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Abstract The paper is devoted to a stochastic heat equation with a mixed fractional Brow-
nian noise. We investigate the covariance structure, stationarity, upper bounds and asymptotic
behavior of the solution. Based on its discrete-time observations, we construct a strongly con-
sistent estimator for the Hurst index H and prove the asymptotic normality for H < 3/4. Then
assuming the parameter H to be known, we deal with joint estimation of the coefficients at the
Wiener process and at the fractional Brownian motion. The quality of estimators is illustrated
by simulation experiments.
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1 Introduction

The paper is devoted to parameter estimation in a stochastic heat equation of the
following form:(

∂u

∂t
− 1

2
· ∂2u

∂x2

)
(t, x) = σḂH

x + κẆx, t > 0, x ∈ R, (1)
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u(0, x) = 0, x ∈ R. (2)

The right-hand side of (1) is a mixed fractional noise. It consists of two independent
stochastic processes, namely, a fractional Brownian motion BH = {BH

x , x ∈ R} with
Hurst parameter H ∈ (0, 1) and a Wiener process W = {Wx, x ∈ R}; σ and κ are
some positive coefficients. The solution to the problem (1)–(2) is understood in mild
sense; the precise definition will be given in Section 2.

The mixed fractional Brownian motion was first introduced by P. Cheridito [8]
in order to model financial markets that are simultaneously arbitrage-free and have
a memory. The properties of this process were studied in [36]. We refer to the book
[28] for a detailed presentation of the modern theory in this area. More involved
mixed fractional models described by stochastic differential equations are the sub-
ject of numerous publications [13, 35, 33, 17] appeared during last decades. Such
equations can be used to model processes on financial markets, where two principal
random noises influence the prices. The first source of randomness is the stock ex-
change itself with thousands of agents. The noise coming from this source can be
assumed white and is best modeled by a Wiener process. The second one has the
financial and economical background and can be modeled by a fractional Brownian
motion BH . Stochastic partial differential equations with such noises can be used, in
particular, for the modeling of instantaneous forward rates, where the space variable
corresponds to time until maturity [9, 22]. Such equations arise also in geophysics,
especially in physical oceanography [30] and in geostatistics [34]. For example, in
models for sea surface temperature, noise terms can represent various heat fluxes and
ocean processes [29].

Existence, uniqueness and properties of solutions for stochastic differential equa-
tions with mixed noise were studied in various papers [12, 16, 17, 25–27]. A stochas-
tic heat equation with white and fractional noises was investigated in [24]. Several
approaches to parameter identification in simple linear mixed fractional models for
various observation schemes were proposed in [6, 14, 23, 20, 21]. The problem of
drift parameter estimation in a mixed stochastic differential equation of a general
form was studied in [19]. The statistical problems for the mixed fractional Vasicek
model were investigated in the recent papers [7, 31].

Similarly to our previous papers the solution u(t, x) is observed at equidistant
spatial points for a several fixed time instants. On one hand, there are many practical
cases where the solution is observed at some discrete space points such as temperature
of a heated body or velocity of a turbulent flow. In many cases the measurements with
a high space resolution are available, but the time series are short. For example, this is
the case for satellite observations of sea surface temperature, see [30]. For this reason,
it is suitable to assume that u(t, x) is observed at a large number of space points xk

and only few different time instants ti . On the other hand, observing the solution at
three time points is enough to construct estimators for unknown parameters σ , κ and
H . Nevertheless, the additional information of observing the solution discretely in
time can be consolidated by taking the (weighted) average of the estimators similarly
to [5] or [9].

The present paper is devoted to the problem of estimating unknown parameters
H , σ , κ in the equation (1), by discrete observations of its solution u(t, x). The re-
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sults of this paper are an extension of our previous works [2, 3], where the problems
of estimating H and σ were studied for the equation (1) with the fractional Brow-
nian motion only (that is, for κ = 0). The diffusion parameter estimator for SPDE
with white noise and its properties was considered in [4]. Similarly to the mentioned
articles, in the present paper we start with proving stationarity and ergodicity of the
solution u(t, x) as a function of the spatial variable x by analyzing the behavior of
the covariance function. Based on these results we construct a strongly consistent es-
timator of H (assuming that the parameters σ and κ are unknown). The asymptotic
normality of this estimator is proved for any H ∈ (0, 1

2 ) ∪ ( 1
2 , 3

4 ). Then we consider
the problem of estimating the couple of parameters (σ, κ) when the value of H is
known. We prove strong consistency of the estimator and investigate its asymptotic
normality.

The paper is organized as follows. In Section 2 we introduce the definition of
a mild solution to SPDE (1) and present its properties. Furthermore, we prove the
limit theorem for it, needed for establishing properties of statistical estimators. The
statistical problems are investigated in Section 3. In Subsection 3.1 we construct an
estimator of the Hurst index H and prove its strong consistency and asymptotic nor-
mality. Subsection 3.2 is devoted to the estimators of the parameters σ and κ and their
asymptotic properties. Numerical results are presented and discussed in Section 4.

2 Preliminaries

Assume that BH = {BH
x , x ∈ R

}
is a two-sided fractional Brownian motion with the

Hurst index H ∈ (0, 1), while W = {Wx, x ∈ R} is a Wiener process, independent
of BH . Let G be Green’s function of the heat equation, that is

G(t, x) =
{

1√
2πt

exp
{
− x2

2t

}
, if t > 0,

δ0(x), if t = 0.

Similarly to [2–4] (see also [10] and the references cited therein), we define a solution
to SPDE (1) in a mild sense as follows.

Definition 1. The random field {u(t, x), t ≥ 0, x ∈ R} defined by

u(t, x) = σ

∫ t

0

∫
R

G(t − s, x − y) dBH
y ds + κ

∫ t

0

∫
R

G(t − s, x − y) dWy ds (3)

is called a solution to SPDE (1)–(2).

