0

(
1 − G

(
t + x − δ

ann

))k (
1 − G

(
t + x + δ

ann

))n−1−k

︸ ︷︷ ︸
≥
(

1−G
(
t+ x−δ

ann

))n−1

,

and therefore (in the final step we use the condition an log n → 0 in (24))

lim inf
n→∞ an log P(ann(Zn − t) ∈ O)

≥ lim inf
n→∞ an log

⎧⎪⎨
⎪⎩
(

G′(t+)
2δ

ann
+ o

(
1

ann

))⎛
⎝1 − G

(
t + x−δ

ann

)
1 − G(t)

⎞
⎠

n−1
⎫⎪⎬
⎪⎭



Some examples of noncentral moderate deviations 143

= lim inf
n→∞

⎧⎨
⎩an log

(
G′(t+)

2δ

ann
+ o

(
1

ann

))
+ an(n − 1) log

⎛
⎝1 − G

(
t + x−δ

ann

)
1 − G(t)

⎞
⎠
⎫⎬
⎭

= lim inf
n→∞

{
−an log n + an(n − 1) log

(
1 − G(t) − G′(t+) x−δ

ann
+ o( 1

ann
)

1 − G(t)

)}

= lim inf
n→∞

{
−an log n + an(n − 1) log

(
1 − G′(t+)

1 − G(t)

x − δ

ann
+ o

(
1

ann

))}

= − G′(t+)

1 − G(t)
(x − δ).

So we obtain (8) for x ∈ (0,∞) by letting δ go to zero.
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