Remark 1. As shown in [2], both stochastic integrals in (3) exist as pathwise Rie-
mann–Stieltjes integrals. This fact follows from the Hölder regularity of the inte-
grands and integrators. Namely, Green’s function is obviously Lipshitz continuous,
while sample paths of the fractional Brownian motion are Hölder continuous up to
order H . Such regularity guarantees the existence of the first integral in (3). The
second integral is also well defined, since the integrand is square integrable, see [4,
Theorem 2.1].
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The next proposition summarizes basic properties of the solution u(t, x). These
properties, especially stationarity and ergodicity, enable us to construct and investi-
gate statistical estimators for H , κ and σ .

Proposition 1. Let u = {u(t, x), t ∈ [0, T ], x ∈ R} be a solution to (1) defined
by (3). Then the following properties hold.

1. For all t, s ∈ [0, T ] and x, z ∈ R,

cov
(
u(t, z), u(s, x + z)

) = cov
(
u(t, 0), u(s, x)

)
= 1√

2π

∫ t

0

∫ s

0
(q + r)−

3
2

∫
R

(
σ 2H |y|2H−1 + κ2

2

)
× (sign y)(y − x) exp

{
− (y − x)2

2(q + r)

}
dy dq dr.

(4)

Consequently, for fixed distinct points t1, . . . , tn ∈ [0, T ], the stochastic pro-

cess

(
u(t1,x)

...
u(tn,x)

)
, x ∈ R, is a multivariate stationary Gaussian process.

2. The variance of u(t, x) is given by

E
[
u(t, x)2] = σ 2vt (H) + κ2vt

( 1
2

)
, t > 0, x ∈ R, (5)

where

vt (H) = cH tH+1, cH = 2H+1(2H − 1)�(H + 1
2 )√

π(H + 1)
, (6)

� denotes the gamma function.

3. For all t, s ∈ [0, T ] and x > 0, the covariance function admits the following
upper bound:∣∣cov

(
u(t, 0), u(s, x)

)∣∣ ≤ CH ts
(
σ 2x2H−2 + κ2x−1

)
, (7)

where CH is a positive constant depending only on H .

4. For all t, s ∈ [0, T ] and x ∈ R,

cov
(
u(t, x), u(s, x)

) =σ 22H �(H + 1
2 )
(
(t + s)H+1 − tH+1 − sH+1

)
√

π(H + 1)

+
κ22

3
2

(
(t + s)

3
2 − t

3
2 − s

3
2

)
3
√

π
. (8)

5. For a fixed t > 0, the random process {u(t, x), x ∈ R} is ergodic.
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Proof. The proposition follows from the corresponding results for the equation with
pure fractional noise studied in [2, 3]. Indeed, all the statements are based on the
properties of the covariance function of the solution. However, since BH and W are
independent, we see that this covariance function can be represented as

cov
(
u(t, x), u(s, z)

) = σ 2 cov
(
ub(t, x), ub(s, z)

)+κ2 cov
(
uw(t, x), uw(s, z)

)
, (9)

where

ub(t, x) =
∫ t

0

∫
R

G(t − s, x − y) dBH
y ds,

uw(t, x) =
∫ t

0

∫
R

G(t − s, x − y) dWy ds.

Then combining the equality (9) with statements of [3, Prop. 2.2], we immediately
obtain formulas (4), (7) and (8). The equality (5) follows from (9) and [2, Prop. 3]. Fi-
nally, the last statement of the proposition holds, because the solution {u(t, x), x ∈ R}
is a stationary Gaussian process, whose covariance function vanishes as x → ∞, ac-
cording to (8). Hence, the process u(t, ·) is ergodic.

Let us fix some δ > 0 and consider the following sequence:

VN(t) = 1

N

N∑
k=1

u(t, kδ)2, t > 0, N ∈ N. (10)

The sequence (10) will serve as a statistic for parameter estimation problems in Sec-
tion 3. We introduce the following notation in addition to (6):

μ(t) := EVN(t) = E
[
u(t, 0)2] = σ 2vt (H) + κ2vt

( 1
2

)
, (11)

ρH
ts (k) = cov

(
u(t, kδ), u(s, 0)

)
, rts(H) = 2

∞∑
k=−∞

ρH
ts (k)2, t, s > 0.

The next theorem describes an asymptotic behavior of the stochastic process VN .
It gives a law of large numbers and a central limit theorem for its finite-dimensional
distributions (VN(t1), . . . , VN(tn)) as N → ∞. This result is crucial for construction
of the estimators and for establishing their asymptotic properties.

Theorem 1. Let H ∈ (0, 1).

1. For any t > 0,
VN(t) → μ(t) a. s., as N → ∞. (12)

2. If additionally H ∈ (0, 3
4 ), then for any n ≥ 1 and any distinct positive

t1, . . . , tn,

√
N

⎛⎜⎝VN(t1) − μ(t1)
...

VN(tn) − μ(tn)

⎞⎟⎠ d−→ N (0, R) as N → ∞, (13)
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where N (0, R) is the multivariate normal distribution with zero mean and the
covariance matrix

R = (rti tj (H)
)n
i,j=1

.

Proof. 1. The ergodic theorem implies that for any t > 0

1

N

N∑
k=1

u(t, kδ)2 → E
[
u(t, 0)2] a. s. as N → ∞,

which is equivalent to (12).
2. In order to prove the convergence (13), we shall apply the Cramér–Wold theo-

rem. In other words, we need to show that for all α1, . . . , αn ∈ R, the convergence

√
N

[
n∑

i=1

αi (VN(ti) − μ(ti))

]
d−→ N

(
0, s2
)

(14)

holds with the asymptotic variance

s2 =
n∑

i=1

α2
i rti ti (H) + 2

∑
1≤i<j≤n

αiαj rti tj (H). (15)

Representing VN as the sum (10) and using (11), we rewrite (14) in the form

1√
N

N∑
k=1

n∑
i=1

[
αi

(
u(ti , kδ)2 − Eu(ti , kδ)2

)]
d−→ N (0, s2). (16)

Further, since

(
u(t1,kδ)

...
u(tn,kδ)

)
, x ∈ R, is a multivariate stationary Gaussian sequence, the

convergence (16) can be established by application of the multivariate Breuer–Major
theorem [1, Theorem 4]. In order to verify the conditions of this theorem, note that
the function F(x1, . . . , xn) = ∑n

i=1 αix
2
i has Hermite rank 2, therefore we need to

check the convergence of the series:

∞∑
k=−∞

ρH
ti tj

(k)2 < ∞, i, j = 1, . . . , n.

It follows immediately from the upper bound (7) that these power series converge if
and only if H ∈ (0, 3

4 ). Thus, the assumptions of [1, Theorem 4] are satisfied, whence
the convergence (16) holds with the following asymptotic variance:

s2 = Var
(
F
(
u(t1, 0), . . . , u(tn, 0)

))
+ 2

∞∑
k=1

cov
(
F
(
u(t1, 0), . . . , u(tn, 0)

)
, F
(
u(t1, kδ), . . . , u(tn, kδ)

))
.
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Now we must only check that the asymptotic variance s2 satisfies (15). By the defini-
tion of the function F , we have

s2 = Var

(
n∑

i=1

αiu(ti , 0)2

)
+ 2

∞∑
k=1

cov

⎛⎝ n∑
i=1

αiu(ti , 0)2,

n∑
j=1

αju(tj , kδ)2

⎞⎠
=

n∑
i=1

α2
i Var
(
u(ti, 0)2)+ 2

∑
1≤i<j≤n

αiαj cov
(
u(ti , 0)2, u(tj , 0)2

)

+ 2
∞∑

k=1

n∑
i=1

α2
i cov

(
u(ti , 0)2, u(ti , kδ)2

)
+ 2

∞∑
k=1

∑
1≤i<j≤n

αiαj

(
cov
(
u(ti , 0)2, u(tj , kδ)2

)
+ cov

(
u(tj , 0)2, u(ti , kδ)2

))
.

Now we can use the following well-known fact: if ξ and η are zero-mean Gaussian
random variables, then cov(ξ2, η2) = 2 cov(ξ, η)2, in particular, Var(ξ2) = 2 Var(ξ)2

(this is a corollary of the Isserlis theorem [18]). Then we get

s2 = 2
n∑

i=1

α2
i ρ

H
ti ti

(0)2 + 4
∑

1≤i<j≤n

αiαjρ
H
ti tj

(0)2 + 4
∞∑

k=1

n∑
i=1

α2
i ρ

H
ti ti

(k)2

+ 4
∞∑

k=1

∑
1≤i<j≤n

αiαj

(
ρH

ti tj
(k)2 + ρH

tj ti
(k)2
)

.

Taking into account the equality ρH
ts (k) = ρH

st (−k), we may rewrite this expression
in the more compact form:

s2 = 2
n∑

i=1

(
α2

i

+∞∑
k=−∞

ρH
ti ti

(k)2

)
+ 4

∑
1≤i<j≤n

(
αiαj

+∞∑
k=−∞

ρH
ti tj

(k)2

)
.

Thus the equality (15) is verified. This completes the proof of Theorem 1.

3 Parameter estimation

Let us consider the following statistical problem. It is supposed that for fixed t1, . . . , tn
and fixed step δ > 0, the random field u given by (3) is observed at the points xk = kδ,
k = 1, . . . , N . So the observations have the following form:

{u(ti , kδ), i = 1, . . . , n, k = 1, . . . , N} .

Our aim is to estimate the unknown parameters H , σ and κ . We shall do this it two
steps. We start with construction of a strongly consistent estimator of H that does not
depend on κ and σ . Also, we shall establish its asymptotic normality. Then assuming
that H is known, we shall estimate the parameters σ and κ .

In what follows we assume that H 
= 1
2 , because otherwise the model is non-

identifiable. The parameters σ and κ are assumed to be positive.
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3.1 Estimation of H

In order to estimate H without knowledge of σ and κ , it suffices to observe u(ti , xk)

only at three time instants t1 < t2 < t3. If we write (12) at these points and replace
convergences with equalities, we shall get the following system of equations⎧⎪⎪⎨⎪⎪⎩

VN(t1) = σ 2cH tH+1
1 + κ2c 1

2
t
3/2
1 ,

VN(t2) = σ 2cH tH+1
2 + κ2c 1

2
t
3/2
2 ,

VN(t3) = σ 2cH tH+1
3 + κ2c 1

2
t
3/2
3 .

(17)

Excluding the unknown parameter κ from the system, we obtain⎧⎪⎪⎨⎪⎪⎩
t
−3/2
2 VN(t2) − t

−3/2
1 VN(t1) = σ 2cH

(
t
H− 1

2
2 − t

H− 1
2

1

)
,

t
−3/2
3 VN(t3) − t

−3/2
2 VN(t2) = σ 2cH

(
t
H− 1

2
3 − t

H− 1
2

2

)
.

(18)

Then excluding σ we arrive at the following estimating equation for H :

t
H− 1

2
3 − t

H− 1
2

2

t
H− 1

2
2 − t

H− 1
2

1

= t
−3/2
3 VN(t3) − t

−3/2
2 VN(t2)

t
−3/2
2 VN(t2) − t

−3/2
1 VN(t1)

. (19)

The solution of (19) (if exists), can be viewed as an estimator of H .
Note that the left-hand side of (19) is indeterminate for H = 1/2. However, it is

easy to see by l’Hôpital’s rule that there exists the limit

lim
H→ 1

2

t
H− 1

2
3 − t

H− 1
2

2

t
H− 1

2
2 − t

H− 1
2

1

= lim
H→ 1

2

t
H− 1

2
3 log t3 − t

H− 1
2

2 log t2

t
H− 1

2
2 log t2 − t

H− 1
2

1 log t1

= log t3 − log t2

log t2 − log t1
.

Therefore, one may define by continuity

f (H) :=
⎧⎨⎩

t
H−1/2
3 −t

H−1/2
2

t
H−1/2
2 −t

H−1/2
1

, if H 
= 1
2 ,

log t3−log t2
log t2−log t1

if H = 1
2 .

(20)

Then the estimator of H is defined as

ĤN = f (−1)

(
t
−3/2
3 VN(t3) − t

−3/2
2 VN(t2)

t
−3/2
2 VN(t2) − t

−3/2
1 VN(t1)

)
, (21)

where f (−1) denotes the inverse function of f . In order to prove its existence, we
need to establish that f : R → (0,∞) is a one-to-one function. This is true, since f

is always a strictly increasing function (see Fig. 1) as shown in the following lemma.

Lemma 1. For any 0 < t1 < t2 < t3, the function f : R → (0,∞) defined by (20) is
strictly increasing with respect to H .
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Fig. 1. The function f (H) for t1 = 1, t2 = 2, t3 = 3

Proof. We prove the statement for the case H ∈ ( 1
2 ,∞). The interval (−∞, 1

2 ) is
considered similarly. The derivative of f with respect to H is equal to

f ′(H) =

(
t
H− 1

2
2 − t

H− 1
2

1

)(
t
H− 1

2
3 log t3 − t

H− 1
2

2 log t2

)
(

t
H− 1

2
2 − t

H− 1
2

1

)2

−

(
t
H− 1

2
3 − t

H− 1
2

2

)(
t
H− 1

2
2 log t2 − t

H− 1
2

1 log t1

)
(

t
H− 1

2
2 − t

H− 1
2

1

)2 . (22)

Therefore, it suffices to prove the inequality(
t
H− 1

2
2 − t

H− 1
2

1

)(
t
H− 1

2
3 log t3 − t

H− 1
2

2 log t2

)
>

(
t
H− 1

2
3 − t

H− 1
2

2

)(
t
H− 1

2
2 log t2 − t

H− 1
2

1 log t1

)
. (23)

In order to establish (23), observe that the function h(x) = x log x, x > 0, is strictly
convex (indeed, its second derivative h′′(x) = 1/x > 0). This means that for any
α ∈ (0, 1), x > 0 and y > 0,

αh(x) + (1 − α)h(y) > h
(
αx + (1 − α)y

)
. (24)

Let us take

x = t
H− 1

2
3 > 0, y = t

H− 1
2

1 > 0, and α = t
H− 1

2
2 − t

H− 1
2

1

t
H− 1

2
3 − t

H− 1
2

1

∈ (0, 1).

Then

1 − α = t
H− 1

2
3 − t

H− 1
2

2

t
H− 1

2
3 − t

H− 1
2

1

, αx + (1 − α)y = t
H− 1

2
2 ,
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and (24) becomes

t
H− 1

2
2 − t

H− 1
2

1

t
H− 1

2
3 − t

H− 1
2

1

(H − 1
2 )t

H− 1
2

3 log t3 + t
H− 1

2
3 − t

H− 1
2

2

t
H− 1

2
3 − t

H− 1
2

1

(H − 1
2 )t

H− 1
2

1 log t1

> (H − 1
2 )t

H− 1
2

2 log t2,

which is equivalent to (23).

The above lemma yields that the estimator ĤN is well defined at least for suffi-
ciently large N (when the right-hand side of estimating equation (19) becomes pos-
itive). The asymptotic properties of ĤN are summarized in the following theorem,
which is the first main result of the paper.

Theorem 2. 1. For any H ∈ (0, 1
2 ) ∪ ( 1

2 , 1), ĤN is a strongly consistent estimator of
the parameter H as N → ∞.

2. For H ∈ (0, 1
2 ) ∪ ( 1

2 , 3
4 ), the estimator ĤN is asymptotically normal:

√
N
(
ĤN − H

) d−→ N (0, ς2) as N → ∞,

where

ς2 = 1

D2σ 4c2
H

3∑
i,j=1

rti tj (H)LiLj ,

L1 = t
H− 1

2
3 − t

H− 1
2

2

t
3/2
1

, L2 = t
H− 1

2
1 − t

H− 1
2

3

t
3/2
2

, L3 = t
H− 1

2
2 − t

H− 1
2

1

t
3/2
3

,

D =
(

t
H− 1

2
2 − t

H− 1
2

1

)(
t
H− 1

2
3 log t3 − t

H− 1
2

2 log t2

)
−
(

t
H− 1

2
3 − t

H− 1
2

2

)(
t
H− 1

2
2 log t2 − t

H− 1
2

1 log t1

)
.

Remark 2. The inequality (23) from the proof of Lemma 1 implies that D > 0 for
all H 
= 1/2.

Proof. 1. The strong consistency follows from the construction of the estimator. In-
deed, (12) implies that

t
−3/2
3 VN(t3) − t

−3/2
2 VN(t2)

t
−3/2
2 VN(t2) − t

−3/2
1 VN(t1)

→ f (H) a. s., as N → ∞. (25)

Then the convergence ĤN → H a. s. as N → ∞ follows from (21) and (25) due to
the continuity of f (−1).

2. By taking expectations in the equalities (18), we get the following relations

t
−3/2
2 μ(t2) − t

−3/2
1 μ(t1) = σ 2cH

(
t
H− 1

2
2 − t

H− 1
2

1

)
,

t
−3/2
3 μ(t3) − t

−3/2
2 μ(t2) = σ 2cH

(
t
H− 1

2
3 − t

H− 1
2

2

)
,

(26)
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whence

t
−3/2
3 μ(t3) − t

−3/2
2 μ(t2)

t
−3/2
2 μ(t2) − t

−3/2
1 μ(t1)

= t
H− 1

2
3 − t

H− 1
2

2

t
H− 1

2
2 − t

H− 1
2

1

= f (H), (27)

or

H = f (−1)

(
t
−3/2
3 μ(t3) − t

−3/2
2 μ(t2)

t
−3/2
2 μ(t2) − t

−3/2
1 μ(t1)

)
.

Therefore,

√
N
(
ĤN − H

) = √
N
(
g
(
VN(t1), VN(t2), VN(t3)

)− g
(
μ(t1), μ(t2), μ(t3)

))
,

where

g(x1, x2, x3) = f (−1)

(
t
−3/2
3 x3 − t

−3/2
2 x2

t
−3/2
2 x2 − t

−3/2
1 x1

)
.

In order to derive the desired asymptotic normality from the convergence (13), we
shall apply the delta method. Denoting

h(x) = d

dx
f (−1)(x) = 1

f ′(f (−1)(x))
, (28)

we see that the partial derivatives of g equal

g′
1(x1, x2, x3) = h

(
t
−3/2
3 x3 − t

−3/2
2 x2

t
−3/2
2 x2 − t

−3/2
1 x1

)
·
t
−3/2
1

(
t
−3/2
3 x3 − t

−3/2
2 x2

)
(
t
−3/2
2 x2 − t

−3/2
1 x1

)2 , (29)

g′
2(x1, x2, x3) = −h

(
t
−3/2
3 x3 − t

−3/2
2 x2

t
−3/2
2 x2 − t

−3/2
1 x1

)
·
t
−3/2
2

(
t
−3/2
3 x3 − t

−3/2
1 x1

)
(
t
−3/2
2 x2 − t

−3/2
1 x1

)2 ,

g′
3(x1, x2, x3) = h

(
t
−3/2
3 x3 − t

−3/2
2 x2

t
−3/2
2 x2 − t

−3/2
1 x1

)
· t

−3/2
3

t
−3/2
2 x2 − t

−3/2
1 x1

.

By the delta method, we derive from (13) the convergence (2) with

ς2 =
3∑

i,j=1

rti tj (H)g′
ig

′
j (μ(t1), μ(t2), μ(t3)).

It remains to prove that g′
i (μ(t1), μ(t2), μ(t3)) = Li/(Dσ 2cH ), i = 1, 2, 3. Let us

consider in detail the proof of this equality for i = 1, the cases i = 2 and i = 3 are
considered similarly. Using successively (27), (28) and (22), we get

h

(
t
−3/2
3 x3 − t

−3/2
2 x2

t
−3/2
2 x2 − t

−3/2
1 x1

) ∣∣∣∣
xi=μ(ti )

= h(f (H)) = 1

f ′(H)
=

(
t
H− 1

2
2 − t

H− 1
2

1

)2

D
.
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After inserting this expression into (29) and taking into account the relations (26), we
obtain

g′
1(μ(t1), μ(t2), μ(t3)) =

(
t
H− 1

2
2 − t

H− 1
2

1

)2

D
·

t
−3/2
1

(
t
H− 1

2
3 − t

H− 1
2

2

)
σ 2cH

(
t
H− 1

2
2 − t

H− 1
2

1

)2

=
t
−3/2
1

(
t
H− 1

2
3 − t

H− 1
2

2

)
Dσ 2cH

= L1

Dσ 2cH

.

Note also that the above representation yields g′
1(x1, x2, x3) 
= 0 in the neighborhood

of the point (μ(t1), μ(t2), μ(t3)), which is necessary for applying the delta method.
The derivatives g′

2 and g′
3 are considered similarly.

The estimator of H was obtained as a solution to some exponential equation.
However, it would be more convenient for applications and modeling to have the
explicit form of the estimator. It turns out that in some particular cases it is possible
to solve the estimating equation explicitly. Let us consider such example in more
detail.

Assume that t1 = h > 0, t2 = 2h, t3 = 4h. Substituting these values in the
definition of f , we get

f (H) = t
H− 1

2
3 − t

H− 1
2

2

t
H− 1

2
2 − t

H− 1
2

1

= 4H− 1
2 hH− 1

2 − 2H− 1
2 hH− 1

2

2H− 1
2 hH− 1

2 − hH− 1
2

= 2H− 1
2 .

Therefore, f (−1)(x) = 1
2 + log2 x, x > 0, consequently (21) becomes1

ĤN = 1

2
+ log+

2

t
−3/2
3 VN(t3) − t

−3/2
2 VN(t2)

t
−3/2
2 VN(t2) − t

−3/2
1 VN(t1)

. (30)

In this case

L1 = 4H− 1
2 − 2H− 1

2

h2−H
, L2 = −4H− 1

2 − 1

2
3
2 h2−H

, L3 = 2H− 1
2 − 1

8h2−H
,

and

D = h2H−1
(

2H− 1
2 − 1

) (
4H− 1

2 log(4h) − 2H− 1
2 log(2h)

)
− h2H−1

(
4H− 1

2 − 2H− 1
2

) (
2H− 1

2 log(2h) − log h
)

1We use log+
2 rather than log2 so that the right-hand side of (30) is always well defined. The function

log+
2 x is defined as log2 x if x > 0 and 0 if x ≤ 0. Note that the expression under log+

2 in (30) eventually

becomes positive, since in converges to 2H−1/2.
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= h2H−1
(

4H− 1
2 − 2H− 1

2

)(
2H− 1

2 log(4h) − log(2h) − 2H− 1
2 log(2h) + log h

)
= h2H−12H− 1

2

(
2H− 1

2 − 1
) (

2H− 1
2 log 2 − log 2

)
= h2H−12H− 1

2

(
2H− 1

2 − 1
)2

log 2.

Denoting 
i = D−1Lih
1+H log 2, we arrive at the following result.

Corollary 1. Let t1 = h > 0, t2 = 2h, t3 = 4h. Then the estimator ĤN can be
written in the explicit form (30). In this case Theorem 2 holds with

ς2 = 1

σ 4c2
H h2+2H (log 2)2

3∑
i,j=1

rti tj (H)
i
j ,

where 
1 = 1

2H− 1
2 −1

, 
2 = − 2H− 1
2 +1

2H+1

(
2H− 1

2 −1

) , 
3 = 1

2H+ 5
2

(
2H− 1

2 −1

) .

Remark 3. Evidently, the explicit form of the estimator can be obtained also in a
slightly more general case, when t1 = h, t2 = ah, t3 = a2h with some a > 0. This
leads to the estimator of the form (30) with log+

a instead of log+
2 .

3.2 Estimation of σ and κ

Now we assume that the Hurst index H is known and investigate the estimation of
the coefficients σ and κ . From the first two equations of (17), one can derive the
following estimators:

σ̂ 2
N = t

−3/2
1 VN(t1) − t

−3/2
2 VN(t2)

cH

(
t
H−1/2
1 − t

H−1/2
2

) , κ̂2
N = t−1−H

1 VN(t1) − t−1−H
2 VN(t2)

c 1
2

(
t
1/2−H
1 − t

1/2−H
2

) . (31)

Now we are ready to formulate and prove the second main result of the paper.

Theorem 3. 1. For any H ∈ (0, 1
2 ) ∪ ( 1

2 , 1), (̂σ 2
N, κ̂2

N) is a strongly consistent esti-
mator of the parameter (σ 2, κ2) as N → ∞.

2. For H ∈ (0, 1
2 ) ∪ ( 1

2 , 3
4 ), the estimator (̂σ 2

N, κ̂2
N) is asymptotically normal:

√
N

(
σ̂ 2

N − σ 2

κ̂2
N − κ2

)
d−→ N (0, �) as N → ∞, (32)

where the asymptotic covariance matrix � consists of the following elements:

�11 = t−3
1 (rt1t1(H) + rt1t2(H)) + t−3

2 (rt1t2(H) + rt2t2(H))

c2
H

(
t2H−1
1 − 2(t1t2)

H− 1
2 + t2H−1

2

) ,

�12 = �21 = t
− 5

2 −H

1 (rt1t1(H) + rt1t2(H)) + t
− 5

2 −H

2 (rt1t2(H) + rt2t2(H))

cH c 1
2

(
2 − t

H− 1
2

1 t
1
2 −H

2 − t
1
2 −H

1 t
H− 1

2
2

) ,

�22 = t−2−H
1 (rt1t1(H) + rt1t2(H)) + t−2−H

2 (rt1t2(H) + rt2t2(H))

c2
1
2

(
t1−2H
1 − 2(t1t2)

1
2 −H + t1−2H

2

) .
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Proof. Using the definition (31) of the estimator σ̂ 2
N , we rewrite the error σ̂ 2

N − σ in
the following form

σ̂ 2
N − σ 2 = t

−3/2
1 V̂N (t1) − t

−3/2
2 V̂N (t2) − σ 2cH t

H− 1
2

1 + σ 2cH t
H− 1

2
2

cH

(
t
H− 1

2
1 − t

H− 1
2

2

)
= 1

cH

(
t
H− 1

2
1 − t

H− 1
2

2

)(t−3/2
1

(
V̂N (t1) − σ 2cH tH+1

1 − κ2c 1
2
t
3/2
1

)

− t
−3/2
2

(
V̂N (t2) − σ 2cH tH+1

2 − κ2c 1
2
t
3/2
2

))
= t

−3/2
1

(
V̂N (t1) − μ(t1)

)− t
−3/2
2

(
V̂N (t2) − μ(t2)

)
cH

(
t
H− 1

2
1 − t

H− 1
2

2

) ,

where the last equality follows from (11). Similarly, one can represent κ̂2
N − κ2 as

follows:

κ̂2
N − κ2 = t−1−H

1

(
V̂N (t1) − μ(t1)

)− t−1−H
2

(
V̂N (t2) − μ(t2)

)
c 1

2

(
t

1
2 −H

1 − t
1
2 −H

2

) .

Hence, we see that the random vector in the left-hand side of (32) is a linear transfor-
mation of the left-hand side of (13) (for n = 2), namely

√
N

(
σ̂ 2

N − σ 2

κ̂2
N − κ2

)

=

⎛⎜⎜⎜⎜⎜⎝
t
−3/2
1

cH

(
t
H− 1

2
1 −t

H− 1
2

2

) − t
−3/2
2

cH

(
t
H− 1

2
1 −t

H− 1
2

2

)
t−1−H
1

c 1
2

(
t

1
2 −H

1 −t
1
2 −H

2

) − t−1−H
2

c 1
2

(
t

1
2 −H

1 −t
1
2 −H

2

)

⎞⎟⎟⎟⎟⎟⎠
(√

N
(
V̂N (t1) − μ(t1)

)
√

N
(
V̂N (t2) − μ(t2)

)) .

(33)

Therefore, taking into account the convergence (13), we conclude that (33) weakly
converges in distribution to a bivariate normal distribution with the following covari-
ance matrix:

� =

⎛⎜⎜⎜⎜⎜⎝
t
−3/2
1

cH

(
t
H− 1

2
1 −t

H− 1
2

2

) − t
−3/2
2

cH

(
t
H− 1

2
1 −t

H− 1
2

2

)
t−1−H
1

c 1
2

(
t

1
2 −H

1 −t
1
2 −H

2

) − t−1−H
2

c 1
2

(
t

1
2 −H

1 −t
1
2 −H

2

)

⎞⎟⎟⎟⎟⎟⎠
(

rt1t1(H) rt1t2(H)

rt1t2(H) rt2t2(H)

)
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×

⎛⎜⎜⎜⎜⎜⎝
t
−3/2
1

cH

(
t
H− 1

2
1 −t

H− 1
2

2

) t−1−H
1

c 1
2

(
t

1
2 −H

1 −t
1
2 −H

2

)

− t
−3/2
2

cH

(
t
H− 1

2
1 −t

H− 1
2

2

) − t−1−H
2

c 1
2

(
t

1
2 −H

1 −t
1
2 −H

2

)

⎞⎟⎟⎟⎟⎟⎠ =
(

�11 �12
�12 �22

)
.

This completes the proof.

3.3 Maximum likelihood estimation and Fisher information
In this subsection we analyze the efficiency of the estimator (̂σ 2

N, κ̂2
N) by comparing

it to the maximum likelihood estimator (MLE). Note that MLE is hard to compute,
however, it is possible to identify the corresponding Fischer information matrix. We
use for construction of MLE the same observations as in the previous subsection,
namely let the observation vector be

XN = (u(t1, δ), u(t1, 2δ), . . . , u(t1, Nδ), u(t2, δ), u(t2, 2δ), . . . , u(t2, Nδ)
)�

.

Obviously, XN has 2N -dimensional Gaussian distribution with probability density

f (XN, θ) = (2π)−N (det �N)−
1
2 exp

{
−1

2
X�

N�−1XN

}
,

where �N is the covariance matrix of XN , that is,

�N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρH
t1t1

(0) · · · ρH
t1t1

(N − 1) ρH
t2t1

(0) · · · ρH
t2t1

(N − 1)
...

. . .
...

...
. . .

...

ρH
t1t1

(N − 1) · · · ρH
t1t1

(0) ρH
t2t1

(N − 1) · · · ρH
t2t1

(0)

ρH
t2t1

(0) · · · ρH
t2t1

(N − 1) ρH
t2t2

(0) · · · ρH
t2t2

(N − 1)
...

. . .
...

...
. . .

...

ρH
t2t1

(N − 1) · · · ρH
t2t1

(0) ρH
t2t2

(N − 1) · · · ρH
t2t2

(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Due to (9), this matrix can be decomposed as �N = σ 2�b
N + κ2�w

N , where �b
N and

�w
N are the covariance matrices of(

ub(t1, δ), ub(t1, 2δ), . . . , ub(t1, Nδ), ub(t2, δ), ub(t2, 2δ), . . . , ub(t2, Nδ)
)�

and(
uw(t1, δ), uw(t1, 2δ), . . . , uw(t1, Nδ), uw(t2, δ), uw(t2, 2δ), . . . , uw(t2, Nδ)

)�
,

respectively. The log-likelihood function is


(XN, θ) = −N log(2π) − 1

2
log(det �N) − 1

2
X�

N�−1
N XN.

Then, MLE of θ = (σ 2, κ2) is obtained as the solution to the following system of
equations:

∂
(XN, θ)

∂σ 2 = −1

2
tr(�−1

N �b
N) + 1

2
X�

N�−1
N �b

N�−1
N XN = 0, (34)
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∂
(XN, θ)

∂κ2 = −1

2
tr(�−1

N �w
N) + 1

2
X�

N�−1
N �w

N�−1
N XN = 0 (35)

(here and after we use the differentiation formulas of a matrix with respect to given
parameter,2 see, e. g., [32] for more details).

The maximum likelihood estimator θ̂mle
N of θ can hardly be written in the explicit

form, since the estimating equations involve the inverse matrix �−1
N , which depends

nonlinearly on σ 2 and κ2. However, using the general theory of maximum likelihood
estimation for dependent observations [11], it is possible to establish the asymptotic
normality in the form

(TN(θ))
1
2

(
θ̂mle
N − θ

)
d−→ N (0, I2) as n → ∞, (36)

where TN(θ) is the Fisher information matrix and I2 is the 2 × 2 identity matrix.
The rigorous proof of (36) as well as a careful analysis of the asymptotic behavior
of TN(θ) requires an additional investigation. To the best of our knowledge, even for
much simpler model of the mixed fractional Brownian motion, this problem has not
been completely solved yet, see the recent paper [15] for details. Therefore, here we
restrict ourselves to the identification of the matrix TN(θ).

Lemma 2. The Fisher information matrix TN(θ) has the form

TN(θ) =

⎛⎜⎜⎝
1
2 tr

((
�−1

N �b
N

)2
)

1
2 tr
((

�−1
N �b

N

) (
�−1

N �w
N

))
1
2 tr
((

�−1
N �b

N

) (
�−1

N �w
N

))
1
2 tr

((
�−1

N �w
N

)2
)

⎞⎟⎟⎠ .

Proof. In order to identify TN(θ), let us calculate the second derivatives. Note that

∂

∂σ 2

(
�−1

N �b
N

)
=
(

∂

∂σ 2 �−1
N

)
�b

N =
(
−�−1

N �b
N�−1

N

)
�b

N = −
(
�−1

N �b
N

)2
,

∂

∂σ 2

(
�−1

N �b
N�−1

N

)
=
(

∂

∂σ 2 �−1
N �b

N

)
�−1

N + �−1
N �b

N

(
∂

∂σ 2 �−1
N

)
= −
(
�−1

N �b
N

)2
�−1

N − �−1
N �b

N

(
�−1

N �b
N�−1

N

)
= −2

(
�−1

N �b
N

)2
�−1

N .

Hence,

∂2
(XN, θ)

∂(σ 2)2 = 1

2
tr

((
�−1

N �b
N

)2
)

− X�
N

(
�−1

N �b
N

)2
�−1

N XN.

Taking expectations, we obtain that the corresponding element of the Fisher informa-
tion matrix equals

−E
[
∂2
(XN, θ)

∂(σ 2)2

]
= −1

2
tr

((
�−1

N �b
N

)2
)

+ E
[

X�
N

(
�−1

N �b
N

)2
�−1

N XN

]

2For square matrices X and Y , ∂(XY) = (∂X)Y +X(∂Y ), ∂(X−1) = −X−1(∂X)X−1, ∂(ln(det X)) =
tr(X−1∂X), ∂(tr(X)) = tr(∂X).
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= 1

2
tr

((
�−1

N �b
N

)2
)

,

since for any matrix A = (aij )i,j=1,...2N , we have the equality E
[
X�

NAXN

] =∑
i,j aij E

[
XiXj

] = tr (A�N). Arguing as above, one can write the derivatives

∂2
(XN, θ)

∂(κ2)2 = 1

2
tr

((
�−1

N �w
N

)2
)

− X�
N

(
�−1

N �w
N

)2
�−1

N XN

∂2
(XN, θ)

∂σ 2∂κ2 = 1

2
tr
(
�−1

N �w
N�−1

N �b
N

)
− 1

2
X�

N�−1
N

(
�b

N�−1
N �w

N + �w
N�−1

N �b
N

)
�−1

N XN,

and calculate their expectations, identifying other elements of TN(θ).

Remark 4. 1. Similarly to the previous subsection, in the case H = 1
2 it is impossible

to estimate both parameters, σ 2 and κ2, simultaneously. Only estimation of the sum
σ 2 + κ2 is possible. In this case �b

N = �w
N , therefore the estimation equations (34)

and (35) coincide.
2. The results of this subsection are valid for any other observations vector of the

form X = (u(ti , xk), i = 1 . . . ,M, k = 1, . . . N) and its covariance matrix � (with
decomposition � = σ 2�b + κ2�w).

3. Similar approach can be applied to the case, when H is unknown, that is, to the
problem of estimation of all three parameters σ 2, κ2 and H .

4 Simulations

Let us illustrate the theoretical properties of the estimator by some numerical results.
We consider the model with the coefficients σ = κ = 1 for various values of H . For
each value of the Hurst index H , we simulate 50 sample paths of the solution u(t, x)

to the equation (1). The trajectories of a solution are generated by the discretization
of the formula (3).

We choose t1 = 0.25, t2 = 0.5, t3 = 1 as the moments of observations, so that
the conditions of Corollary 1 are satisfied and the estimator of H can be computed
by the explicit formula (30). For each ti we observe u(ti , kδ), k = 1, . . . , N , with the
step δ = 1.

Table 1 reports the means and standard deviations of ĤN for various H and N .
We see that the estimates converge to the true value of the parameter H . However, the
convergence is much slower compared to the estimation of H in the pure fractional
case (i. e. κ = 0), which was considered in [3]. The results become poorer when
H approaches 1/2, or when H is close to zero. It’s worth mentioning that the best
performance of ĤN is observed for large values of H (0.8 and 0.9), for which the
asymptotic normality does not hold.

The means and standard deviations of the estimates σ̂ 2
N and κ̂2

N are reported in
Tables 2–3. Here we also clearly see that the estimators converge to the true values
of the parameters, however the results for both estimators become worse when H
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Table 1. Means and standard deviations of the estimator ĤN

N 28 29 210 211 212

H = 0.1 Mean −0.0121 −0.0299 0.0353 0.0527 0.0682
Std. dev. 0.5237 0.5552 0.2061 0.1242 0.0752

H = 0.2 Mean 0.1616 0.1415 0.1910 0.1961 0.1799
Std. dev. 0.3419 0.2243 0.1540 0.0897 0.0692

H = 0.3 Mean 0.1543 0.2845 0.2685 0.2955 0.2999
Std. dev. 0.4451 0.4177 0.1930 0.1314 0.0781

H = 0.4 Mean 0.2254 0.2725 0.3129 0.2854 0.3313
Std. dev. 0.8089 0.8803 0.4661 0.1608 0.1299

H = 0.6 Mean 0.4563 0.3495 0.5266 0.5618 0.5775
Std. dev. 0.7108 0.9010 0.2926 0.1992 0.1108

H = 0.7 Mean 0.6384 0.7024 0.7160 0.7151 0.6980
Std. dev. 0.3391 0.1512 0.1065 0.0848 0.0511

H = 0.8 Mean 0.8160 0.8042 0.8073 0.8022 0.8074
Std. dev. 0.1929 0.0922 0.0644 0.0467 0.0333

H = 0.9 Mean 0.8583 0.8722 0.8815 0.8939 0.8958
Std. dev. 0.1216 0.0772 0.0671 0.0474 0.0334

Table 2. Means and standard deviations of the estimator σ̂ 2
N

for σ = 1, κ = 1

N 28 29 210 211 212

H = 0.1 Mean 1.0084 1.0511 1.0571 1.0405 1.0440
Std. dev. 0.3971 0.2933 0.1829 0.1355 0.0909

H = 0.2 Mean 1.0963 1.0478 1.0407 1.0183 1.0170
Std. dev. 0.3742 0.2370 0.1888 0.1261 0.1014

H = 0.3 Mean 1.0107 1.0437 0.9616 0.9939 1.0032
Std. dev. 0.4530 0.3618 0.2454 0.1673 0.1216

H = 0.4 Mean 0.8117 1.0042 1.0566 1.0964 1.0660
Std. dev. 0.9423 0.7003 0.4789 0.3048 0.2167

H = 0.6 Mean 1.0905 1.1579 1.0793 1.0667 1.0673
Std. dev. 0.6755 0.5750 0.3875 0.2967 0.2154

H = 0.7 Mean 0.9536 1.0545 1.0653 1.0106 0.9889
Std. dev. 0.4650 0.3498 0.2526 0.1649 0.1202

H = 0.8 Mean 1.0171 1.0216 1.0287 1.0252 1.0095
Std. dev. 0.4619 0.2805 0.2465 0.1720 0.1368

H = 0.9 Mean 1.1814 1.1236 1.0738 1.0391 1.0308
Std. dev. 0.8814 0.7882 0.6851 0.4922 0.3681

is close to 1/2. We observe that unlike ĤN , the estimator σ̂ 2 converges slowly for
H = 0.9, demonstrating better results for small H . Note that the similar situation
for the coefficient at the fractional Brownian motion takes place in the pure fractional
case, see [2].
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Table 3. Means and standard deviations of the estimator κ̂2
N

for σ = 1, κ = 1

N 28 29 210 211 212

H = 0.1 Mean 1.0472 1.0133 1.0005 0.9953 0.9886
Std. dev. 0.1664 0.1483 0.0963 0.0606 0.0442

H = 0.2 Mean 0.9608 0.9720 0.9732 0.9876 0.9859
Std. dev. 0.2430 0.1712 0.1338 0.0834 0.0720

H = 0.3 Mean 0.9899 0.9638 1.0355 1.0075 1.0032
Std. dev. 0.4197 0.3056 0.2059 0.1472 0.1017

H = 0.4 Mean 1.2052 1.0076 0.9417 0.9092 0.9365
Std. dev. 0.8747 0.6671 0.4480 0.2988 0.2188

H = 0.6 Mean 0.8934 0.8285 0.9070 0.9258 0.9279
Std. dev. 0.6869 0.5600 0.3733 0.2869 0.2137

H = 0.7 Mean 1.0483 0.9526 0.9519 0.9863 1.0040
Std. dev. 0.4351 0.3250 0.2228 0.1448 0.1078

H = 0.8 Mean 0.9996 0.9938 0.9905 0.9848 0.9974
Std. dev. 0.3113 0.1941 0.1429 0.1031 0.0795

H = 0.9 Mean 1.0017 0.9877 0.9767 0.9870 0.9945
Std. dev. 0.2985 0.2311 0.2072 0.1480 0.1084
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